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Abstract

Cosmic ray transport in interplanetary or interstellar magnetic �elds can be viewed as a Markov
stochastic process and the transport equation has therefore recently been reformulated with a set
of stochastic di�erential equations that describe the guiding center and the momentum of individ-
ual charged particles. The Fokker-Planck di�usion equation for the cosmic ray 
ux can be de-
rived from these stochastic di�erential equations. Alternatively, the Fokker-Planck equation, like
the Schroedinger equation in quantum mechanics, can be solved with a path integral method. Both
new methods enable us to solve modulation, propagation and acceleration problems for cosmic ray
spectra. In addition, both can reveal insights into the physical processes behind the solutions to
these problems since they follow the trajectory and the momentum of individual particles. In this
paper, we derive a path integral representation from the stochastic di�erential equations and thus
prove that the two new methods are consistent with each other.

1 Introduction:
Cosmic ray transport in interplanetary or interstellar magnetic �elds is often studied in the frame-

work of di�usion models (e.g. Parker, 1965; Ginzburg & Ptuskin, 1975). For interplanetary transport,
a Fokker-Planck di�usion equation for the isotropic part of the cosmic ray distribution function can
be derived from the collisionless Boltzmann equation with the help of observations of interplanetary
magnetic �elds (Skilling, 1976). The mechanism for motion of cosmic rays in the interstellar medium
is not yet clear simply because of insu�cient information on the interstellar medium and the galactic
magnetic �eld. But on the overall scale size of the galaxy and on the time scale of cosmic ray life time
(� 107 years), the di�usion approximation seems to be a suitable approach, because it is consistent
with the observation of small cosmic ray 
ux anisotropy and large amount of secondly produced nuclei
in cosmic rays relative to the interstellar medium composition. In addition, acceleration of cosmic
rays by astrophysical shocks may also be studied in the framework of di�usion models (Drury, 1983).

In this paper, we use stochastic di�erential equations that describe Markov stochastic processes
to replace the di�usion equation as the fundamental transport equation of cosmic rays. From the
stochastic di�erential equation we discretize the stochastic process to get a path integral solution for
the transition probability, which is consistent with the Green's function of the di�usion equation. We
�nd a Lagrangian, which, if minimized, describes the most probable trajectory of particles in di�usion
process. We prove that the path integral derived from the Markov stochastic process is consistent
with the path integral derived from the di�usion equation with quantum mechanics method (Zhang,
1999a). Both the stochastic process method and path integral approach give excellent results for
cosmic ray spectrum calculation.

2 Di�usion and Markov stochastic processes
In di�usion models for cosmic ray studies, the distribution function or 
ux obeys a second-order

d-dimensional partial di�erential equation, which can be in general written as:
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where the coordinate q�(� = 1; � � � d) is composed of spatial coordinates and particle momentum
or energy, and Q is the source term. Table 1 lists the variables and parameters for studying solar
modulation, interstellar propagation and di�usive particle acceleration.

Table 1. Parameters in the di�usion equation for applications to cosmic ray modulation, propa-
gation and acceleration studies.
Parameters (1) Heliospheric (2) Interstellar Propagation (3) Shock

Modulation (A) Nuclei (B) Electron Acceleration

u f Ni (i=species) Ne f
q-space x; x; x; x;

p E=amu E p
1

2
a�� ��� ; � � ��� ;

Dp (usually 0) Dp Dp Dp

b� V +Vd; usually 0, 0, V +Vd;
�1

3
pr �V bi be �1

3
pr �V

Q 0 (boundary problem) continuous continuous injection at shock

f { Isotropic distribution function Ni { Flux per energy range for nuclei
Ne { Flux per energy range for the electron x { guiding center position
p { momentum E { energy
��� { di�usion coe�cient tensor � { di�usion coe�cient scalar
Dp { Fermi acceleration coe�cient V { convection speed of plasma
Vd { drift speed in magnetic �elds bi { ionization energy loss rate
be { synchrotron energy loss rate n { interstellar medium density
v { particle speed �i { total cross scalar section for specie i
�ik { cross section matrix from species k to i �i { radioactive decay time for specie i
�ik { radioactive decay time matrix from species k to i

The motion of individual particles in di�usion models has always been viewed as random walk since
the beginning of theoretical e�orts (e.g. Parker, 1965). However, it is only a recent development that
the cosmic ray transport equation can be reformulated with stochastic di�erential equations (Zhang,
1999b). In this approach, the guiding center position of the particle and its momentum (energy)
follow a set of Ito stochastic di�erential equations

dq� = ��dt+
X
�

��;�dw�(t) (2)

where w�(t) is a Wiener process (see below) and the sum of � runs over all required independent
random noises. The probability density for the particle in the Markov process determined by (2) to
appear in a unit volume at a particular location in q-space at time t, P (t; q), follows the same Fokker-
Planck di�usion equation as (1) (Zhang, 1999b) if we let a�� =

P
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and let the process be created at an exponential rate of c as a function of time, i.e. d(lnP )=dt = c.
The probability density in q-space can be made proportional to the cosmic ray 
ux or distribution
function. If the probability density starts with a �-function initially, i.e., the stochastic process starts
from a single location point, the solution is the Green's function to the di�usion equation (1); thus the
Green's function is often called the transition probability density or propagator. Therefore, stochastic
di�erential equations (2) with an additional creation term can be used to describe di�usion.

Zhang (1999b) applied the Ito stochastic di�erential equation to studies of modulation, and the
results from Monte-Carlo simulation of the stochastic process completely agree with those by directly
solving the di�usion equation. One obvious advantage of using the stochastic process approach is



that it can reveal the physics of particle di�usion in more detail. For example, we can investigate
the trajectory of simulated particles traveling through heliospheric or interstellar magnetic �elds and
when an ensemble of particles is simulated we can �nd the distributions of source particles in terms
of entry location at the boundary, initial momentum and propagation time (which is approximately
proportional to path length). The path length distribution is particularly useful for studies of nuclear
fragmentation during interstellar propagation.

3 Path integral representation for the transition probability of Markov

processes
For simplicity and also because of space limitation, let us consider only a 1-dimensional stochastic

di�usion process governed by an Ito stochastic di�erential equation

dq = �(t; q)dt+ �(t; q)dw(t) (3)

with a creation rate c(t; q). The Wiener process has an associated probability for the process w(t) to
transit from w0 at time t0 to an interval w1 < w(t1) < w1 + dw1 at t1 (t1 > t0):

P1(t0; w0; t1; w1) =
dw1p

2�(t1 � t0)
exp�(w1 � w0)

2

2(t1 � t0)
(4)

The Wiener process (see Zhang, 1999b) can be understood as the simplest di�usion with a coe�cient
of 1

2
and no convection. To calculate the transition probability density for the process described

by Equation (3) to get from q0 at time t0 to q at t, we normally divide the time interval ft0; tg
into N small segments ft0; t1; t2; � � � ; tN�1; tN(tN = t)g. This method is often called discretization.
The probability for the process to go through a path fq0; q1 < q(t1) < q1 + dq1; q2 < q(t2) <
q2 + dq2; � � � qN�1 < q(tN�1) < qN�1 + dqN�1; qN < q(tN ) < qN + dqNg, during which the driving
Wiener process goes through fw0; w1 < w(t1) < w1 + dw1; w2 < w(t2) < w2 + dw2; � � �wN�1 <
w(tN�1) < wN�1 + dwN�1; wN < w(tN ) < wN + dwNg, is
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where �ti = ti� ti�1 and �wi = wi�wi�1. When �ti ! 0, �wi must be O(
p
�ti) in order to have

non-vanishing probability. The transition probability density from the initial point (t0; q0) and the
end point (t; q) can be obtained by integrating all the intermediate points, w1; w2; � � � ; wN�1.

However, the probability density, as obtained directly from (5), is for the w-space. To calculate
the probability density in the q-space, we need to �nd the Jacobian for the transformation to q-
coordinates, which can be obtained by �nite expansion of the Ito stochastic di�erential equation (3)
to the 6th order (Langouche et al., 1982). Replacing also the argument wi in the exponential of (5),
we obtain a path integral representation for the transition probability density:
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where a = �2. When we take the limit N !1, (6) may be written in a continuous path integral:

G(t0; q0; t; q) =

Z
Dq exp�

Z
L(t; q; _q)dt (7)
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and the Lagrangian, L(t; q; _q); ( _q = �q=�t) is

L(t; q; _q) =
1
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The path integral in (7) is consistent with the path integral directly derived from the Fokker-Planck
equation (Drozdov, 1993). For higher dimensions, the derivation of the path integral from stochastic
di�erential equations is much more complicated. Interested readers may �nd rigorous calculations by
Langouche et al. (1982)

When the functional integral
R
Ldt is minimized, it yields an Euler-Lagrange equation. Thus, the

Lagrangian in (9) may be used to �nd the most probable trajectory for particles.

4 Summary and Application

0.001

0.01

0.1

1

10

In
te

ns
ity

0.01 0.1 1 10
Kinetic Energy (GeV)

Path Integral
SolMod

Monte-Carlo

r = 5 AU
R0 = 100 AU

κ0/V = 1 (GeV/c)-1

ISM Spectrum

Modulated Spectrum

Fig. 1 { Three di�erent calculations
of modulated cosmic ray spectra at 5
AU with an input ISM spectrum.

We have presented a Markov stochastic process approach
to the di�usion theory of comic ray modulation, propaga-
tion and acceleration. The cosmic ray transport equation
is reformulated with the Ito stochastic di�erential equation.
From the stochastic di�erential equation a Fokker-Planck
equation can be derived for the probability density, which
is proportional to the cosmic ray 
ux. The transition prob-
ability density of the Markov process is obtained as a path
integral consistent with that derived in quantum mechanics.

Figure 1 shows an example of computer calculations of
modulated cosmic ray spectra. Three di�erent methods
{ the path integral approach, stochastic process simula-
tion and numerical method to solve the di�usion equation
(\SolMod"; Fisk, 1971) { all agree with each other. In addi-
tion to the ability to solve the cosmic ray di�usive transport
equation, the two new methods provide the detailed physical
processes behind their solutions (Zhang, 1999a, 1999b).
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