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Abstract

The perpendicular diffusion of charged particles in random magnetostatic slab fields is investigated
numerically, primarily as a means to check the validity of a recent theory (Bieber and Matthaeus,
1997) for the perpendicular diffusion coefficient . The numerical results suggest the following: (1)
the theory agrees very well with the numerical experiments for large €27 >> 1, where €2 is the particle
gyrofrequency and 7 is a rigidity dependent decorrelation time; (2) for intermediate values, i.e., for
2 < Q7 < 4 the theory provides a better fit to the numerical data than does the standard quasilinear
result k| = vP;(0)/4Bo; (3) for Q7 < 1 the theory does not fit the experimental data quantitatively
or qualitatively. It is suggested that the breakdown for Q27 < 1 is related to the form of the initial
ansatz for the velocity correlation function in this region of parameter space.

1 Introduction:

Theoretical understanding of perpendicular diffusion of charged particles is crucial in a variety of
astrophysical settings, as it, along with drifts, provides a primary mechanism for transporting charged
particles across magnetic field lines. These processes are especially relevant in the outer heliosphere,
because the large—scale magnetic field there is nearly perpendicular to the radial direction. In spite of
its intrinsic importance, a fundamental theory of perpendicular transport is not as yet widely agreed
upon, and observations continue to pose challenges (Dwyer et al, 1997) for theoretical explanations.
As such, investigations of cosmic ray modulation often adopt empirically determined perpendicular
diffusion coeflicients, represented by simple ad hoc functional forms (e.g., Cummings et al., 1994;
Burger, 1990). While this is a useful approach, a more complete theory of cosmic ray transport
would employ transport coefficients based purely upon deductive physical principles. Such a theory
is well established for hard-sphere scattering in a magnetized plasma (Gleeson, 1969), and for related
extensions based upon the Boltzmann equation (Jones, 1990). However, cosmic rays in the solar wind
are presumably scattered by magnetic turbulence, and here our understanding is severely limited in
a number of different ways.

Most existing theories of charged particle diffusion (Forman et al. 1974; Jokipii & Parker 1969)
are constrained by the following points: (i) they apply strictly only to slab turbulence; (ii) they
are limited to weakly turbulent plasmas with (§B2)!/2/By < 1; and (iii) they are valid only if the
particle gyroradius is well in excess of the correlation length of the turbulence (high energy/rigidity
assumption). Bieber & Matthaeus (1997) attempted to address these limitations using the Taylor-
Green-Kubo expression (Taylor, 1922; Green, 1951; Kubo, 1957) for the diffusion coefficient in terms
of the velocity autocorrelation,
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to obtain &, the diffusion coefficient of charged particles relative to a mean magnetic field (see also
Forman, 1977). In the above v;(¢) denotes the ith Cartesian component of the particle velocity and
(...) denotes an ensemble average (see, e.g., Montgomery & Tidman, 1964). As a consequence of an
Ansatz concerning the particle velocity autocorrelation, they obtained the result
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where v is the particle speed, p;, = v/€) is the gyroradius, v is the rate at which a particle trajectory
decorrelates from a helical orbit, 7 = 1/v, and € is the relativistic particle gyrofrequency. The
correspondence k| <> Dy, was used. The perpendicular diffusion coefficient x| enters through the
cosmic ray diffusion tensor x;; = (FLH — k1 )bb; + K165 + Kacijrby, where b is a unit vector in the
mean magnetic field direction, x| is the parallel diffusion coeflicient, and x4 describes the diffusive
effects associated with gradient and curvature drift (Jokipii et al. 1977).

Central to the approach of Bieber & Matthaeus (1997) are (1) an Ansatz for the functional form
of the correlation function (vy(t)v.(t + 70)), and (2) an additional Ansatz concerning the physical
origin of the decorrelation rate v that appears in the first Ansatz. In particular, the random walk of
magnetic field lines is presumed to govern the gyrophase decorrelation, and the latter is assumed to
be the dominant effect in causing the falloff of the particle velocity autocorrelation. In the particular
case of magnetostatic slab turbulence one has (Jokipii & Parker 1969; Bieber & Matthaeus 1997)
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where 7, = 27/€} is the particle gyroperiod, and X, is the correlation length of the magnetic field
in the mean field direction. Equation (3) implies, for (6B2)Y/2/By < 1, that the mean time for
decorrelation exceeds the particle gyroperiod unless pr/A\. < (37/2)(6B2%)/B2. As pointed out by
Bieber & Matthaeus (1997), non-slab analogs of (3) can be derived using more complex models of
field line transport (e.g., Gray et al.(1996); Pommois et al.(1998)). The advantage of the Ansatz
approach is that it derives a functional form for &, without requiring at the onset a theory for
the rate of decorrelation, v. We are not aware of any reason that Eq. (2) should not remain
a reasonable approximation for v < €, v ~ Q and v > Q. Previous theories (Forman et al.
1974) were limited by the constraint that v < €. For magnetostatic slab geometry one has, from
(3), Qr = 3(pr/Ac)BE/(6B?). This implies, for solar wind fluctuations where (§B2)/B3 ~ 1, that
prL > A., which puts a lower limit on the particle energy and rigidity, Bopr = |p|¢/|g|. This rules out
most of the cosmic rays measured by spacecraft for typical conditions at 1AU, which have, in this
sense, intermediate energies.

In this paper we test the theory presented by Bieber & Matthaeus (1997) by evaluating the
perpendicular diffusion coefficient numerically, employing a test particle code. Our primary aim
will be to explore the intermediate to strong scattering regimes denoted by v ~ Q and v > €,
respectively, for which there is currently no other well established theory. We examine only the
simplest case of slab geometry here, partly for the simplicity it offers, but more importantly, to have
a simple basis for comparison with well-established analytical theories. Numerical tests of the theory
for different magnetic field models and, indeed, for various (§B?)/2/ By, await further study [however,
see Giacalone (1998) and Giacalone & Jokipii (1999)]. Further details of this study will be presented
elsewhere (Mace & Matthaeus 1999).

2 Equations and Numerical Tests
For magnetostatic fields the magnetic field B(x,?) is prescribed and time independent, and the

electric field E(x,t) is identically zero. The equation of motion of test particles with charge ¢ is
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The quantity 74 is the Alfvén crossing time, 74 = A\/v4, where A is the turbulence correlation
length, and vy is the characteristic Alfvén speed. Q = €g/v is the relativistic gyrofrequency, and
Qo = |g|Bo/mc is the non-relativistic gyrofrequency. Note that since E = 0, particle energy is



conserved and hence v is constant. The parameter {274 arises as a consequence of our choice of
normalizations (Ambrosiano et al., 1988).

Test particle simulations were carried out in a one-dimensional box of length L = 1000A. The
magnetic field, B(z), was stored on a grid of spacing Az = L/N where N was an even integer
which we fixed at N = 222 = 4194304. Each simulation used 1000 particles. The magnetic field
configuration was generated through a spectrum S(k) in k-space. The field grids in real space were
then produced via inverse Fast Fourier Transform (FEFT). The large number of grid points ensures
that both the turbulence correlation scale A and the maximal gyroradius py, = v/€2 were well resolved.
The large box size, L = 1000\, was chosen to reduce the subtle effects of box periodicity. In addition,
to accurately depict the physics of perpendicular diffusion, we need to approximate the effect of
L — oo. This provides a stable estimate of the power at the lowest wavenumber, The continuum
limit is associated with wavenumber spacing Ak ~ 1/L — 0. With our choice of box length we
achieve AkA = 4+27/1000 =~ £6.28 x 10~ 3. For further detail, see Mace & Matthaeus (1999).

For our one dimensional field configuration the turbulent magnetic field component satisfied
0B(z) = 6By(2)ey + 6By(z)e, with the full magnetic field given by B(z) = Bge, + éB(z). The
fluctuations 6B, (zm) and 6By (zm) were generated from a discrete Fourier transform. A single real-
ization was used throughout each simulation run. In all the runs the spectral density of the magnetic
field fluctuations was proportional to S(k,) = (1 + k2A\?)"” where X is a measure of the parallel
correlation length of the turbulence and v = 5/6, providing a o k~5/3 inertial range, |k > 1/
The parameter X is related to the true correlation length, A\, = 7¥/2['(¥)A/I'(v — 3). The particle
positions were loaded randomly in the simulation box. Initial velocities were in a cold spherical shell
distribution — the velocity magnitude v was held constant and a random cos@ and ¢ were chosen
for each particle. The time integration scheme is a 4th order Runge-Kutta-Cash-Karp method with
adaptive timestepping (Press et al.,1992). During these runs we monitor accuracy in several ways,
including computation of the ratio ((¥) — Fo)/Fo, where FE is the energy of a particle at the end
of the run and FEjy is the initial energy of the particle. The high degree to which particle energy is
conserved (worst case is two parts in 10°) gives us significant confidence in the code’s accuracy.

3 Numerical Results

Figure 1 summarizes a number of runs investigating perpendicular spatial diffusion. The figure
illustrates the behavior of x| as a function of pr/\ and Q7 (annotated at the top of the plot frame).
Each data point (filled circle) corresponds to a numerically computed value of the normalized diffusion
coeflicient # /(p2€2). On the same figure the solid line,
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corresponds to the theoretical result of Bieber and Matthaeus (1997), for the special case of magne-
tostatic slab turbulence that we have adopted. The field line random walk limit (FLRW), in which
particles always follow field lines, is given by (4) after ignoring the one in the denominator, and is
illustrated in Fig. 1 with a dot-dashed line. For large values of €2r > 1, the FLRW line corresponds
to the theory of Forman et al. (1974), but it should be emphasized that their theory breaks down
when this inequality is not satisfied.

Strictly speaking, the dashed curve should not be extended below €27 = 1 as there is currently
no well-established theory for perpendicular transport in this “strong scattering” regime. One ob-
serves in Fig. 1 the very good agreement of the Bieber & Matthaeus (1997) theory (solid line)
with the numerically determined points, provided that Qr > 2, or, equivalently, py/A > 0.011.
In fact between 21 = 4 and €27 = 1, this theory is slightly better than the FLRW prediction.



For Q1 < 2 the simulations differ sub-
stantially from either of the theories, 0 2 4 6
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nation of perpendicular transport will 10,000 0.010 0.020 0.030 0.040

await further theoretical insight. pL/A
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