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Abstract
The rigidity dependence of the latitudinal gradient of cosmic-ray protons observed by Ulysses poses a
challenge to modulation models: it increases as function of rigidity up to about 1.4 GV and then decreases.
Although models could reproduce the observed small positive gradient for an A > 0 solar polarity cycle, its
maximum was at a rigidity well below 1 GV. After exploring various options, it turns out that changing the
rigidity dependence of the perpendicular diffusion coefficient (DC) in the polar direction so that it differs
from that of the parallel DC, is the most effective way to obtain good agreement with data. Specifically, we
find that this DC must have a flatter rigidity dependence than the parallel DC in order to reproduce the
observed rigidity dependence of the latitudinal gradient of protons during an A > 0 solar polarity cycle.

1  Introduction: 
From September 1994 to July 1995, the Ulysses spacecraft executed a fast latitude scan (FLS) by

moving from 80° South to 80° North at solar distances between 1.3 and 2.2 AU. During this first
comprehensive exploration of the latitudinal dependence of modulation, a number of discoveries were
made (see Simpson 1998 and McKibben 1998 for recent overviews). Those of relevance to this paper are
the unexpected small latitudinal cosmic ray proton density gradients, and its rigidity dependence (Heber et
al. 1996.)  These authors also attempted to model the observed gradients. They found that the discrepancy
between measurements and model results increased as rigidity is decreased. The magnitude problem was
subsequently solved (Potgieter, Ferreira, & Heber 1997, Hattingh et al. 1997) by using anisotropic
perpendicular diffusion (Jokipii & Kóta 1995). In this paper we show that it is the rigidity dependence of
the perpendicular diffusion coefficient in the polar direction that controls that of the latitudinal gradient,
and that this coefficient's rigidity dependence cannot be the same as that of parallel diffusion.

2  Modulation Model and Diffusion Tensor:
The modulation of galactic cosmic rays is described by Parker's transport equation (Parker 1965) for the

omnidirectional distribution function f P0( , )r  for particles with rigidity P at position r , which can be

written in the steady state as
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Here r and θ are heliocentric radial distance and colatitude (polar angle) respectively, Vw the solar wind
speed, and vd the drift velocity. The coefficient κ θθ  describes diffusion perpendicular to the mean



Figure 1: Radial dependence of the radial and polar mean
free paths, and the drift scale for 1 GV protons in the
ecliptic and at 10° colatitude (upper panels). The two
lower panels show the rigidity dependence of the same
variables at a radial distance of 3 AU. In all cases
γ η= = −0 4. in Eq. (4).
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magnetic field in the polar direction, while
the radial coefficient is

κ κ κ φ
rr

r= + ⊥|| cos sin2 2Ψ Ψ , with κ ||  the

diffusion coefficient parallel to the mean

magnetic field, κ φ
⊥
r the diffusion

coefficient perpendicular to the field in the
radial/azimuthal direction and Ψ the spiral
angle. In our two-dimensional model this
coefficient acts only in the radial direction.
The various processes that play a role in
our model are indicated in Equation (1).

We use a steady-state two-dimensional
model that simulate the effect of a wavy
current sheet (Burger & Hattingh 1995,
Hattingh & Burger 1995) by using for the
three-dimensional drift pattern in the region
swept out by the wavy current sheet, an
averaged field with only an r- and a θ-
component. The heliospheric boundary is
assumed at 100 AU while the solar wind
speed is 400 km/s within ~30° of the
ecliptic plane and increases within ~10° to
800 km/s in the polar regions. A modified
heliospheric magnetic field (HMF) is used
(Jokipii & Kóta 1989). The tilt angle of the
wavy current sheet is 15°.

The diffusion tensor on which the
current one is based, is described in detail

in Burger & Hattingh (1998). (Our conclusions are valid for the present form of the diffusion tensor and
various other options). For diffusion parallel to the magnetic field, we use
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if the quantityD c R B lS= 1 6 0  is greater than 1, while if it is less than one
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In these expressions v is the particle speed, B0 is the magnitude of the background magnetic field, lS is the
correlation length of the magnetic field, s is the fraction of slab turbulence, CS is the level of the turbulence,
c is the speed of light, and R is the particle rigidity. The quantity δ determines the transition from

κ || v R∝ 1 to κ || v R∝ 2  for particles resonant with fluctuations in the energy range of the magnetic field

power spectrum: if δ is equal to 1, only κ || v R∝ 2  occurs, while if it is greater than one both occur. The

terms in square brackets ensure a smooth transition from one rigidity dependence to the next. To describe
the anisotropic diffusion perpendicular to the field, and drift, we use



Figure 2:  See text for description. The quantities γ and η are used in Eq. (4) for
perpendicular diffusion. Data (open circles) are from Heber et al. 1996.
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The ecliptic region spans the solar equatorial plane with a half-angle of 35° and values for γ and η are
given in the next section

Figure 1 (a) and (b) show the spatial dependence of the radial and polar mean free paths, and the drift
scale, while (c) and (d) show their rigidity dependence [with γ η= = −0 4. in Eq. (4)]. The spatial and the

rigidity dependence of the diffusion coefficients cannot be separated and this leads to the different behavior
of these quantities in different regions in space. Note that in the ecliptic region [Fig. 1 (a)] , λ rr approaches

λθθ  beyond 30 AU. Radial diffusion is dominated by κ φ
⊥
r  at large radial distances where the field becomes

azimuthal, and in the ecliptic region κ κφ
θθ⊥ =r . In the polar region [Fig. 1 (b)], λθθ  exceeds λ rr at large

radial distances where κ φ
⊥
r  again begins to dominate radial diffusion; but here κ κφ

θθ⊥ <r . Figure 1 (c) and

(d) show that the polar mean free path has a flatter rigidity dependence than the radial mean free path.
Drifts are slightly reduced (below about 1 GV) with respect to the weak scattering case which is
proportional to R at all rigidities.

The parameters given in this Section [with γ η= = −0 4. in Eq. (4)] are chosen to fit solar minimum data

at Earth for both solar polarity epochs, by changing only the sign of the magnetic field. Although optimized
for protons, good fits to galactic helium and high energy electrons are also obtained.

3  Results:
The central result of this paper is Figure 2, which shows a comparison of the latitudinal gradient for

cosmic ray protons calculated at 2 AU between the ecliptic and 10° colatitude, and Ulysses data obtained
during the FLS.
Comparing (a), (b)
and (c) it is evident
that changing the
rigidity dependence

of κ φ
⊥
r  has little

effect on the
latitudinal gradient
as γ changes from –
0.4 to +0.4. It
reduces the
gradient somewhat
at high rigidity, but
is does not shift the

maximum. In contrast, changing the rigidity dependence of κ θθ  changes both the magnitude and the

position of the maximum as η changes from –0.8 to 0 in each panel. The best values are γ η= = −0 4. .

4  Discussion and Conclusions:
To obtain the correct magnitude of the observed near-Earth latitudinal gradient, enhanced latitudinal

transport is required. In the present model, this is accomplished by increasing the cross-field diffusion in
the polar direction with respect to that in the other direction perpendicular to the HMF. To obtain the
observed rigidity dependence of this gradient, the cross-field diffusion in the polar direction must have a
flatter rigidity dependence than parallel diffusion; at rigidities below about 10 GV κ ⊥ v  should be almost



independent of rigidity. Before coming to this conclusion, numerous other options were tried. However,
looking at the transport equation (1), it is obvious that κ θθ , which appears as a coefficient of ∂ ∂f0 θ ,

should play a dominant role in governing latitudinal transport.
At this time, at least two other studies support our conclusions. Comparing Ulysses high-latitude data on

the rate of change of integral cosmic ray intensities with IMP8 data, Simpson (1998) concludes that if
cross-field diffusion (as opposed to direct magnetic field "channeling"; see Fisk 1996) occurs, it should be
independent of rigidity. In an independent study, Potgieter et al. (1999) came to a similar conclusion
studying cosmic-ray electron modulation and using Ulysses electron data.

There are however other studies that at a first glance appear to contradict the above conclusion. A

numerical simulation (Giacalone 1998) predicts κ ⊥ ∝v R1 2/  in the range 40 MV < R < 2 GV. A second

different conclusion follows from the interpretation of Voyager anomalous nuclear component data
(Cummings & Stone 1998 and references therein) which suggests that the perpendicular mean free path is

proportional to R2 below about 1 GV, in agreement with quasi-linear theory (e.g., Bieber, Burger, &
Matthaeus 1995).

Can all these different results be reconciled? The answer is a guarded yes, but only if those that appear
to have observational support are considered, i.e. if the numerical simulations reported by Giacalone (1998)
is neglected for the moment. One possibility is that perpendicular transport in the ecliptic and in the polar
region are different. In the ecliptic region, QLT may apply – this will explain the result reported in
Cummings & Stone (1998). This can of course be tested, and such a study is in progress. The relative

insensitivity of the rigidity dependence of Gθ  on κ φ
⊥
r  near Earth, is an indication (albeit not a strong one)

that the results of the current study will not necessarily be invalidated if κ φ
⊥
r  from QLT is used. More

problematic is κ θθ . The enhanced latitudinal transport may also be due to direct magnetic field

"channeling" in the HMF model of Fisk (1996). The question in this case is, if the transport is parallel to
the field, should this process not have the same rigidity dependence as parallel diffusion? The first
implementation of the Fisk field in a numerical modulation model (Kóta & Jokipii 1997) unfortunately did
not address this issue.
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