AMS01 -- Antimatter in Space

Daniel Haas
DPNC Genève
SPS Meeting 2002

- Motivation
- The AMS01 Detector
- Results from AMS01
 - Search for Antimatter
 - Flux Measurements
 - Geomagnetic Effects
- Outlook to AMS02

Motivation

The creation of the universe is well described by the Big Bang Model. Experimental proofs are e.g.

- Recession of the galaxies
- Existence of the cosmological background-radiation
- the relative quantities of the light isotopes in the universe

In principal, matter and antimatter should exist in equal quantities BUT till now, no trace of antimatter in the universe:

- neither close to our planet
- nor in the sun system
- nor in our galaxy

Where did the antimatter go?

Motivation

Two possible scenarios:

- Did the antimatter disappear completely?
 Baryogenesis (Sakharov 1967):
 - Direct violation of baryon number conservation
 - C and CP-violation
 - Period out of thermal equilibrium
- The universe consists of domains of matter and antimatter
 - But: No annihilation photons discovered yet
 - \Rightarrow Size and distance > 15 Mpc

The AMS Experiment is designed to search for antimatter $(Z\geq 2)$ with high sensitivity

The AMS-01 Detector

- Nd-Fe-B alloy permanent magnet $BL^2 = 0.14 \text{ Tm}^2$
- LEPS: against low energy particles
- TOF: 4 planes, velocity β ($\Delta\beta/\beta \approx 2.4\%$) & Z
- Tracker: 2.1 m², 6 planes of double sided silicon microstrip detectors: sign(Z), Z and R
- Aerogel Threshold Cerenkov: additional β measurement
- ACC: reject multiparticle events

Once we know from where the particle came (TOF), matter and antimatter are identified by the bending in the magnetic field

The STS-91 Mission

2-12 June 1998

NASA-DOE Memorandum of Understanding, 20 Sep 1995 "Primarily a test flight that would enable the AMS team to gather data on background sources, adjust operating parameters and verify the detector's performance under actual space flight conditions"

- Total data taking: 184 hours
- Flight attitudes: 1°, 20°, 40°,
 180° w.r.t. Zenith
- Flight altitude: 320-390 km
- Orbit: 51.7°, all longitudes (SAA excluded)

A complete success!!

- Detector was performing in space as during tests on ground
- 100 million events recorded on disk
- Trigger rates 0.1-1 kHz, DAQ livetime 90-40 %

AMS-01 gives already accurate results on the search for antimatter and charged cosmic ray spectra incl. geomagnetic effects

What Parameters enter in the Data Analysis?

- Rigidity (p/Z): Measured by the Tracker from the deflection of the trajectory
- Velocity and Direction of the particle from the TOF
- Charge Magnitude is taken by the dE/dx measurement in the Scintillators and Tracker
- From these, the sign of the charge and particle mass are derived
- Major Background for antimatter search: p, e^- and He

Z=2 Event Selection

Energy loss is measured in two independent ways

 \Rightarrow Background $< 10^{-7}$

Very precise TOF system (105 ps)

 \Rightarrow always correct assigned direction

Result for |Z|=2

No Anti-Helium events were found at any rigidity

Assumption:

incident $\overline{\mathrm{He}}$ -spectrum the same as He

Phys.Lett.B 461 (1999) 387

$$rac{N_{\overline{
m He}}}{N_{
m He}} < 1.1 imes 10^{-6}$$
 at 95% C.L.

Model Independent Result for |Z|=2

Corrections to raw spectrum for:

- Livetime (Θ_m)
- rigidity resolution
- inelastic cross sections

Upper limit on the flux ratio as a function of the rigidity interval

$$R_{\text{min}} = 1.6 \text{ GV} \dots R_{\text{max}}$$

Result is independent of the incident He-spectrum!

Search for Heavier Antinuclei

 1.65×10^5 heavy ions have been identified No antinucleus was found

Nuclei range from lithium to oxygen in the rigidity interval 1 GV to 100 GV

Comparison with Other Results

AMS-01 test flight produced competitive limits on an extended rigidity range, that are compatible or even better than previous results

- No Antimatter found ⇒ Study Properties of Matter
- Studies performed on:
 - protons
 To understand interstellar propagation and acceleration of cosmic rays
 - electrons
 coming from supernova explosions and interstellar gas
 - Helium
- Observed spectra show a primary and secondary spectrum
 - Primary spectrum: cosmic particles
 - Secondary spectrum: geomagnetic effects

Geomagnetic rigidity cut-off

Minimum rigidity (p/Z) depends on magnetic latitude \Rightarrow cutoff in the spectrum of cosmic particles

Protons

Protons are the most abundant charged particles in space, studied at:

- Altitudes 30-40 km: Balloon measurements ⇒ atmospheric secondaries
- Inner and outer radiation belts from 1000 km: small size satellite detectors ⇒ high intensity cosmics
- Intermediate region by AMS-01
 ⇒ both spectra!

- Background: π^{\pm} and d
- Acceptance and Resolution are taken into account ⇒ Unfolding

Protons - Primary Spectrum

Fitting the spectrum over all latitudes at energies above the geomagnetic cutoff (E > 10 GeV) to

$$\Phi_0 \times R^{-\gamma}$$

we obtain

$$\gamma = 2.79 \pm 0.012_{\rm stat} \pm 0.019_{\rm sys}$$

Phys.Lett.B 472 (2000) 215

$$\Phi_0 = 16.9 \pm 0.2_{\rm stat} \pm 1.3_{\rm sys} \pm 1.5_{\gamma} \frac{{\rm GV}^{2.79}}{{\rm m}^2 {\rm sec} \, {\rm sr} \, {\rm MeV}}$$

Electrons/Positrons

Electron spectrum from 0.2 - 30 GeV

- background: protons with bad p, secondary pions: $\mathcal{O}(10^{-4})$
- Cerenkov-signal required (independent β measurement)
- Efficiency: 39%

Positron spectrum from 0.2 - 3 GeV

- background: protons with bad p
- ullet at low energy: tenfold dE/dx of scintillator and tracker
- at higher energy: additional cuts on Cerenkov
- Efficiency: 28%

Background subtraction

 \Rightarrow Systematic error of 5%

Primary Electrons/Positrons

- high energy electrons originate from primary acceleration sites (supernova explosions)
- high energy electron-positron pairs are produced from collisons of hadrons and gamma rays with interstellar gas

 \Rightarrow more e⁻ than e⁺ expected

Helium

- Helium nuclei are second most abundant element in cosmic rays
- balloon experiments: helium and proton spectra show no difference
 ⇒ same source
- But not yet confirmed above 10 GeV \Rightarrow AMS-01 10^6 nuclei from 0.1 100 GeV/n

Phys.Lett.B 494 (2000) 193

$$\begin{split} \gamma &= 2.74 \pm 0.010_{\rm stat} \pm 0.016_{\rm sys} \\ \Phi_0 &= 2.49 \pm 0.09_{\rm stat} \pm 0.14_{\rm sys} \pm 0.14_{\gamma} \frac{{\rm GV}^{2.74}}{{\rm m}^2 {\rm sec \, sr \, MeV}} \end{split}$$

A large flux of particles is detected for rigidities lower than the geomagnetic cutoff \Rightarrow Where do they come from?

To determine their origin, detected particle trajectories have been backtraced through the Earth magnetic field

Backtracing has been done (for max 10 sec) until:

- The trajectory reached outside the magnetosphere
- it reached the atmosphere (altitude 40 km)
 for this, two components
 - t < 200 msec: short lived
 - t > 200 msec: long lived

Secondary spectrum of e^{\pm}

Substantial secondary spectrum under geomagnetic cutoff

Short flight times show no energy dependence

Origin of secondary e^{\pm}

- origin show no longitude dependence
- flux independent on attitude and isotropic
- origin for e[±] are from well-defined, complementary regions
- flux depends on attitude

Phys.Lett.B 484 (2000) 10

Secondary spectrum of protons

Similar analysis for protons

Understanding of the origin requires full simulation of protonnuclei in the atmosphere and their propagation in the magnetosphere

Conclusions

Outlook to AMS-02

AMS-01 Results

Best limit on antimatter flux up ● Take data during 3 years on ISS to 140 GV

- Primary spectra of protons, helium and leptons with excellent • Better Tracking System than accuracy
- Geomagnetic effects on cosmic rays studied in detail
 - "Primarily a test flight [...] to adjust operating parameters and verify the detector's performance [...]"

What's next? \Rightarrow AMS-02

- First superconducting magnet in space
 - **AMS-01**
 - Additional ECAL energy measurement up to 1 TeV

Exciting challenge for coming years!

Not bad for