CERN Gamma Test Beam Simulation Studies

- Estimation of the γ statistics
- Alignment considerations
- Summary

W.J. Burger INFN-Perugia CERN 23 août, 2004

Statistics Estimate

- For 24 hr measurement period
- 1(2) spills per 16.8 s "supercycle"
- Spill length 400 ms
- Maxium particle rate in silicon 1 kHz
- Electron composition of beam 5 %
- Cherenkov efficiency 80 %

 \Rightarrow 82 285 e⁻ / 24 h

• Simulated y detection acceptance

Alignment Study

- 11 ladder configuration in magnet ladders in layers 6 and 7 separated by 5 mm in X, ladders in layer 8 by 10 mm in X
- Without magnetic field
- With/without radiator
- e^{-} , π^{-} beam
- Beam distributions generated at -160 cm from magnet center
- Results obtained with 5 x 10⁴ particles, 7 GeV/c beam
- Compare alignment event distributions with distributions of recontsructed γ events for 7 GeV/c "standard" configuration (1 mm W radiator, 0.4 T field,)

Beam Smearing

5 Ladder Alignment Events

8 Ladder Alignment Events

Alignment versus γ event distributions (X)

Alignment versus y event distributions (Y)

Distributions (Y) at Ladders 1 and 10

Alignment versus γ event distributions (X)

defocused beam $\delta\theta = 25$ mrad

Correlated Alignment Event

Alignment Configurations

Summary

• Estimated statistics for "standard" configurations:

```
~14 500 y's between 2-6 GeV with 7 GeV/c e<sup>-1</sup> ~7 500 y's between 2-4 GeV with 5 GeV/c e<sup>-1</sup> (corresponding in each case to 240 h of data)
```

- A possible scenario for alignment (*magnet off, radiator in place*):
 - 1) π^{-} "defocused" beam
 - 2) e⁻ "standard" beam (correlation data) (presented simulation distributions represent the results for 50 000 e⁻, or ~15 h of data)
- Low intensity running (< 1 kHz), how? If obtained with "defocused" beam, may have an appreciable impact on γ statistics (~ 30 %).