DISCRIMINATING BETWEEN $\nu_{\mu} \leftrightarrow \nu_{\tau}$ AND $\nu_{\mu} \leftrightarrow \nu_{STERILE}$ IN ATMOSPHERIC ν_{μ} OSCILLATIONS WITH THE SUPER-KAMIOKANDE DETECTOR.

A. Habig (for the Super-K Collaboration)

University of Minnesota Duluth. ahabig@umn.edu

A strong body of evidence now exists for atmospheric ν_{μ} disappearance oscillations. Such disappearance could be explained by oscillations to either ν_{τ} (due to the high τ production threshold) or a "sterile" neutrino (ν_s) that interacts only through such flavor oscillations. Super-Kamiokande uses three different methods to distinguish between these two scenarios. First, matter effects would suppress the $\nu_{\mu} \leftrightarrow \nu_s$ oscillation amplitude at high energy. Second, oscillation to ν_s would reduce the overall neutral-current neutrino interaction rate. Third, the smoking gun of $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations would be the observation of τ appearance resulting from charged-current ν_{τ} interactions. The results of these three techniques are presented, which strongly favor $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations over $\nu_{\mu} \leftrightarrow \nu_s$.