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Abstract. An estimate of the energy of neutrino-induced
muons in MACRO is provided by a multiple Coulomb scat-
tering measurement. The MACRO original upward-muon
data sample has been subdivided according to the recon-
structed muon energy. Data in each subset are then compared
with expected fluxes from atmospheric neutrinos. The results
are interpreted in terms of neutrino oscillations.

1 Introduction

MACRO can be used as a neutrino detector by measuring
neutrino induced muon events. From the study of the upgo-
ing muon deficit and from the distortion of the relative an-
gular distribution, MACRO provided evidence for neutrino
oscillations (Ahlen, 1995). The tagging of the neutrino in-
duced events was performed using a time-of-flight (TOF)
technique. The results of these studies are presented at this
conference in Montaruli, 2001 for the high energy sample
and in Spurio, 2001 for the low energy sample.

Since the oscillation probability depends on the ratio
Lν/Eν , whereLν is the distance travelled by neutrinos in-
side the earth andEν is the neutrino energy, an estimate of
this ratio is fundamental for any oscillation analysis. For high
energy muonsLν is properly measured by MACRO using the
reconstructed zenith angle of the tracked muon. As far as the
Eν is concerned, part of the neutrino energy is carried out by
the hadronic component produced in the rock below the de-
tector while the energy carried out by the muon is degraded in
the propagation up to the detector level. Nevertheless, Monte
Carlo simulations show that the measurement of the muon
energy at the detector level still preserves information about
the original neutrino energy.

Since MACRO is not equipped with a magnet, the only
way to infer the muon energy is through the multiple
Coulomb scattering (MCS) of muons in the' 25 radia-
tion lengths (Xo) of detector. For this purpose, we use
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the streamer tube system (Ahlen, 1993), which provides the
muon coordinates on a projected view. The other comple-
mentary view of the tracking system (the “strip” view) can-
not be used for this purpose since the spacial resolution is too
poor.

The projected displacement of a relativistic muon with en-
ergyEµ travelling for a distancey can be written as:

σMS
x ' y 1√

3
13.6 · 10−3GeV

pβc

√
X

Xo
(1+0.038ln(X/Xo))(1)

wherep is the muon momentum (in GeV/c) andX/Xo is the
amount of crossed material in terms of radiation lengths. In
MACRO, a muon crossing the whole apparatus has
X/Xo ' 25/cosθ andy ' 480/cosθ cm, giving, on the
vertical,σMS

x ' 10 cm/E(GeV). The muon energy estima-
tion can be performed up to a saturation point, occurring
whenσMS

x is comparable with the detector space resolution.
The MACRO streamer tube system, with a cross section of
(3× 3) cm2, provides a spatial resolution ofσ'3 cm/

√
12'

1 cm. Therefore, the muon energy estimation through MCS
is possible up to' 10 GeV/

√
cosθ.

A first energy estimation has been presented in Bakari,
2001, where the feasibility of this approach was shown. The
deflection of the muons inside the detector depends on the
muon energy and was measured using the digital informa-
tion of the limited streamer tube system. Using Monte Carlo
results to infer a muon energy from its scattering angle,
data were divided into three subsamples with different av-
erage muon energy and five subsamples with different aver-
age value ofLν/Eν . The measured event rate vs.Lν/Eν
is in good agreement with the expectations, assuming neu-
trino oscillations with parameters∆m2=2.5×10−3eV 2 and
sin22θ=1.

Since the interesting energy region for atmospheric neu-
trino oscillation studies spans from' 1 GeV up to some tens
of GeV, it is important to improve the spatial resolution of
the detector to push the saturation point as high as possible.

We improved the MACRO spatial resolution exploiting the
TDCs of the MACRO QTP system to operate the limited
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streamer tubes in drift mode; first results of this study have
been presented in Scapparone, 2001. The MACRO QTP sys-
tem is equipped with a 6.6 MHz clock which corresponds to a
TDC bin size of∆T=150 ns. Altought the MACRO streamer
tubes, when operated in drift mode, can reach a spacial res-
olution as good asσ'250µm (Battistoni, 2001), in MACRO
the main limitation comes from the TDC bin size. The ex-
pected ultimate resolution is therefore
σ'Vdrift×∆T/

√
12'2mm, whereVdrift ' 4 cm/µs is the

drift velocity.
Since the QTP electronics was designed for slow

monopole analysis, in order to fully understand the perfor-
mance of the QTP TDCs in this context and to measure an
absolute energy we did a calibration at the CERN PS-T9 test
beam. A slice of the MACRO detector was reproduced in
detail: absorbers made of rock excavated in the Gran Sasso
tunnel, like those of MACRO, were used. Following the
MACRO geometry, the tracking was performed by 14 lim-
ited streamer tube chambers, operated with the MACRO gas
mixture (He(73%)/n-pentane(27%)). In order to study the
QTP-TDC performance, we equipped the detector with stan-
dard Lecroy TDCs, with a bin size of 250 ps. In this way we
were able to check the linearity of the QTP-TDC response
and we computed in detail the drift velocity inside the cham-
bers as a function of the distance from the wire. The ex-
perimental setup was exposed to muons with energy ranging
from 1 GeV up to 15 GeV. Each QTP-TDC time was con-
verted into drift circles inside the chambers. We performed
dedicated runs to estimate the space resolution by removing
the rock absorbers and we developed a special tracking to fit
the muons along the drift radii. The distribution of the resid-
uals of the fitted tracks showed aσ ' 2 mm, demonstrating
the successful use of the QTP-TDCs to operate the streamer
tube system in drift mode.

In order to implement this technique in the MACRO data,
we used downgoing muons crossing the whole apparatus,
muons whose average energy is around250 GeV. Since we
were going to consider resolution of the order of few mil-
limeters we used more than 15 million downgoing muons to
align the wire positions using an iterative software procedure.
After the alignment, a resolution ofσ ' 3 mm was obtained.
This is a factor 3.5 better than the standard resolution of the
streamer tube system used in digital mode (Fig. 1). In order
to compare such resolution with Monte Carlo expectations,
we properly inserted inside the simulation code GMACRO
the drift velocity measured with the test beam. The distribu-
tion of the MACRO downgoing muon residuals is shown in
Fig. 1 (black circles) together with the GMACRO simula-
tion (continuous line). In the same plot we superimposed the
residuals distribution obtained with streamer tubes in digital
mode (dashed line).

The difference between the resolution obtained at test
beam (σ ' 2 mm) with respect to that obtained with MACRO
data (σ ' 3 mm), is fully understood and comes from sys-
tematic effects such as gas mixture variations during the runs,
the presence ofδ rays produced in the rock absorbers causing
earlier stops to QTP-TDCs and the residual multiple scatter-
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Fig. 1. Distribution of the residuals for MACRO data (black points)
and for simulated data (continuous histogram). For comparison, the
distribution of the streamer tube resolution used in digital mode is
also shown (dashed histogram).

ing suffered by the low energy tail of downgoing muons.

2 Muon energy estimation

For the muon energy estimation we followed a neural net-
work (NN) approach. We chose JETNET 3.0, a standard
package with a multilayer perceptron architecture and with
back-propagation updating. The NN has been configured
with 7 input variables and 1 hidden layer and we choose the
Manhattan upgrading function. For each muon the input vari-
ables considered are:
- the average of the residuals;
- the maximum of the residuals;
- the sigma of the residuals;
- the difference of the residuals of the three farthest hits along
the track;
- the slope and intercept of the “progressive fit”.

As far as the “progressive fit” is concerned, it is defined
as the fit of the absolute value of the residuals as a function
of the number of limited streamer tube planes crossed. The
slope and the intercept of this fit are very sensitive to low en-
ergy muons. While for high energy muons the absolute value
of the residuals as a function of the crossed plane number is
roughly constant(small slope), for a low energy muon it in-
creases, as the muon is losing a relevant fraction of its initial
energy. The NN was trained using a special set of Monte
Carlo events with known input energy, crossing the detector
at different zenith angles.
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Fig. 2. Average NN output as a function of the muon energy (Monte
Carlo simulation).

In Fig. 2 we show the average output of the NN as a func-
tion of the residual muon energy just before entering the de-
tector (top) and of the neutrino energy (bottom). The out-
put of the NN increases with the muon residual energy up to
Eµ ' 40 GeV, corresponding to a neutrino energyEν ' 200
GeV.

3 Data analysis

For this analysis, we used the whole sample of upgoing muon
events collected with the upper part of MACRO (Attico) in
full operation, for a total livetime of 5.5 years. We con-
sidered upgoing muons selected by the TOF system and the
muon tracks reconstructed with the standard MACRO track-
ing. We then selected hits belonging to the track and made
from a single fired tube, to associate unambiguously the
QTP-TDC time information. Spurious background hits have
been avoided by requiring a time window of 2µs around the
trigger time. Finally, we selected events with at least four
streamer tube planes with valid QTP-TDC data. We fitted
the drift circles using the same tracking developed to analyze
test beam muons. After the selection cuts quoted above 348
events survived, giving an overall efficiency of about 50%.

We used the information provided by the neural network
to separate the upgoing muons into different energy regions
and to study therein the oscillation effects. We studied the
zenith angle distributions of the upgoing muon events in four
regions with different muon energy, selected according to the
NN output. The same selection has been applied to simulated
events.
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Fig. 3. Zenith angle distributions for upward going muons in
four energy windows (black squares). Rectangular boxes show the
Monte Carlo expectation with the no-oscillation hypothesis (statis-
tical errors plus 17% systematic scale uncertainty on theνµ flux).

To make a comparison between real data and Monte Carlo
expectations, we performed a full simulation chain by using
the Bartol neutrino flux (Agrawal, 1996) and the GRV94 DIS
parton distributions (Gluck, 1995). The propagation of the
muons from the interaction point up to the detector level has
been done using the FLUKA99 package (Fassò, 1995), while
the muon simulation inside the detector was performed with
GMACRO (the GEANT 3.21 based detector simulation). For
each muon crossing the apparatus, the complete history of
the event was recorded (neutrino energy, interaction point,
muon energy etc.).

Should the upgoing muon deficit and the angular distri-
bution distortion (with respect to the Monte Carlo expecta-
tion) pointed out by MACRO come from neutrino oscilla-
tions with parameters∆m2 = O(10−3eV 2) and sin22θ'1,
such deficit and such angular distribution distortion would
not manifest at all neutrino energies. The effect is expected
to be stronger at low neutrino energies (E≤ 10 GeV) and to
disappear at higher energies (E≥100 GeV). We used the NN
to separate four different neutrino energy regions whose me-
dian energy is respectively 12 GeV (low), 20 GeV (medium-
low), 50 GeV (medium high) and 102 GeV (high). In Fig. 3
we show the zenith angle distributions of the upgoing muon
events in the four energy regions selected compared to the
expectations of Monte Carlo simulation, assuming the no-
oscillation hypothesis. It is evident from the plots that at low
energy a strong disagreement between data and Monte Carlo
(no-oscillation hypothesis) is present, while the agreement is
restored with increasing neutrino energy.

The correspondingχ2-probabilities for the no-oscillation
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Fig. 4. Resolution on the reconstruction of the ratiolog10(Lν/Eν)
from the NN output.

hypothesis in these four windows are respectively 1.8%
(low), 16.8% (medium-low), 26.9% (medium-high) and
87.7% (high): theχ2/DoF values are clearly running with
the neutrino energy, spanning from 13.7/5 to 1.8/5. Theχ2

has been computed using only the angular shape.
Finally, we tried to get information on the ratioLν/Eν .

The output of the NN was calibrated on anevent by
event basis to have a linear response as a function of
log10(Lν/Eν). The obtained resolution is given in terms of
∆(log10(Lν/Eν))/ log10(Lν/Eν), where∆log10(Lν/Eν)
is the difference between the true and the reconstructed ra-
tio, shown in Fig. 4. This result has been used to evaluate the
proper binning for the distribution DATA/ Monte Carlo (i.e.
the oscillation probability) as a function oflog10(Lν/Eν).
This distribution is plotted in Fig. 5. The transition from 1 to
0.5 is clear and shows a good agreement with the oscillation
probability function we expect with the parameters quoted
above.

4 Conclusions

The sample of upward through-going muons measured by
MACRO has been analysed in terms of neutrino oscillations
using multiple Coulomb scattering to infer muon energy. The
improvement of the spatial resolution obtained by exploit-
ing the TDCs contained in the QTP electronics extended the
muon residual energy reconstruction up to' 40 GeV (cor-
responding to' 200 GeV for the neutrino energy). A dedi-
cated run at the CERN PS-T9 test beam allowed us to check
the MACRO QTP-TDCs and showed the feasibility of oper-

Fig. 5. Data/MC (no oscillation) as a function of the ratioLν/Eν .

ating the limited streamer tubes in drift mode. The angular
distribution of the upward going muon sample has been sub-
divided into four energy windows, showing the energy trend
expected from the neutrino oscillation hypothesis. Moreover,
we performed a study in terms ofLν/Eν . Also in this case,
the observed transition from 1 to 0.5 in the ratio of data to
Monte Carlo prediction is the one expected from the neutrino
oscillation hypothesis with oscillation parameters∆m2 =
O(10−3eV 2) and sin22θ=1.
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