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Molière lateral distribution with ionization for fast charged particles
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Molière’s analytical result for distribution of arbitrary linear combination between the deflection angle and the
lateral displacement is improved to take account ionization loss. Analytical results of the lateral distribution
for fast charged particles after penetrating through matters, as one of the combinations, are compared with our
Monte Carlo simulation results using the screened Rutherford cross-section. The results will be important for
designings and analyses of experiment and simulation concerning charged particles.

1. Introduction

It is very important for us cosmic-ray physicists to investigate transport properties of charged particles travers-
ing through materials. Molière and Bethe have found very accurate results of angular distribution [1, 2, 3], as
well as distribution for arbitrary linear combination between the deflection angle

��
and the lateral displacement�� [4], both under the fixed-energy condition. We have succeeded in improving the Molière-Bethe results for

the angular distribution to take account ionization loss [5], by using Nishimura-Kamata formulation of the
theory [6, 7]. We propose improved Molière results of distribution for arbitrary linear combination between
the deflection angle

��
and the lateral displacement

�� , taking account of ionization loss.

2. Molière distributions with ionization for linear combination of the deflection angle
and the lateral displacement

Let the simultaneous distribution between the two be ��� ��	� �� ��
��� ��� �� and its Fourier transforms be ���� �� � �� ��
�� :
��� ���� �� ��
���� ������ ��������� �"!$#% #& �'! #( #) ���� �� � �� ��
��* ��  �� � (1)

where
��

and
�� denote the Fourier variables corresponding to

��
and

�� , respectively. The diffusion equation for
Fourier transforms of the simultaneous distribution is described as+ ��+ 
*, � �� + ��+ �� ,�-/. � � , ���0 , � ��21 � - �35476 . � � , ��80 , �:9 (2)

under the Kamata-Nishimura formulation, where the variables
�� ,

and
0 ,

are primed to note that they change
together with the differential variable


 ,
. Then Eq. (2) can be integrated as

4;6 � � � �� � �5<
= . � 
 � ��?> �� 
A@B� �� 3 � 0 >DC 
A@B� � 4;6 . � � ��?> �� 
A@"� �� �FE � 0 >DC 
A@B� �  @G� (3)

where
0

denotes the destination energy.

Let
�H be the linear combination of the deflection angle

��
and the lateral displacement

�� , or the chord angle
���I 


[4, 8], with respective weights of J and K , �H � J �� > K �� I 
L� (4)
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Figure 1. The ratios of MONQPOR to MOS�T*POU under the ion-
ization process, i.e. the contraction factors V for dis-
tributions of the linear combination WXZY W[�\$]_^�`bac Wd PLT*e ^Afhgi` , defined for the extreme-relativistic charged
particles. Abscissa denotes the fraction of dissipated
energy

ckjil�m:j eAP jil .
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Figure 2. The ratios of
[Fno , i.e. the gaussian mean

square angle for distributions of the linear combination
angle WXpY W[B\q]_^r`sa c Wd PLT*e ^Afhgi` under the ionization
process defined for extreme-relativistic charged parti-
cles, to Uutwv�x n T*P j nl . Abscissa denotes the fraction of
residual energy

j P jyl .
and be its probability density, then we have

z � �H ��
��* �H � 
* �H
K

��� ��� ��w� 
K � �H - J ��8�L��
��� ��w{ (5)

Let �z � �| ��
�� be the Fourier transforms of z � �H ��
�� ,
�z � �| ��� �} � ��� ���"!q#~ #� z � �H ��
��� �H � } � ��Q��J �| � K �| I 
L��
��L� (6)

then we have

4;6 } � �z � � <
= . � 
 | � ��J > K @"� �� 3 � 0 >DC 
A@B� � 476 . � | � ��J > K @B� �� �FE � 0 >�C 
A@"� �  @

� ���"�
� K � . � 
 | �� 3 C�� 
 � � � -��0 , � � 476G� K � . � | �� �_E C � 
 � � � -��0 , � ���  0 ,

� ���G� �
�G� �"� K � � . � 
 | �� 3 C�� 
 � � � - �� � � 476 K � . � | � � � - � � �� �FE C � 
 �  �

� - K � � . � 
 | �� 3 � 0 = - 0 � � 1 } � � > 4;6�� � � - � � - �� � 476�� � - � � - }�� � � � � � �Q� ��Q� � �
- � � - �� - } 4;6�� � � � �G� ��G� � � 4;6 K � . � | �� �FE � 0 = - 0 � �29 � (7)

where we introduced an energy parameter � and the dilogarithm function
� � ��� � [9, 10],

�/� 0 - ��J I K � C 
L� (8)� � ��� ��� � =
� 4;6�� � - 
 �
  
L{

(9)
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Figure 3. Analytical prediction of lateral distribution of muon after dissipating half of its energy agrees with the Monte
Carlo result.

Thus we can get the spatial distribution for
�H by using our translation formula [11]:z � �H ��
��� �H � ����� �� �� ���7��� �� � �HrI �����

(10)

where } � ����� ��� �Q� =q  �k� � >¢¡ � < �Q� <   �k� � >¢¡ � � �Q� �   �k� � > {O{£{O�
(11)

and ¡ - 476 ¡ �¤3 - 4;6 3 > 4;6 18� � I C � � � - � � < - } 4;6¥� � � � �Q� ��Q� �"� 9
> } � � > 476�� � � - � � - � � < � 4;6�� � - � � - }�� � � � � � �Q� ��Q� � �

� � - � � < - } 4;6¦� � � � �G� ��G� �'�
�

(12)

� �� � ¡ 3 � �§ ���¨�$� � �§ � K � � . � 

� 0 = - 0 � �2� � - �� - } 476¦� � � � �Q� ��Q� �"� { (13)

� �§ denotes the gaussian mean square angle for the combination angle of Eq. (4). The projected distribution
for

�H can also be derived likewise, The limits of Eqs. (12) and (13) at
C�©«ª

give the Molière’s results for the
combination angle under the fixed-energy condition [4].

3. Results and discussions

We compare the value of
��¬ I ¡ derived from Eq. (12) with

� E 
 I 3 as is
�F¬ I ¡ of the angular distribution under

the fixed-energy process. The ratio � ��¬ I ¡ � I � � E 
 I 3�� , which should be the definition of the contraction factor for the linear combination
�H ,  � � ¡ � < � ¬ � I � 3 � < � E 
���� (14)

is indicated in Table 1 and Fig. 1, taking

J �¯®O°�±	² ³ 6	´ K �µ± � 6 ² (15)

as Molière did [4]. We also compare the mean square gaussian angle
� �§ of Eq. (13) for the combination

angle
�H with

� �§ for the deflection angle under the fixed-energy condition . � 
 I 0 �= . The ratio
� �§ I � . � 
 I 0 �= � is
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Table 1. The contraction factor V for the linear combination WX , taking ¶¸· \q]£^r`
and ¹y· ^Afhgu`

.º � � �"� »i¼ = »y¼¾½ ��¿ »y¼¾½ � � »i¼ � ½ ��¿
.00 1.000E+00 9.320E-01 6.492E-01 6.492E-01
.05 9.996E-01 9.412E-01 6.575E-01 6.409E-01
.10 9.982E-01 9.502E-01 6.662E-01 6.320E-01
.15 9.956E-01 9.590E-01 6.752E-01 6.225E-01
.20 9.917E-01 9.677E-01 6.846E-01 6.124E-01
.25 9.863E-01 9.760E-01 6.945E-01 6.016E-01
.30 9.791E-01 9.829E-01 7.054E-01 5.902E-01
.35 9.696E-01 9.895E-01 7.157E-01 5.772E-01
.40 9.576E-01 9.949E-01 7.278E-01 5.632E-01
.45 9.425E-01 9.986E-01 7.400E-01 5.481E-01
.50 9.236E-01 1.000E+00 7.531E-01 5.310E-01
.55 9.002E-01 9.982E-01 7.670E-01 5.126E-01
.60 8.711E-01 9.921E-01 7.821E-01 4.917E-01
.65 8.349E-01 9.797E-01 7.986E-01 4.680E-01
.70 7.898E-01 9.583E-01 8.164E-01 4.409E-01
.75 7.331E-01 9.236E-01 8.360E-01 4.091E-01
.80 6.609E-01 8.686E-01 8.580E-01 3.711E-01
.85 5.674E-01 7.811E-01 8.829E-01 3.240E-01
.90 4.430E-01 6.390E-01 9.122E-01 2.625E-01
.95 2.695E-01 3.986E-01 9.482E-01 1.740E-01

1.00 .000E+00 .000E+00 1.000E+00 .000E+00

indicated in Fig. 2. The both ratios are functions of the fraction of residual energy
0 I 0 = , so that functions of

the fraction of dissipated energy
C 
 I 0 = . Our ratios at À 0 I 0 = � ª

in Fig. 1 and ours at
0 I 0 = � � in Fig. 2

agree with Molière’s results without ionization in his Table 1 [4]. We find only the chord-angle distribution or
the lateral distribution (

²b� � I } ) has the ratios of non-zero finite value at the limit of
0 ©Áª

.

Molière lateral distribution with ionization is derived as the combination of J � ª
and K � � , or

²Â� � I } . The
result for 100 GeV muon, having dissipated half of its energy after penetrating water of 250 m, is compared
with the simulation result by our high-accurate and high efficient Monte Carlo code [12, 13] in Fig. 3.

Under the special case of J I K � 0 I � C 
�� , including the case of
²�� � I } with

0 ©Ãª
, Eq. (7) can be easily

integrated as

476 } � �z � ��J > K � � . � 
 | �� 3 0 �= 476 ��J > K � � . � 
 | �� �_E 0 �= �
(16)

so we find from our translation formula [11] the distribution for linear combination
�H under this condition has

the same Molière distribution as the angular distribution without ionization loss, only with the ��J > K � -times
large/small scale angle

� �
.

4. Conclusions

Molière distribution with ionization for any linear combination between the deflection angle
��

and the lateral
displacement

�� is solved analytically, using Nishimura-Kamata formulation of the theory. Derived lateral
distribution agrees very well with our Monte Carlo result. The theory will be helpful for our designing and
analyses of experiments concerning charged particles.
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