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The small-scale collision integral in an approximation of a weak regular magnetic field is     transformed 
using unequal parallel and perpendicular correlation lengths to the  regular     magnetic field. The 
collision frequency, the tensor spatial diffusion, and the mean free path     of the cosmic rays (CR) are 
determined. It has been indicated  that the mean free path of    CR particles can increase several ten times 
in high-speed  solar wind streams in a strongly  anisotropic random interplanetary magnetic field (IMF) 
at small parallel correlation  lengths. 

 
1.Introduction 
 

Experimental data indicate that the distribution of the IMF  random component is aniso-tropic. This 

anisotropy is shown in distribution of the direction of magnetic field fluctuations and wavevectors ( k
r

)of 
a random field, as well as in the inequality of correlation  lengths entering into the correlation functions 
for different wavevector components. The anisotropy of wavevectors and of IMF fluctuation directions 
in the near-Earth space is on average insignificant: the component of wavevectors  and of magnetic field 
fluctuations in the distinguished directions  change by not more than  a factor of 2-3 [Toptygin,1985; Sari 
and Valley, 1976]. Random structures, both extended along the mean field and flattened can predominate  
depending on the position relative to the Sun and on the level of solar activity, [Veselovskii and 
Tarsina,2001;Bavassano and Bruno, 1989; Burlaga et al., 1989; Roberts, 1990; Sari and Valley, 1976]. 
Using experimental data, Matthaeus et al,[1990], V o&& lk and Alpers [1975] showed that IMF random 
fluctuations are mainly of two types. They are the fluctuations whose wavevectors (1) lie mostly in 

the ur - 0H
r

plane (slablike Alfvenic fluctuations) and (2) are perpendicular to 0H
r

(two-dimensional 
fluctuations). 
The anisotropy of magnetic field fluctuations is strong in the high-speed solar wind streams. Assuming 
that solar wind turbulence can be caused  by Alfven  and magnetosonic waves, Carbone et al.,[1995],  
showed  that the maximal correlation lengths correspond to the wavevectors lying in the plane 

perpendicular to 0H
r

 for Alfven waves  or to wavevectors 

perpendicular to the ur - 0H
r

 plane for magnetosonic waves, where ur  is solar wind velocity 

and  0H
r

 is  the strength of a regular magnetic field. In this case random magnetic structures  
flattened in the direction of a regular magnetic field are predominant. Maximal correlation lengths can be 
several ten times as large as minimal lengths. For Alfven waves in the high-speed streams, spectral 
index of a random field (ν) decreases and depends on a wave type and distance to the Sun. 
The absolute value of  the magnetic field fluctuations is close to  the absolute value of regular magnetic 
field. March and Tu [1990] have calculated several spectra  
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of magnetic field magnitude. These authors found that  in high-speed streams the spectra of  
of magnetic field fluctuations becomes much flatter, the spectral index being close to 0.5-0.7.  
Therefore, the  present work has considered CR scattering  in IMF in an approximation of small-scale 
random scattering [Dolginov, Toptygin, 1966, 1968; Toptygin, 1985].  The above researchers also 
indicate that, in a first approximation, the fluctuations of  IMF  and random field wavevectors in the solar 

wind can be considered axially symmetric about 0H
r

.  

 
2. Transformation of the Collision Integral  
 

 The kinetic equation for distribution function F(r, p, t)r r
, averaged over a small-scale random magnetic 

field  has the form [Dolginov,Toptygin,1966,1968;Dorman,1975;Toptygin,1985]: 

                          0
0

pv h d F(r , p, t) StF
t r R

 ∂ ∂
+ − = ∂ ∂ 

r r r rr
r     ,                                        (1)  

where rr , vr , pr  are the coordinate, velocity, and momentum of a particle, respectively; t is time; R0 = 

cp/eH0 , 0 0 0H H h= ⋅
rr

, d [(v u) ]
p
∂

= − ×
∂

r r r
r , ur  is magnetic field velocity,  

( )
0

StF D d B ( r , r ( ) u ) exp{ p } D F( r v , p, t )
pα αβ βτ τ τ τ τ τ

∞ ∂
= ∆ − ⋅ −∆ ⋅ ⋅ − −

∂∫
r r r r rr r

r   ,   

(2) 
eD d
c

=
rr

, r ( )τ∆
r

and ( )p τ∆
r

are the changes of the particle radius vector and momentum in regular 

magnetic field at a distance approximately equal to the maximal correlation length,    
                                         r ( ) v vτ τ τ⊥∆ = +�

r r r
 , ( )p 0τ∆ =

r
. 

It is considered that a random magnetic field contains many types of disturbances and has a fractal 
structure [Burlaga and Klein, 1986; Burlaga 1991(a,b); Feynman and Ruzmaikin, 1994;  Zelenyi and 
Milovanov, 1997] ; therefore, it is rather justified to select the tensor part of the correlation tensor in an 
isotropic form : 

{ }2B (k, r) P(k, r) k k k−
αβ αβ α β= δ − ⋅
r rr r , 2

22 2 2
22

2 2

k kP(k, r) A k (q q ) 1
q q

ν

ν
− −

− − ⊥
ν ⊥

⊥

 
= + + 

  

�

�

�

r r
  ,   

(3) 
where Aν  is the normalization  constant, k

r
 is the wave vector, ν  is the spectral  index , 

0 0k (kh )h=�
r rr r

, k k k⊥ = − �

r r r
, 0 0q (qh )h=�

r rr r
, q q q⊥ = − �

r r r
, q 2 L⊥ ⊥= π , q 2 L= π� � , 

 

                         ( ){ }B (x, r ) dk B (k, r ) exp ik x uαβ αβ= ⋅ ⋅ − τ∫
r r rr rr r r

. 

We now represent the correlation tensor in the form: 
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                 ( ) ( ) ( ){ }2 2
1 1

1B (x, r) H r x ,x x ,x x x x
3

−
αβ ⊥ αβ ⊥ α β= Ψ δ −Ψ ⋅� �

r rr
 

Using  the transformation and the standard integrals, we obtain Ψ and 1Ψ .  Substituting  
the correlation tensor in the collision term , we finally obtain the averaged collision  integral: 

                                       
2pStF d d F(r,p, t)

2 v uα α
ν

 
=   Λ − 

r r
r r   ,                                             (4) 

where 
                                                                                                                                         (5) 

Λν=

( )
( )

( )
( )

( ) ( )
( ) ( ) ( )

11
2 2 2222 4 42
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, 

R1 = cp/e
1 22

1H .  

 
3. Diffusion Approximation  
 
We now consider a diffusion approximation  in the kinetic equation (1) with the collision term (4), (5). 
We will substitute the distribution function expansion 

                                   ( ) ( )( )2
1 3F(r,p, t) N r,p, t vJ r,p, t

4 4 vπ π
= +

rr r r rr
 

in the kinetic equation (1) and will obtain the set of  equations for ( )N r,p, tr
 and ( )J r,p, t

r r
, 

 which coincides with the set of equation for the isotropic case. The form of the spatial diffusion tensor 

αβκ also remains the same as in the isotropic case [Dorman, 1975; 
Toptygin, 1985; Mel’nikov, 1996]:  

                 ( ) { }12 2 2 2 1
0 0 0 0 0 0

1 v 1 R R h h R h
3

−− − −
αβ αβ α β αβγ γκ = Λ + Λ δ + Λ + Λ ε   . 

Only the formula for the mean free path Λ changes,  

                       Λ = 
1 2

1 q8 (( -1)/2) 3 ( /2) q R
−

 Γ ν πΓ ν Λ  �  ,                                      (6) 

where   

( ) ( )
13 22 2 2 22 2 2 22 2 2
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−
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From this formula it follows that the mean free path slightly differs from its value in isotropic case at 
L L⊥ << � and L L⊥ ≈ � .But, the mean free path Λ tends to the infinity  in a sharply anisotropic small-

scale random magnetic field at L L⊥ >> � . In this case random magnetic structures are flattened in the 
direction of a regular field. This increased mean free path can  
explain experimentally obtained large paths of CRs  with energies to several GeV  in the solar proton 
events in corotating  structures  in the solar wind. The obtained mean free path can also explain large 
paths of electrons and protons with energies of  tens keV to several  MeV in the  inner heliosphere and 
solar corona [Palmer,1982; Kolomeets, Sevost’yanov, 1987].  
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