Recent advances in the observations of high energy cosmic rays

Ivan De Mitri

Gran Sasso Science Institute and INFN Laboratori Nazionali del Gran Sasso L'Aquila , Italy

S

G

S

Université de Genève Départment de Physique Nucléaire et Corpusculaire DPNC Seminar – April 27, 2022

Contents

- Brief history of early measurements
- Selected recent results at high energies
- Ideas for future projects

Disclaimer:

- I will not go into theoretical aspects (see May 18 DPCN seminar)
- I will concentrate on charged cosmic rays measurements
 (i.e. not going to cover neutrino and gamma ray astronomy)

DPNC Seminar, April 27, 2022

G S S I **Discovery and first measurements**

DPNC Seminar, April 27, 2022

Altitude (km)

Altitude (km)

Fig. 39. – Les principaux vols stratosphériques.

EXPLORER II – 11 Nov 1935 – 22000 m

DPNC Seminar, April 27, 2022 I. De Mitri: Recent advances in the observation of high energy cosmic rays

MILLIKAN RETORTS Hotly to compton F1 cosmic ray clash

G S S I

> Dobate of Rival Theorists Brings Drama to Session of Nation's Scientists.

> THEIR DATA AT VARIANCE

New Findings of His Ex-Pupil Lead to Thrust by Millikan at 'Less Cautious' Work.

PROF. RUSSELL ELECTED

Astronomer Heads Association-----Secret of Purple Gold in Tomb of Tut-ankh-Amen Rediscovered.

By WILLIAM L. LAURENCE. Special to THE NEW YORK TIMES. ATLANTIC CITY, Dec. 30.—Professor Robert A. Millikan, who won the Nobel Prize in physics for being

MILLIKAN DENIES 'CLASH' ON THEORY

Scientist Protests That the Word 'Incautious' Was Not Aimed at Compton.

DISCLAIMS ANY COOLNESS

Holds The Times Report Stated "Exactly the Opposite" of the Findings He Presented.

By Telegraph to the Editor of THE NEW YORK TIMES.

WASHINGTON, D. C., Dec. 31.-It is not customary for me to attempt to correct erroneous newspaper reports, and that for the simple reason that with many newspapers it is a well-nigh hopeless undertaking. But THE NEW York TIMES is usually so dependable that I assume it will welcome correction and also will know how to effect the remedy for its error.

MILLIKAN'S DATA CONFIRM COMPTON

Results of Cosmic Ray Study at Panama Tend to Back Rival's Ideas.

RAY INTENSITY VARIES

Strength is Greater at the Poles ---Equatorial Tests Are Now Projected.

PASADENA, Cal., Feb. 4 (AP).--The stratosphere above equatorial regions of the earth should be the next scene of exploration in the quest of the secrets of the cosmic ray, Dr. Robert A. Millikan said here today.

Announcing that observations of his co-workers at Panama confirmed the earlier reports of Dr. Arthur H. Compton of Chicago that the rays from interstellar space showed latitude effects, Dr. Millikan disclosed that the variance was as high as 8 per cent.

Many studies "at ground"

Bruno Rossi,1933.

Hints for evidence of extensive air showers

Pierre Auger, 1938 First clear Evidence for extensive air showers

PHYSIQUE NUCLÉAIRE. — Grandes gerbes cosmiques atmosphériques contenant des corpuscules ultrapénétrants. Note de MM. PIERRE AUGER, RAYMOND MAZE et M^{mo} Thérèse GRIVET-MEVER, présentée par M. Jean Perrin.

1. De nombreux travaux récents ont montré l'existence dans le rayonnement cosmique de deux espèces de corpuscules; d'une part des électrons des deux signes fortement absorbés par la matière et qui sont pratiquement totalement arrêtés par un écran de 5 à 10^{cm} de plomb, d'autre part des corpuscules nouveaux dont la masse est probablement comprise entre 100 et 200 fois celle de l'électron et dont le pouvoir pénétrant est très supérieur. La question des relations entre ces deux groupes se pose alors de la façon suivante : les deux types de corpuscules atteignent-ils indépen-

DPNC Seminar, April 27, 2022

		1-	10 -	33								
00	2	1	15"			300		4	50		16	ð."
21	70	20		16	20		12	20		1	20	10
29	22	30		25	30		24	30	2	2	30	22
30	31	30		31	30		16	30	Z	0	30	7
30	34	30		21	20		15	30	1	0	30	7
20	E-1	20		26			14	20	1	2		-
13.0	128	130		115	130		86	13.0	7	8.1	110	66
	8 10-21											
	10		-	1	30		22	30		3	50	22
22	14	22		20	22		20	22		0	63	22
41	33	41		45	41		21	41		8	30	12
10	17	30		36	20		4.2	20	1	3		
23	44	123		128	123		98	123	7	2	143	54
	20			and the		and a	ASS.		in the	1 and		L With
				AC-L	SUN TEL		0- 10					A NEW

A 10 TeV proton initiated Extensive air Shower

3. J.Oehlschlaeger, R.Engel, FZKarlsruhe

Proton 10¹³ eV

21336 m

The very beginning of space exploration

USSR	USA	Notes	Detectors	
Sputnik I Oct. 4, 1957		Same time: all-particle knee discovered in EAS experiment (G.B. Khristiansen & G.V. Kulikov)		
Sputnik II Nov. 3, 1957		First CR detector in space ! (above Laika's, i.e. Kudrjavka's, cabin) Anomalous counting above a given altitude (S. N. Vernov)	Geiger-Muller (G-M) tubes	
	Explorer I Fe. 1 <i>,</i> 1958	Detector saturation above a given altitude !?!	G-M tubes	
	Explorer III Mar. 26, 1958	Dectors saturation above a given altitude !?! May 1, 1958: J. A. Van Allen's hypothesis: particles trapped by the geomagnetic field	G-M tubes	
Sputnik III		CR measurements up to about 2000km Van Allen's (belts) explanation fully confirmed		
	Explorer IV Jul. 26, 1958	Further studies on Van Allen's hypothesis (the ARGUS project)	G-M tubes, CsI(TI) and plastic scint.	

UV-Xray detector

DPNC Seminar, April 27, 2022

Sputnik II: november 3, 1957

Payload mass: 500 kg

Two Geiger-Muller 10cm long tubes (first transistors/diodes in space)

S. N. Vernov N.L.Grigorov A.E. Chudakov Yu. I. Logachev

Observed anomaly where we know now that fluctuating outer radiation belt approaches Earth.

No memory elements onboard and information received only above USSR, corresponding to altitudes in the range of 225 to 600 km.

Sputnik III: may 15, 1958

DPNC Seminar, April 27, 2022

G S

I. De Mitri: Recent advances in the observation of high energy cosmic rays

CONTRACTOR .

DPNC Seminar, April 27, 2022

1954-57: The first "ionization" calorimeter

First samples of what we now call "sampling calorimeters" (N. L. Grigorov et al.)

1965-68. The Proton satellites

Four heavy satellites of the Proton series. Proton-4 carried was the IK-15 calorimeter

70 15

10 16 E (eV)

SEZ-14 (an acronym of russian words Spectra, Energy, and Charge, up to 10^{14} eV) : 7 tons

N.L.Grigorov

10

2ם מ

S.N.Vernov

DPNC Seminar, April 27, 2022

70-12

I. De Mitri: Recent advances in the observation of high energy cosmic rays

•-1 0___

10³

E, GeV

Vs [GeV]

G S S I

1970: p and He with Calorimeter on a balloon

onic cascades in the spectrometer. The showers reach a flat maximum and generally decay away. Though individual shower curves fluctuate a great deal, most of this is because of the location of the first interaction. The area enclosed by the shower curves gives a good measure of the total energy of the incident particle.

DPNC Seminar, April 27, 2022

I. De Mitri: Recent advances in the observation of high energy cosmic rays

a single instrument.

The detector system was designed so that a very wide

range of charges and energies could be measured with

Basic questions

- What are the sources of cosmic rays ?
- How cosmic accelerator work ?
- What happens during cosmic ray propagation ?

Observable quantities

- Energy spectra
- Arrival directions
- "Chemical" composition

DPNC Seminar, April 27, 2022 I. De Mitri: Recent advances in the observation of high energy cosmic rays

DPNC Seminar, April 27, 2022

I. De Mitri: Recent advances in the observation of high energy cosmic rays

I. De Mitri: Recent advances in the observation of high energy cosmic rays

G S S I

The electron+positron flux

The electron + positron signal (5yrs ago)

DPNC Seminar, April 27, 2022

The all-electron flux today

Antimatter: the positron fraction

Energy (GeV)

An anomalous positron abundance in cosmic rays with energies 1.5-100 GeV

G

S

S

O. Adriani^{1,2}, G. C. Barbarino^{3,4}, G. A. Bazilevskaya⁵, R. Bellotti^{6,7}, M. Boezio⁸, E. A. Bogomolov⁹, L. Bonechi^{1,2}, M. Bongi², V. Bonvicini⁸, S. Bottai², A. Bruno^{6,7}, F. Cafagna⁷, D. Campana⁴, P. Carlson¹⁰, M. Casolino¹¹, G. Castellini¹², M. P. De Pascale^{11,13}, G. De Rosa¹, N. De Simone^{11,13}, V. Di Felice^{11,11}, A. M. Galper¹, L. Grishantseva¹, P. Hofverberg¹⁰, S. V. Koldashov¹⁴, S. Y. Krutkov⁹, A. N. Kvashnin³, A. Leonov¹⁴, V. Malvezzi¹¹, L. Marcelli¹¹ W. Menn³⁵, V. V. Mikhailov¹⁴, E. Mocchiutt¹, S. Orsi^{10,11}, G. Osteria¹, P. Papin², M. Pearce¹⁴, P. Picozza^{11,13}, M. Ricci¹⁷, S. B. Ricciarini², M. Simon¹⁵, R. Sparvoli^{11,13}, P. Spillantini¹², Y. I. Stozhkov², A. Vacch⁴, E. Vannuccini², G. Vasilyev⁹, S. A. Voronov¹⁴, Y. T. Yurkin¹⁴, G. Zampa⁸, N. Zampa⁸ & V. G. Zverev¹⁴

First "anomalous" results from PAMELA (april 2009) FERMI contribution, even with large systematics. **Extended and precise measurements by AMS-02**

The e⁺ and e⁻ fluxes with AMS-02

G

S

S

Antiproton flux consistent with secondary production calculations

New measurements at accelerators (e.g. LHCb) in order to lower the systematic uncertainty on secondary production calculations

G S Proton and helium: (discrepant) hardenings

DPNC Seminar, April 27, 2022

Similar hardenings for other nuclei

Acceleration or propagation effect ? Both ?

Need for precise measurements of secondary productions (B/C,..) and

extensions in the 1-100 TeV energy region with large acceptance (an good resolution) calorimeters in space

DPNC Seminar, April 27, 2022

CALET confirmation of the p hardening

G S

S

ุ่าพัด

New findings by DAMPE: protons

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

September 27, 2019

Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite

DPNC Seminar, April 27, 2022

I. De Mitri: Recent advances in the observation of high energy cosmic rays

New findings by DAMPE: helium

Kinetic energy [GeV/n]

G

S

S

The iron flux: AMS-02 and CALET

DPNC Seminar, April 27, 2022

I. De Mitri: Recent advances in the observation of high energy cosmic rays

^s Other nuclei and larger energies

DPNC Seminar, April 27, 2022

G

S

I. De Mitri: Recent advances in the observation of high energy cosmic rays

G S S I

Anisotropies below the knee

Large Scale anosotropies (LSA) at the level of 10⁻⁴-10⁻³ in the multi TeV region with stable phase. Change in phase and amplitude above 100TeV, below the all-particle knee.

Medium/Small scale anisotropies (MSA) in the few TeV range

^{G S} HERD: towards the knee from space

Large acceptance, deep, 3D calorimeter, equipped with

silicon tracker and plastic scintillators for primary identification, onboard the Chinese Space Station for a long duration mission.

One order of magnitude jump in exposure wrt current generation CR experiment: 10-15 m² sr yr

GS I

HERD: collaboration and main features

CHINA

Institute of High Energy Physics, CAS (IHEP)

Xi'an Institute of Optical and Precision Mechanics, CAS (XIOPM) Guangxi University (GXU) Shandong University (SDU) Southwest Jiaotong University (SWJTU) Purple Mountain Observatory, CAS (PMO) University of Science and Technology of China (USTC) Yunnan Observatories (YNAO) North Night Vision Technology (NVT) University of Hong Kong (HKU) Academia Sinica

ITALY

INFN Bari and Bari University INFN Firenze and Firenze University INFN LNGS and GSSI Gran Sasso Science Institute INFN Lecce and Salento University INFN Napoli and Napoli University INFN Pavia and Pavia University INFN Perugia and Perugia University INFN Pisa and Pisa University INFN Roma2 and Tor Vergata Universit INFN Trieste and Trieste University

SPAIN

CIEMAT - Madrid ICCUB – Barcellona IFAE – Barcellona

SWITZERLAND

University of Geneva

	HERD	DAMPE	CALET	AMS-02	Fermi LAT
e/γ Energy res.@100 GeV (%)	<1	1.5	2	3	10
e/γ Angular res.@100 GeV (deg)	< 0.1	0.1	0.2	0.3	0.1
e/p discrimination	>10 ⁶	10 ⁵	10 ⁵	10 ⁵ - 10 ⁶	10 ³
Calorimeter thickness (X ₀)	55	32	27	17	8.6
Geometrical acceptance (m ² sr)	>3	0.29	0.12	0.09	1

DPNC Seminar, April 27, 2022

HERD: the detector and the CSS orbit

G S S I

DPNC Seminar, April 27, 2022 I. De Mitri: Recent advances in the observation of high energy cosmic rays

Space-Balloon vs Ground based

Direct

G

S

S

measurements

Requirements:

Calorimetry vs Spectrometry Large acceptances <20% resolutions

Output: Fully explore the sub-PeV region Individual spectra

Limitations:

Surface/weight limited Hard to reach the all-particle knee Need high technology

Indirect

measurements

Requirements:

Multi-Hybrid approach Operate at (not too) high altitude Large surfaces / samplings

Output: Reach the highest energies Detect small anisotropies

Limitations:

Poor mass resolution Intrinsically limited by systematics Large model dependence

DPNC Seminar, April 27, 2022

Not simple evolution toward the ankle

DPNC Seminar, April 27, 2022

G S The Pierre Auger Observatory

- Malargue (Arg, 35°S), 1400 m a.s.l.
- E range: 10¹⁷ eV 10²¹ eV
- Multi-detectors, hybrid reconstruction
- Surface Detector array (SD)
 - Sampling EAS particles at ground
 - 1670 WC tanks, 1500 m spacing, 3000 km².
 - SD-750, SD-433 (→ ~10¹⁶ eV)
- Fluorescence Detectors (FD)
 - EAS longitudinal profile
 - 24 Telescopes in 4 sites + 3 HEAT

Surface Detector

1670 Water Cherenkov tanks 3.6 m diameter , 1.2 m depth 3 9" PMTs + 1 Small 1" PMT Plus a Scintillation detector on top

Fluorescence Detector

DPNC Seminar, April 27, 2022

6 telescopes /eye x 4 eyes 3.6 x 3.6 m2 spherical mirrors 80x80 cm2 cameras 440 PMTs, 30x30 deg2 FoV + HEAT telescopes

Calorimetric energy measurement with the FD

Energy calibration of SD observables using FD data

Very good **energy** (8% stat , 15% sys) and **X_{max}** (lower than 10g/cm2 stat and 10g/cm2 sys) resolutions and uncertainties.

At the highest energies....

The UHECR energy spectrum measured by the Pierre Auger Observatory

No dependence on the declination has been observed

At the highest energies....

UHECR mass composition studies performed by the Pierre Auger Observatory, using the atmospheric depth of the shower maximum and its fluctuations

At the highest energies: AUGER large scale anisotropy

Science 357, 1266-1270 (2017) 22 Septe

22 September 2017

COSMIC RAYS

Observation of a large-scale anisotropy in the arrival directions of cosmic rays above 8×10^{18} eV

The Pierre Auger Collaboration*†

Cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature. Clues to their origin come from studying the distribution of their arrival directions. Using 3 × 10⁴ cosmic rays with energies above 8 × 10¹⁸ electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 km² sr year, we determined the existence of anisotropy in arrival directions. The anisotropy, detected at more than a 5.2 σ level of significance, can be described by a dipole with an amplitude of 6.5^{+1.3}_{-0.9} percent toward right ascension $\alpha_d = 100 \pm 10$ degrees and declination $\delta_d = -24^{+12}_{-13}$ degrees. That direction indicates an extragalactic origin for these ultrahigh-

energy particles.

Fig. 1. Normalized rate of events as a function of right ascension. Normalized rate for 32,187 events with $E \ge 8$ EeV, as a function of right ascension (integrated in declination). Error bars are 1σ uncertainties. The solid line shows the first-harmonic modulation from Table 1, which displays good agreement with the data $(\chi^2/n = 10.5/10)$; the dashed line shows a constant function.

DPNC Seminar, April 27, 2022

New techniques at the highest energies

Improve the statistics by a jump in exposure, for UHE CR and neutrinos:

a giant ground array and/or a space-based observatory

POEMMA: Probe Of Extreme Multi-Messenger Astrophysics

DPNC Seminar, April 27, 2022

Summary

Continuous, steady improvements in CR physics.

New data gave some anwers but also raised new questions.

Many "unexpected" results: →Exciting opportunities

New ideas will (as always) make the difference

Summary

Continuous, steady improvements in CR physics.

New data gave some anwers but also raised new questions.

Many "unexpected" results: →Exciting opportunities

New ideas will (as always) make the difference

Merci!

No thanks!

We are too busy