# Looking for a hidden sector in exotic Higgs boson decays with the ATLAS experiment

Séminaires de physique corpusculaire Université de Genève

### Andrea Coccaro

- 1. Overview
- 2. Hidden sector and unconventional signatures
- 3. Tools by ATLAS
- 4. Searches by ATLAS
- 5. Conclusions



### Andrea Coccaro

## Pauli's solution to the $\beta$ decay

Back in the '30s, the bricks of particle physics were just photons, electrons and nucleons

- spectrum of the  $\beta$  decay was a surprise
- Pauli proposed a radical solution involving the presence of a third particle
- $n \rightarrow p + e^- + \overline{\nu}$



Perfect example of a hidden sector:

- 1. neutrino is electrically neutral
- 2. very weakly interacting (and also light)
- 3. interaction through a portal  $(\overline{p}\gamma^{\mu}n)(\overline{e}\gamma_{\mu}\nu)$

## After $\sim$ 80 years

The SM is the theory to describe elementary particles and their interactions. It has been verified meticulously in the past decades and at the LHC. Legacy of LHC results: the first fundamental scalar at 125 GeV and no new physics (yet) at the TeV scale.



### (1) 「「「」(四)、(四)、(四)、(四)、(



### Andrea Coccaro



### Andrea Coccaro

# **Exotic Higgs decays**

New fundamental scalar consistent with SM Higgs boson.

Constraints from observing the Higgs boson in the various SM channels allow non-SM BR of O(20-30%).

Large experimental uncertainties on the Higgs boson couplings.

The best way to know if the Higgs has a 10% non-SM branching ratio is to directly look at exotic decays.



### Andrea Coccaro

# **Projections of coupling measurements**

New fundamental scalar consistent with SM Higgs boson.

Constraints from observing the Higgs boson in the various SM channels allow non-SM BR of O(20-30%).

Large experimental uncertainties on the Higgs boson couplings.

The best way **for the next decade** to know if the Higgs has a 10% non-SM branching ratio is to directly look at exotic decays. ATLAS Simulation Preliminary

 $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$ 



#### Andrea Coccaro

## Where is the New Physics?



LHC operates at the energy frontier with an intensity frontier attitude. New physics may appear as a new bump (2015 golden year!) or when accumulating high luminosities.

The Higgs can be the candle for finding new physics!

#### Andrea Coccaro

## Hidden sector

New physics not yet seen because at higher energy scale or because hidden in a separate sector weakly coupled to the SM.

Do we have a "puzzling  $\beta$  decay spectrum" for searching for a hidden sector?

YES! (Actually more than one...

Galactic rotation curve for NGC 6503 showing disk and gas contribution is not enough to match the data.

15 April, 2015 - Looking for a hidden sector in exotic Higgs boson decays with ATLAS

Andrea Coccaro

## **Hidden sector**

New physics not yet seen because at higher energy scale or because hidden in a separate sector weakly coupled to the SM.

Do we have a "puzzling  $\beta$  decay spectrum" for searching for a hidden sector?



Galactic rotation curve for NGC 6503 showing disk and gas contribution is not enough to match the data.

### Andrea Coccaro

### Portals to the hidden sector

Following an EFT approach, only three renormalizable portals are possible.

Neutrino portalLHNHiggs portal $(\mu S + \lambda S^2) H^{\dagger} H$ Vector portal $\frac{\epsilon}{2} B_{\mu\nu} Z^{\mu\nu}$ 

A wide phenomenology can be accomodated by connecting the SM to complex dark sectors (hidden valley, dark SUSY, etc.) giving rise to a class of searches relying on unconventional signatures.



### シック・ヨー 《言》 《言》 《目》 《日》

#### Andrea Coccaro

## **Unconventional signatures**

The particle in the hidden sector may be

- weakly-coupled to the SM giving rise to long-lived particle decay
- light giving rise to collimated decay products

Various challenges easily arise, for example

- triggering on displaced decays of neutral long-lived particles
- triggering on low-mass objects
- reconstruction of physics objects
- access of control region for estimating backgrounds



### (人口) 人口 (人口) (山) (山) (山) (山) (山) (山) (山)

#### Andrea Coccaro

## **Outline / References**

Tools employed by ATLAS:

- 1. Triggering on long-lived neutral particles [JINST 8 (2013) P07015]
  - 2. Vertexing in the muon spectrometer [JINST 9 (2014) P02001]

Experimental searches by ATLAS:

3. Higgs to displaced jets in the HCal [PLB 743 (2015) 15-34]

### 4. Higgs to displaced jets in the ID and MS [check out the arXiv today ;-)]

- 5. Higgs to dark photons [JHEP 11 (2014) 088]
  - 6. Higgs to dark Z [ATLAS-CONF-2015-003]

### DISCLAIMER

No time to cover all the details of these searches. Questions welcome.

## **Benchmark model**

Hidden sector with a confining gauge interaction connected to the SM via a communicator particle. The communicator can be the Higgs boson mixing with a hidden-sector scalar boson.



# **Benchmark model**



### Andrea Coccaro

# **Triggering on displaced decays**



Three signature-driven triggers have been designed and deployed in Run-I. Each trigger is dedicated for a particular region of the ATLAS detector.

| Detector region  | Key feature                            | Trigger name              |
|------------------|----------------------------------------|---------------------------|
| from SCT to ECal | Jet with track isolation               | Trackless Jet trigger     |
| HCal             | Isolated jet with very low EM fraction | Calorimeter Ratio trigger |
| MS               | Isolated cluster of muon Rols          | Muon Rol Cluster trigger  |

### Andrea Coccaro

## Decays in the hadronic calorimeter

Basic ingredients:

- tau item at L1
- track and jet reconstruction at HLT
- no tracks around the jet axis
- ▶ log(E<sub>HAD</sub>/E<sub>EM</sub>) > 1.2 at L2
- beam halo removal using calorimeter cell timing



シック・ヨート (目) (目) (目) (日)

#### Andrea Coccaro

## **Decays in the MS**

Basic ingredients:

- di-muon item at L1
- track and jet reconstruction at HLT
- muon cluster asking for at least 3 regions of interest in the MS barrel
- no tracks and jets around the muon cluster direction





#### Andrea Coccaro

# **Trigger efficiency**

The efficiency is defined as the fraction of  $\pi_v$ 's decaying at a distance *r* from the primary interaction point that pass one of the triggers for displaced decays of long-lived neutral particles.



## **Expected fraction of triggered events**



Nice complementarity between the three approaches!

### Reconstructing vertices in the muon spectrometer

Routine developed to reconstruct a vertex in the MS

- tracklets are formed combining segments belonging to the same MDT chamber
- tracklets are clustered and back-extrapolated in the magnetic field
- vertices are found with an iterative min  $\chi^2$  fit
- the line-of-flight direction in Φ is reconstructed with a 50 mad accuracy





### Andrea Coccaro

## Reconstructing vertices in the muon spectrometer



### Andrea Coccaro

## **Outline / References**

Tools employed by ATLAS:

1. Triggering on long-lived neutral particles [JINST 8 (2013) P07015]

2. Vertexing in the muon spectrometer [JINST 9 (2014) P02001]

Experimental searches by ATLAS:

3. Higgs to displaced jets in the HCal [PLB 743 (2015) 15-34]

4. Higgs to displaced jets in the ID and MS [check out the arXiv today ;-)]

5. Higgs to dark photons [JHEP 11 (2014) 088]

6. Higgs to dark Z [ATLAS-CONF-2015-003]

### DISCLAIMER

No time to cover all the details of these searches. Questions welcome.

## Higgs to displaced jet in the HCal

### Main ingredients

- calorimeter-ratio trigger
- two object strategy looking for displaced hadronic jets with no connecting tracks and unbalanced energy deposit
- cosmic rays and non-collision events are rejected requiring  $E_{\rm T}^{\rm miss} <$  50 GeV and jet timing -1 < t < 5 ns
- background dominated by QCD jets and estimated with a data-driven technique
- JES systematics evaluated as a function of the relative fraction of energy deposited in the hadronic calorimeter



## Higgs to displaced jets in the HCal



probability for a QCD jet to pass the cut flow



Exclusion limit considering a Higgs decay to a pair of long-lived pseudo-scalar  $\pi_v$ 

| MC sample        | excluded range | excluded range |
|------------------|----------------|----------------|
| $m_H, m_{\pi_V}$ | 30% BR         | 10% BR         |
| [GeV]            | [m]            | [m]            |
| 126,10           | 0.10 - 4.42    | 0.13 - 2.34    |
| 126,25           | 0.27 - 9.99    | 0.37 - 5.20    |
| 126,40           | 0.54 - 12.4    | 0.83 - 5.83    |
|                  |                |                |

exclusion limit as a function of the lifetime



### Andrea Coccaro

# Higgs to displaced jet in the ID and MS

Main ingredients

- muon Rol cluster and jet plus E<sup>miss</sup> triggers
- looking at decays in both ID and MS with explicit displaced vertex reconstruction
- two object strategy looking with a total of five different topologies
- background dominated by QCD jets in the ID and punch-through jets in the MS
- main systematics evaluated with K-short candidates for the ID and punch-through jets for the MS



| Trigger                                | Topology  | Background prediction                   |
|----------------------------------------|-----------|-----------------------------------------|
| $Jet + E_{\mathrm{T}}^{\mathrm{miss}}$ | 2IDVx     | $(1.8\pm 0.4)	imes 10^{-4}$             |
| $Jet + E_{\mathrm{T}}^{\mathrm{miss}}$ | IDVx+MSVx | $(5.5 \pm 1.4) 	imes 10^{-4}$           |
| $Jet + E_T^{miss}$                     | 2MSVx     | $(0.0  {}^{+1.4}_{-0.0}) 	imes 10^{-5}$ |
| Muon Rol Cluster                       | IDVx+MSVx | $2.0\pm0.4$                             |
| Muon Rol Cluster                       | 2MSVx     | $0.4 {}^{+ 0.3}_{- 0.2}$                |

#### Andrea Coccaro

## Higgs to displaced jet in the ID and MS

Reconstruction of displaced decays in the ID:

- second iteration of track finding using hits left as unassociated by the standard reconstruction
- vertexing algorithm based on the default primary vertex with loosened constraints



hadronic interactions with the material are removed



#### Andrea Coccaro

## Higgs to displaced jet in the ID and MS

| $m_{\pi_v}$ | Excluded $c	au$ range [m] |             |            |  |
|-------------|---------------------------|-------------|------------|--|
| [GeV]       | 1% BR                     | 5% BR       | 15% BR     |  |
| 10          | no limit                  | 0.24-4.2    | 0.16 - 8.1 |  |
| 25          | 1.10 - 5.35               | 0.43 - 18.1 | 0.28-32.8  |  |
| 40          | 2.82 - 7.45               | 1.04 - 30.4 | 0.68-55.5  |  |



### Andrea Coccaro

# Higgs to dark photons



Analysis optimized for looking into displaced lepton-jets in a model-independent way

- QCD multi-jet background calculated with ABCD method
- cosmics background estimated in the empty bunches
- benchmarks targeting dark photon production through exotic Higgs decay

## Higgs to dark photons

Main ingredients

- trigger asking for three muon-only tracks and calorimeter-ratio trigger
- reconstruction of near-by tracks in the muon spectrometer
- ► track isolation implemented for removing multi-jet background and validated in Z → µµ events
- main systematics evaluated using  $J/\Psi \rightarrow \mu\mu$  events







### Andrea Coccaro

## Higgs to dark photons



Hadron-collider experiment entering into the mass vs  $\epsilon$  plot of the vector-portal interpretation



### ((ロ) (目) (目) (目) (日) ヨー のへで

### Andrea Coccaro

# Higgs to dark Z

Dark sector coupling with the SM thorough kinetic mixing with the hypercharge gauge boson. Also considering the case of a dark Higgs boson mixing with the SM Higgs boson.



Main ingredients:

- analysis explicitly exploiting the Higgs decay topology requiring the four-lepton invariant mass to be within 115 and 130 GeV
- similar to the SM Higgs analysis in many aspects with different requirements in the di-lepton invariant mass
- main backgrounds are  $t\overline{t}$ , Z+jets and SM Higgs

### Andrea Coccaro

## Higgs to dark Z



No events above the background prediction, limits on the branching ratio relative to the SM Higgs process

Andrea Coccaro

## Conclusions

Strong empirical hints for new physics and the associated scale can be light

- exotic decays of the Higgs boson plays a crucial role in the quest
- the Higgs boson can be the candle for finding new physics

Looking for hidden sector poses experimental challenges

- detectors are designed for prompt physics
- triggers and reconstruction may not be adequate

Various possible improvements in Run-II

- take advantage of the various Higgs production mechanisms
- new triggerring ideas
- systematically looking for "blind spots"

It took almost 30 years to confirm Pauli's intuition ... ... it's a long way (if you wanna rock 'n' roll)!

## Conclusions

Strong empirical hints for new physics and the associated scale can be light

- exotic decays of the Higgs boson plays a crucial role in the quest
- the Higgs boson can be the candle for finding new physics

Looking for hidden sector poses experimental challenges

- detectors are designed for prompt physics
- triggers and reconstruction may not be adequate

Various possible improvements in Run-II

- take advantage of the various Higgs production mechanisms
- new triggerring ideas
- systematically looking for "blind spots"

It took almost 30 years to confirm Pauli's intuition ...

... it's a long way (if you wanna rock 'n' roll)!

## Conclusions

Strong empirical hints for new physics and the associated scale can be light

- exotic decays of the Higgs boson plays a crucial role in the quest
- the Higgs boson can be the candle for finding new physics

Looking for hidden sector poses experimental challenges

- detectors are designed for prompt physics
- triggers and reconstruction may not be adequate

Various possible improvements in Run-II

- take advantage of the various Higgs production mechanisms
- new triggerring ideas
- systematically looking for "blind spots"

It took almost 30 years to confirm Pauli's intuition ...

... it's a long way (if you wanna rock 'n' roll)!