

Dark Matter and the XENON100 Experiment

Marc Schumann Physik Institut, Universität Zürich DPNC University of Geneva, April 14th, 2010

www.physik.uzh.ch/groups/groupbaudis/xenon/

95% of the Universe is DARK

Baryonic Matter (from X-rays)

Dark Matter (Gravitational Lensing)

2 colliding galaxy clusters separation of Dark and Light (baryonic) matter → Dark Matter and not modified gravity

150

Expect: Kepler Rotation (as in the solar system)

$$v^2 = rac{G \ M(r)}{r}$$
 Disk Bulge

M. Schumann (U Zürich) – Dark Matter & XENON100

Galactic Rotation Curves

Galactic Rotation Curves

Measurement: Flat Rotation Profile

V. Rubin, K. Ford (1970)

Cosmic Microwave Background

generated when radiation and matter decouple and photons can propagate freely

get information about structures in early universe

→ Cold Invisible
 Dark Cold (v < 10⁻⁸ c)
 Matter: Collisionless
 Stable
 from "new physics"

M. Schumann (U Zürich) – Dark Matter & XENON100

power spectrum of ΔT "typical variation at typical distance"

SUSY and the WIMP

SUSY was introduced to solve Standard Model problems (i.e. hierarchy problem, Higgs mass)

New fundamental space-time symmetry between fermions and bosons

R-parity avoids B/L number violation:

 $R = (-1)^{(3B+L+2S)}$

→ lightest supersymmetric particle (LSP)
 is stable → cold DM candidate:
 WIMP = weakly interacting massive particle

leutralino:
$$\tilde{\chi}_1^0 = N_{11}\tilde{B}^0 + N_{12}\tilde{W}_3^0 + N_{13}\tilde{H}_d^0 + N_{14}\tilde{H}_u^0$$

M. Schumann (U Zürich) – Dark Matter & XENON100

Ν

SUSY WIMP production

In early Universe: WIMPs in thermal equilibrium creation ↔ annihilation

$$p(E) \propto \exp\left(-\frac{E}{k_B T}\right)$$

expanding Universe: "freeze out"

WIMPs fall out of equilibrium, cannot annihilate anymore

$$k_B T \sim \frac{m_\chi c^2}{20}$$

- → non relativistic when decoupling from thermal plasma
- \rightarrow constant DM relic density
- \rightarrow relic density depends on $\sigma_{\rm A}$

WIMP relic density:

$$\Omega_{\chi} h^2 \approx \text{const.} \frac{T_0^3}{M_{Pl}^3 \langle \sigma_A v \rangle} \approx \frac{0.1 \text{pb}}{\langle \sigma_A v / c \rangle}$$

O(1) when $\sigma_{\rm A} \sim 10^{-9} \text{ GeV} \rightarrow \text{weak scale}$

Outline

Motivation: Dark Matter ✓ Direct Dark Matter Detection Xenon as a Detector Medium XENON100 The Future

Dark Matter Search

Direct Detection

Indirect Detection Production @Collider

Direct WIMP Detection

Direct WIMP Search

Recoil Energy:
$$E_r = \frac{|\vec{q}|^2}{2m_N} = \frac{\mu^2 v^2}{m_N} (1 - \cos \theta) \sim \mathcal{O}(10 \text{ keV})$$
Event Rate: $R \propto N \frac{\rho_{\chi}}{m_{\chi}} \langle \sigma_{\chi-N} \rangle$ N
 ρ_{χ}/m_{χ} number of target nuclei
 ρ_{χ}/m_{χ} Event Rate: $R \propto N \frac{\rho_{\chi}}{m_{\chi}} \langle \sigma_{\chi-N} \rangle$ N
 ρ_{χ}/m_{χ} number of target nuclei
 ρ_{χ}/m_{χ} Event Rate: $R \propto N \frac{\rho_{\chi}}{m_{\chi}} \langle \sigma_{\chi-N} \rangle$ N
 ρ_{χ}/m_{χ} number of target nuclei
 ρ_{χ}/m_{χ} Velocity-averaged scatt, X-section

 \rightarrow need information on halo and interaction to get rate

WIMP Interactions Detector Requirements

Result: Tiny Rates R < 0.01 evt/kg/day E_r < 100 keV

What do we look for?

- nuclear recoils, single scatters
- recoil spectrum falls with E
- dependence on A, spin?
- annual flux modulation?
- other possibilities? iDM, ...?

How to build a WIMP detector?

- large total mass, high A
- low energy threshold
- ultra low background
- good background discrimination

Backgrounds

Experimental Sensitivity: without background: ∞ (mt)⁻¹ ∞ (mt)^{-1/2} with background :

Background Sources: environment: U, Th chains, K

 ${}^{238}U \xrightarrow{} {}^{234}Th \xrightarrow{} {}^{234m}Pa \xrightarrow{} {}^{234}U \xrightarrow{} {}^{230}Th \xrightarrow{} {}^{226}Ra \xrightarrow{} {}^{222}Rn \xrightarrow{} {}^{218}Po \dots$ $^{232}\text{Th} \rightarrow ^{228}\text{Ra} \rightarrow ^{228m}\text{Ac} \rightarrow ^{228}\text{Th} \rightarrow ^{224}\text{Ra} \rightarrow ^{220}\text{Rn} \rightarrow ^{216}\text{Po} \dots$ ß ß

- Gamma and Beta Decays (electron recoil) careful material selection, discrimination, shielding (Pb, Cu, Xe, Ar, water)
- Neutrons from (α, n) in rocks neutron moderators (paraffin, poly)
- Neutrons from cosmic ray muons go deep underground

Neutrons are most dangerous background since they interact like WIMPS! (nuclear recoil)

Muon flux vs overburden

WIPP

Proposed NUSL Homestake Current Laboratories

Soudan

Kamioka

Gran Sass

Sudbury

10⁶

10

10

 10^{3}

Muon Intensity, m^{.2} y⁻¹

CDMS: Cryogenic Detectors

Located underground in Soudan Lab, Minnesota (USA)

Principle: measure charge and heat (phonons) a deposited energy E produces temperature rise ΔT

Crystals: Ge, Si cooled to few mK → low heat capacity

→ measurable µK temperature!

similar: CRESST, EDELWEISS, Rosebud

M. Schumann (U Zürich) – Dark Matter & XENON100

Heat

good discrimination

- → "backgound-free experiment"
- \rightarrow BUT: reject surface events via PSA

The latest CDMS Result

Science 327, 1619 (2010)

- 2 events remain after all cuts after un-blinding
- Background expection: 0.9 ± 0.2 events
- probability for 2 or more events: 23%

Dark Matter Project

Why Xenon?

- efficient, fast scintillator (178nm)
- high mass number A~131: SI: high WIMP rate @ low theshold
- high atomic number Z=54, high density (~3kg/l): self shielding, compact detector
- SD: 50% odd isotopes allows further characterization after detection by testing only SI or SD
- no long lived Xe isotopes, Kr-85 can be removed to ppt
- "easy" cryogenics @ -100°C
- scalability to larger detectors
- in 2-phase TPC: good background discrimination
- M. Schumann (U Zürich) Dark Matter & XENON100

Xenon: Light and Charge

Columbia

60

70

0.27 kV/cm

2.00 kV/cm

Case

-@•0.10 kV/cm

• 2.03 kV/cm

110 120

Energy [keVr]

- energy deposited in LXe produces electron-ion pairs and excited atom states; both processes can lead to scintillation
- anti-correlation between charge and light
 - → improvement of energy resolution possible
- E-field dependence (field quenching)
- response also depends on particle energy

M. Schumann (U Zürich) – Dark Matter & XENON100

Why Xenon?

- efficient, fast scintillator (178nm)
- high mass number A~131: SI: high WIMP rate @ low theshold
- high atomic number Z=54, high density (~3kg/l): self shielding, compact detector
- SD: 50% odd isotopes allows further characterization after detection by testing only SI or SD
- no long lived Xe isotopes, Kr-85 can be removed to ppt
- "easy" cryogenics @ -100°C
- scalability to larger detectors
- in 2-phase TPC: good background discrimination
- M. Schumann (U Zürich) Dark Matter & XENON100

Dual Phase TPC

3d position reconstruction in TPC

Localization / Discrimination

M. Schumann (U Zürich) – Dark Matter & XENON100

Discrimination:

99.5% bg rejection (99.9% at low *E*), 50% acceptance (*Xe10 performance*) definition of *WIMP search region*

Matter Project

Outline

Motivation: Dark Matter ✓ Direct Dark Matter Detection ✓ Xenon as a Detector Medium ✓ XENON100 The Future

The XENON program

M. Schumann (U Zürich) – Dark Matter & XENON100

XENON100 Collaboration

XENON100

Goal:

- increase target × 10
- reduce gamma background 100 ×
- \rightarrow material selection & screening
- \rightarrow detector design

Quick Facts:

- 165 kg LXe TPC (mass: 10 × Xe10)
- ~50 kg in fiducial volume
- active LXe veto (≥4 cm)
- 242 PMTs
- improved Xe10 shield
 (Pb, Poly, Cu, H₂O, N₂ purge)

XENON100

Goal:

- increase target × 10
- reduce gamma background 100 ×
- \rightarrow material selection & screening
- \rightarrow detector design

Quick Facts:

- 165 kg LXe TPC (mass: 10 × Xe10)
- ~50 kg in fiducial volume
- active LXe veto (≥4 cm)
- 242 PMTs
- improved Xe10 shield (Pb, Poly, Cu, H₂O, N₂ purge)

XENON100

Goal:

- increase target × 10
- reduce gamma background 100 ×
- \rightarrow material selection & screening
- \rightarrow detector design

Quick Facts:

- 165 kg LXe TPC (mass: 10 × Xe10)
- ~50 kg in fiducial volume
- active LXe veto (≥4 cm)
- 242 PMTs
- improved Xe10 shield (Pb, Poly, Cu, H₂O, N₂ purge)

XENON100 @ LNGS

LNGS: 1.4km rock (3700 mwe)

1	Site	Relative	Relative
	(Multiple levels given in ft) (from: R. Gaitskell)	Muon Flux	Neutron Flux T>10 MeV
	WIPP (2130 ft) (1500 mwe)	x 65	x 45
	Soudan (2070 mwe)	x 30	x 25
	Kamioke	x 12	x 11
	Boulby	x 4	x 4
	Gran Sasso(3700 mwe) Frejus (4000 mwe),	x 1	x 1
	Homestake (4860 ft)		
	Mont Blanc	x 6⁻¹	x 6 ⁻¹
	Sudbury	x 25 ⁻¹	x 25 ⁻¹
	Homestake (8200 ft)	x 50 ⁻¹	x 50 ⁻¹

underground since end of February 08 first filled with Xe in mid May 08 detector fully operational, taking science data

M. Schumann (U Zürich) – Dark Matter & XENON100

Photosensors

242 Hamamatsu R8520 PMTs

1"x1", optimized for response @ Xe scintillation wavelength low radioactivity (>10 mBq/PMT) 80 with high QE ~35%

98 in top array:arranged for good fiducial cut efficiency80 in bottom array:optimized for S1 collection \rightarrow low threshold64 in active veto:gain factor 3-4 compared to passive shield

TPC is transparent...

Matter Project

3D-Vertex Reconstruction

S2 *xy*-Position Reconstruction:

- Least Squares Minimization
- Neural Network
- Support Vector Machine

Resolution O(mm) (measured and from MC) Positions of real S2s uniform Cs137 illumination Least Squares Analysis

Calibration

Gain calibration: blue LED (+optical fibers) γ -sources (ER band):

Co-57, Co-60, Cs-137, Th-228, Xe*, Kr-83m

Neutrons (NR band): AmBe

M. Schumann (U Zürich) – Dark Matter & XENON100

Calibration at low Energy

expect signal <40 keV (calibration from outside not possible) ⇒ n-activated Xe131, Xe129m was used for Xe10, $\tau \sim O(10d)$

⇒ Kr83m

120

M. Schumann (U Zürich) – Dark Matter & XENON100
Calibration at low Energy

expect signal <40 keV (calibration from outside not possible) ⇒ n-activated Xe131, Xe129m was used for Xe10, $\tau \sim O(10d)$

⇒ Kr83m

M. Schumann (U Zürich) – Dark Matter & XENON100

Calibration of the NR Band

ER/NR Discrimination

- ER/NR discrimination via S2/S1 ratio
- Dicrimination efficiency similar to XENON10 (>99%)

Material Screening

GATOR: 2.2kg high purity Ge detector operated by UZH in low bg environment @ LNGS

	Unit	Quantity	²³⁸ U	²³² Th	⁴⁰ K	⁶⁰ Co	²¹⁰ Pb
TPC Material		used	[mBq/unit]	[mBq/unit]	[mBq/unit]	[mBq/unit]	[Bq/unit]
R8520 PMTs	PMT	242	$0.15 {\pm} 0.02$	$0.17 {\pm} 0.04$	9.15 ± 1.18	$1.00 {\pm} 0.08$	
PMT bases	base	242	$0.16{\pm}0.02$	$0.07 {\pm} 0.02$	< 0.16	< 0.01	
Stainless steel	kg	70	< 1.7	< 1.9	< 9.0	5.5 ± 0.6	
PTFE	kg	10	< 0.31	< 0.16	< 2.2	< 0.11	
QUPID	QUPID	-	< 0.49	< 0.40	<2.4	< 0.21	
Shield Material							
Copper	kg	1600	< 0.07	< 0.03	< 0.06	< 0.0045	
Polyethylene	kg	1600	< 3.54	< 2.69	< 5.9	< 0.9	
Inner Pb (5 cm)	kg	6300	< 6.8	< 3.9	< 28	< 0.19	17 ± 5
Outer Pb (15 cm)	kg	27200	< 5.7	< 1.6	14 ± 6	< 1.1	516 ± 90

use results for Monte Carlo Simulations

M. Schumann (U Zürich) – Dark Matter & XENON100

Monte Carlo Simulations

GEANT4 simulations of full experiment (detector+shield+surrounding)

Gamma Background:

M. Schumann (U Zürich) – Dark Matter & XENON100

Kr-85-Removal

measurement via

delayed concidences

514.0083 1.015 µs

280.986 40 ps

151.161 0.71 ns

- Xe has no long lived radioactive isotope
- BUT: Xe contains Kr-85

in air:	Kr/Xe ~ 10
in Xe gas (commercial)	Kr/Xe ~ ppm-ppb
necessary (Xe100)	Kr/Xe ~ 100 ppt
	(<1 evt in 0.5 yr)

 \Rightarrow dedicated Kr-85 removal to ppt level

10.756 y

85 36Kr

<4.7×10-7% >16.73 1/2-

9.5 9/2+

9.41 5/2-

3/2-

 $Q_{\beta} = 687.0$

0.434%

99.563%

9/2+

XENON100 Background

- 30 kg fiducial mass
- active LXe veto not used

Measured Background in good agreement with Monte Carlo prediction.

Background Comparison

This is the lowest Background ever achieved in a Dark Matter Experiment!

- Background data taken in stable conditions
 October-November 2009
- 11.2 life days
- Data analyzed non-blinded
- Cuts developed and optimized on calibration data, mostly AmBe and Co60

Let's have a look...

Basic Event Selection

- select events with acceptable signal/noise ratio (very sensitive detector: SPE & single electron S2 sensitivity)
- select single S1 peak (remove accidentals)
- select single scatters (single S2 peak)
- remove gas events
- apply active veto cut

Energy Cut

- select events with an S1 energy of < 28 keVnr
- this is the upper border of the XENON10 WIMP search region
- most remaining events are located at the edges

40kg Fiducial Mass

- make use of excellent self-shielding capability of liquid xenon
- cylindrical fiducial volume with 40 kg mass
- shape of volume will be further optimized

A Look at the Bands

- "Background free" in 11.2 days after S2/S1 discimination
- Both plots show similar exposure

NR acceptance ~ 50% cut efficiency ~ 85% (conservative)

A first Limit from XENON100

XENON100 is working extremely well and is back at the sensitivity frontier.

This is just a first glimpse! We have much more (blinded) data waiting to be analyzed.

Results to be published soon

Ongoing Data Taking

XENON100 is taking science data since mid Jan 2010

XENON100: Sensitivity

50 kg Target: 40 days $\sigma = 6 \times 10^{-45} \text{ cm}^2$ (@ 100 GeV)30 kg Target: 200 days $\sigma = 2 \times 10^{-45} \text{ cm}^2$ (@ 100 GeV)

The next step: XENON1T

- 2.2t LXe ("1m³ detector")
 1t fiducial mass
- 100x lower background (10 cm self shielding, QUPID)
- MC studies, design studies already started 2009
- bigger collaboration
- currently: working on the details; secure funding
- Timeline: 2010 2015 ???

Radiation- free Photon Detector (3" QUPID, Total 242)

Ti Cryostat

The QUPID

- invented and developed by UCLA group (Arisaka/Wang)
- very low radioactive photosensor to replace PMTs APD, quartz, only a few pins, no voltage divider
- QUPIDs are "invisible" in GATOR screening facility
- first units were build by HAMAMATSU, ongoing tests and R&D at UCLA (later also UZH)

It is actually working...

Work done at UCLA (Arisaka/Wang):

XENON1T: Location?

XENON1T @ LNGS (Hall B) → 4 m water shield

XENON1T @ LSM → solid shield (55cm poly,

20cm Pb, 15cm poly, 2cm ancient Pb, >99% muon veto)

Projected Sensitivities

Dark Matter Project

DARWIN

- the future of liquid noble gas Dark Matter detectors (Xe/Ar) in Europe
- DARWIN = design study towards the realisation of future astroparticle infrastructure in Europe as identified in the ASPERA Roadmap
- the DARWIN consortium was founded in 2009; approved by ASPERA
- DARWIN brings together several European and American groups working in the existing XENON, WARP and ArDM collaborations.

It unites expertise on liquid noble gas detectors, low-background techniques, cryogenic infrastructure, shielding and astroparticle physics phenomenology.

http://darwin.physik.uzh.ch

Summary

- Dark Matter: One of the big unsolved puzzles
- XENON100 65 kg dual-phase TPC
- underground @ LNGS
- extremely low background
- first results from 11.2d data
- in science data mode now: stay tuned...

M. Schumann (U Zürich) – Dark Matter & XENON100

Backup

Determination of Leff

- WIMPs interact with Xe nucleus
 - → nuclear recoil (*nr*) scintillation
- absolute measurement of nr scintillation yield is difficult
 - → measure relative to Co57 (122keV)
- relative scintillation efficiency Leff:

$$\mathcal{L}_{\rm eff} = \frac{E_{\rm ee}}{E_{\rm nr}}$$

measurement principle:

Scaling I

90% CF limits for one year of data taking

Scaling II

Arisaka et al., arXiv:0808.2968 Events (/keV/day/kg) 00GeV WIMP(10 pb TeV WIMP(10"pb) OTeV WIMP(10 pb) solar v pp chain Solar v Roz Ov decay(s=10²²vr 2v decay(t=1027vr) All Volume v BG (0 cm cut) 5cm Cut 10cm Cu 100 GeV WIMP (10-1 pb) 10-6 2v DBD (1022 vrs) 1 TeV 10⁻⁷ BG (10 cm cut) 10 TeV pp Solar Neutrin 10⁻⁸ Be7 Solar Neutrino 10⁻⁹ 100 250 50 150 200 300 Energy (keVee)

Expected energy spectrum of WIMP interactions, solar neutrinos, double beta decays, and gamma ray backgrounds (from QUPIDs) as a function of self shielding cuts.

Expected number of bg events in WIMP signal region (3-15 keVee) as function of active shielding cut for 10 ton-years of data taking.

Cryogenics & Recirculation

200 W PTR cryocooler gas gets liquefied outside the shield

double wall SS cryostat (low radioactivity steel, GERDA type)

continuous Xe purification (high T Getter)

Detector Stability

PTR cooling provides excellent stability

Slow Control System records:

- Temperatures
- Pressures
- Flow rates
- Xe Level
- TPC HV
- PMT HV
- DAQ rate
- Vacuum
- Rn level
- status of all important systems

• ...

Ongoing LXe Purification

- Light yield is related to H₂0 content in LXe
- Continuous improvement to lower levels (baking, GXe circulation, H₂0 measurements)
- Charge yield related to O_2 content \rightarrow continuous purification

TPC: Electric Fields

- cathode: -30kV \rightarrow drift field 1kV/cm
- anode: extraction field ~5kV
- field inside TPC was optimized in simulations for field homogeneity
 → 40 double field shaping rings
- anode stack optimized for
 - optical transparancy
 - S2 energy resolution (+4%)
- hexagonal mesh structures, pitch cathode 5mm, anode 2.5mm

Data Acquisition

Requirements:

- digitize full waveform (320µs) of 242 PMTs
- no deadtime
- higher rate capability for calibration

CAEN V1724 Flash ADC: 14bit, 100MHz

- circular buffer \rightarrow no deadtime
- on board FPGA: Zero Length Encoding

M. Schumann (U Zürich) – Dark Matter & XENON100

Low Trigger Threshold (S2)

XENON10

- S2 trigger efficiency 100% above 100 PE
- threshold of 300 PE used in WIMP analysis

similar S2 threshold

Averaged Light Yield

- Light collection is position dependent
- measured with Cs137, 40 keV, and 164 keV from AmBe data
- vertex reconstruction allows to obtain volume average
- maximal light yield reached corresponds to
 - 4.5 PE/keV (zero field) @ 122 keV
 - → 80% of XENON10 (as expected from design)

Active Veto

TPC is surrounded by
100 kg LXe layer (>4 cm)
→passive shield
→+64 PMTs: active veto

Reminder: XENON10 Results

- successful operation at LNGS 2006/07
- 15 kg dual phase detector,
 5.4kg in fiducial volume

