Imaging Calorimeters for Particle Flow reconstruction

Felix Sefkow

Particle Physics Seminar Université de Genève, May 27, 2015

Outline

- LC physics with jets
- Particle flow calorimetry
- Test beam validation
- ECAL and HCAL developments

Higgs discovery

2013 Nobel prize in physics

- A turning point:
- after 50 years the last building block falls into place
- and opens the door to something completely new

Felix Sefkow 3

Higgs physics drives the field

"Driver" = a compelling line of inquiry that shows great promise for major progress over the next 10-20 years. Each has the potential to be transformative. Expect surprises.

Use the Higgs as a new tool for discovery.

S.Ritz, Report on P5

- The main question today:
- establish the Higgs profile
 - mass, spin, parity
 - above all: couplings
- Is the Higgs(125) the Higgs and does it fulfil its role in the Standard Model?
- Or does it hold the key to New Physics?

Felix Sefkow Hamburg, 28.8.2014

Future e⁺e⁻ colliders

- International Linear Collider
 - 250-1000 GeV
 - TDR 2012
 - studied at government level in Japan
- Compact Linear Collider at CERN
 - 350-3000 GeV
 - CDR 2012
- Circular collider studies
 - CEPC in China
 - FCCee at CERN

ILC and LHC

- Only with e+e- collisions one can reach the percent level precision to probe new physics
- also true w.r.t. high lumi LHC

Precision for discovery

	κ_V	κ_b	κ_{γ}	
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$	
$2\mathrm{HDM}$	~ 1%	$\sim 10\%$	~ 1%	
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	< 1.5%	
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$	Benchmark
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim -3\%$	for discovery
	Ī	i de la constant de l		is few % to sub-%
$\underline{\P}$			<u> </u>	SIVI
κ_i Brock/Peskin Snowmass 2013	κ_j		κ_k	• • •

LC physics with jets: Minv

- W Z separation
 - study strong e.w. symmetry breaking at 1 TeV
- Other di-jet mass examples
 - H \rightarrow cc, Z \rightarrow vv
 - Higgs recoil with Z → qq
 - invisible Higgs
 - WW fusion → H → WW
 - total width and g_{Hww}
- SUSY example:
 - Chargino neutralino separation

Geneva, May 27, 2015

Felix Sefkow

Jet energies

- $\sigma_m/m = 1/2 \sqrt{(\sigma_{E1}/E_1)^2 + (\sigma_{E2}/E_2)^2}$
 - low energy jets important
 - high energy, too
- At $\sqrt{s} = 500 \text{ GeV}$
- example chargino, neutralino → qq + invis.
- At $\sqrt{s} = 1 \text{ TeV}$
- example WW→H → WW → lvqq

plots:

DESY

J.List, M.Chera, A.Rosca

Particle flow concept and detectors

The jet energy challenge

- Jet energy performance of existing detectors is not sufficient for W Z separation
- E.g. CMS: $\sim 100\%/\sqrt{E}$, ATLAS $\sim 70\%/\sqrt{E}$
- Calorimeter resolution for hadrons is intrinsically limited
- Resolution for jets worse than for single hadrons
- It is not sufficient to have the world best calorimeter

11

Recall some basics

Hadron showers

- Hadrons undergo strong interactions with detector (absorber) material
 - Charged hadrons: complementary to track measurement
 - Neutral hadrons: the only way to measure their energy
- In nuclear collisions numbers of secondary particles are produced
 - Partially undergo secondary, tertiary nuclear interactions → formation of a hadronic cascade
 - Electromagnetically decaying particles initiate em showers
 - Part of the energy is absorbed as nuclear binding energy or target recoil and remains invisible
- Similar to em showers, but much more complex
- Different scale: hadronic interaction length
 - both scales present

Hadronic interactions

- 1st stage: the hard collision
 - Multiplicity scales with E
 - ~ 1/3 π⁰ **→** γγ
 - Leading particle effect: depends on incident hadron type,
 - e.g fewer π⁰ from protons
- 2nd stage: spallation
 - Intra-nuclear cascade
 - Fast nucleons and other hadrons
 - Nuclear de-excitation
 - Evaporation of soft nucleons and a particles
 - Fission + evaporation

- The response to the hadronic part of a hadron-induced shower is usually smaller than that to the electromagnetic part: h ≠ e
 - Due to the invisible energy
 - Due to the short range of spallation nucleons
 - Due to saturation effects for slow, highly ionizing particles

Electromagnetic fraction

- π⁰ production irreversible; "one way street"
 - $\pi^0 \rightarrow \gamma \gamma$ produce em shower, no further hadronic interaction
 - Remaining hadrons undergo further interactions, more π^0
 - Em fraction increases with energy, $f = 1 E^{m-1}$
- Response non-linear: signal ~ f * e + (1-f) * h
- Numerical example for copper
 - 10 GeV: f = 0.38; 9 charged h, 3 π^0
 - 100 GeV: f = 0.59; 58 charged h, 19 π^0
 - Cf em shower: 100's e⁺, 1000's e⁻, millions γ
- Large fluctuations
 - E.g. charge exchange Π^{-} p → Π^{0} n (prb 1%) gives f_{em} = 100%

Compensation

Different strategies, which can also be combined

- Hardware compensation
 - Reduce em response
 - High Z, soft photons
 - Increase had response
 - Neutron part (correlated with binding energy loss)
 - Tunable via thickness of hydrogenous detector
 - Example ZEUS: uranium scintillator,
 - 35% $/\sqrt{E}$ for hadrons, 45% $/\sqrt{E}$ for jets
- Software compensation
 - Identify em hot spots and down-weight
 - Requires high 3D segmentation
 - Example H1, Pb/Fe LAr, $\sim 50\%$ / \sqrt{E} for hadrons

NB: Does not remove fluctuations in invisible energy

More fluctuations: leakage

blue = hadronic component

But: leakage fluctuations are! (rule of thumb: $\sigma_{leak} \sim 4 f_{leak}$)

red = electroma

Leakage: in principle no problem

sampling fluctuations

Hadron and jet calorimetry:

- Hadron showers:
 - Large variety of physics processes
 - With different detector responses e, h
 - In general non-linear
 - Inevitably invisible energy; ultimate limit for resolution
 - Small numbers, large fluctuations
 - Large volume, small signals
 - Difficult to model
- Jet energy performance = hadron performance or worse

Particle Flow Calorimetry

★ In a typical jet :

- 60 % of jet energy in charged hadrons
- + 30 % in photons (mainly from $\pi^0 o \gamma\gamma$)
- + 10 % in neutral hadrons (mainly $\, {
 m n} \,$ and $\, {
 m K}_L$)

- Measure all components of jet energy in ECAL/HCAL!
- ~70 % of energy measured in HCAL: $\sigma_E/E \approx 60 \%/\sqrt{E(GeV)}$
- Intrinsically "poor" HCAL resolution limits jet energy resolution

- **★** Particle Flow Calorimetry paradigm:
 - charged particles measured in tracker (essentially perfectly)
 - Photons in ECAL: $\sigma_{\rm E}/{\rm E} < 20\,\%/\sqrt{{\rm E}({\rm GeV})}$
 - Neutral hadrons (ONLY) in HCAL
 - Only 10 % of jet energy from HCAL ⇒ much improved resolution

Particle Flow Reconstruction

Reconstruction of a Particle Flow Calorimeter:

- **★** Avoid double counting of energy from same particle
- **★ Separate energy deposits from different particles**

Level of mistakes, "confusion", determines jet energy resolution not the intrinsic calorimetric performance of ECAL/HCAL

Three types of confusion:

Particle flow detectors

- large radius, large field, compact calorimeter, fine 3D granularity
 Typ. 1X0 long., transv.: ECAL 0.5cm, HCAL 1cm (gas) 3cm (scint.)
- optimised in full simulations and particle flow reconstruction

ILD: large TPC, B=3.5T, PFLOW calo

SiD:all-Si tracker, B=5T, PFLOW calo

CLIC: tungsten barrel HCAL considered

Understand particle flow performance

- Particle flow is always a gain
 - even at high jet energies
- HCAL resolution does matter
 - dominates up to ~ 100 GeV
- Leakage plays a role, too
 - but less than for the calo alone

Understand particle flow performance

+0.3

- Particle flow is always a gain
 - even at high jet energies
- HCAL resolution does matter
 - − dominates up to ~ 100 GeV
- Leakage plays a role, too
 - but less than for the calo alone

Granularity optimisation

- Based of Pandora PFA
- Large radius and B field drive the cost
- Both ECAL and HCAL segmentation of the order of X₀
 - longitudinal: resolution
 - transverse: separation
- Cost optimisation to be done

Detectors for the ILC Felix Sefkow Fukuoka, 6.11.2013 23

Calorimeter cost

- Costing is at a very early stage
- Yet, many lessons learnt from 2nd generation prototypes
- Example HCAL:
- example ILD scint HCAL: 45M
 - − 10M fix, rest ~ volume
 - 10M absorber, rest ~ area (n_{Layer})
 - 16M PCB, scint, rest ~ channels
 - 10 M SiPMs and ASICs
- ECAL:
- main cost driver: silicon area
- ILD 2500 m², SiD 1200 m²
 - cf. CMS tracker 200 m²
 - cf. CMS ECAL+HCAL endcap 600 m²

PFLOW under CLIC conditions

- Overlay γγ events from 60 BX (every 0.5 ns)
- take sub-detector specific integration times, multi-hit capability and time-stamping accuracy into account
- apply pt and timing cuts on cluster level (sub-ns accuracy)

Z @ 1 TeV

+ 1.4 TeV BG (reconstructed particles)

PFLOW under CLIC conditions

- Overlay γγ events from 60 BX (every 0.5 ns)
- take sub-detector specific integration times, multi-hit capability and time-stamping accuracy into account
- apply pt and timing cuts on cluster level (sub-ns accuracy)

Z @ 1 TeV

+ 1.4 TeV BG (reconstructed particles)

PFLOW under CLIC conditions

- Overlay γγ events from 60 BX (every 0.5 ns)
- take sub-detector specific integration times, multi-hit capability and time-stamping accuracy into account
- apply pt and timing cuts on cluster level (sub-ns accuracy)

Z @ 1 TeV

Main ideas:

- Linear collider physics demands 3-4% jet energy resolution, which cannot be achieved with classical calorimetry
- Particle flow detectors achieve this precision over a wide energy range for ILC and CLIC
 - and under CLIC background and pile-up conditions
- Particle flow calorimeters feature good energy resolution and high granularity
- Detector cost is driven by instrumented area rather than channel count

Test beam validation

Calorimeter technologies

Test beam experiments

+ Test beam experiments

CERN 2010-11 Tungesten AHCAL 2012: DHCAL

CERN 2012 2nd generation scint HCAL DESY 2012 2nd generation SiW ECAL FNAL2010-11: m³ Fe DHCAL

CERN 2012: m³ SDHCAL

CALICE ECAL performance

SID ECAL

- SiD made some ambitious design choices
 - most compact ECAL
 - smallest R_{Moliere}
 - most light-weight Silicon tracker
 - both based on KPiX chip (1024 ch)
 - directly bonded to wafer
- ECAL: no PCB
 - 1.1 mm thin active gap

July 2013 9 layers in the beam at SLAC End Station A

Scintillator HCAL performance

- 38 layer steel and tungsten
- 7608 channels: first large scale SiPM application
- very robust: 6 years of data taking at DESY, CERN, Fermilab
- a very good calorimeter, too

 $\sigma/E = 45.1\%/\sqrt{E} \oplus 1.7\% \oplus 0.18/E$

software compensation

Digital RPC HCAL

0.5

0.4

α(E)/E

0.1

- Resistive plate chambers
- 1x1cm² pads, 1 bit read-out
- 500'000 channels
- digitisation electronics embedded
- tested with steel and tungsten
- digital calorimetry does work

Semi-digital RPC HCAL

- 48 RPC layers, 1cm² pads
- embedded electronics
 - power-cycled
- 2 bit, 3 threshold read-out
 - mitigate resolution degradation at high energy

0.35

0.25

0.2

0.15

0.1

Semi-digital RPC HCAL

- 48 RPC layers, 1cm² pads
- embedded electronics
 - power-cycled
- 2 bit, 3 threshold read-out
 - mitigate resolution degradation at high energy

CALICE Preliminar

Validation of Geant 4 models

- just a few examples
- altogether at 5% or better

longit. profile

W Scint HCALresponse, timing

Particle **2014_JINST_9_P01004**

E_{available} [GeV] x Sefkow

Geneva, May 27, 2015

Leakage estimation

- Exploit the 3-D granularity
- ECAL 1λ, HCAL 4.5λ
- Observables
 - shower start
 - energy fraction in rear layers
 - measured energy

cf: with tail catcher, no coil: 5.4%

Shower fine structure

- Could have had the same global parameters with "clouds" or "trees"
- Powerful tool to check models
- Surprisingly good agreement already - for more recent models

Shower fine structure

- Could have had the same global parameters with "clouds" or "trees"
- Powerful tool to check models
- Surprisingly good agreement already - for more recent models

Shower fine structure

- Could have had the same global parameters with "clouds" or "trees"
- Powerful tool to check models
- Surprisingly good agreement already - for more recent models

PFLOW with test beam data

- The "double-track resolution" of an imaging calorimeter
- Small occupancy: use of event mixing technique possible
- test resolution degradation if second particle comes closer
- Important: agreement data simulation

JINST 6 (2011) P07005

What we learnt

- The novel ECAL and HCAL technologies work as expected
 - Si W ECAL and Sci Fe AHCAL analysis nearly complete
 - Analysis of the more recent tests has just begun, but all results so far are encouraging - still a huge potential
- The detector simulations are verified with electromagnetic data.
- The hadronic performance is as expected, including software compensation.
- The Geant 4 shower models reproduce the data with few % accuracy.
 - Time structure is reproduced by HP simulations.
- Shower substructure can be resolved and is also reproduced by shower simulations.
- Particle flow algorithms are validated with test beam data.

Current trends

Technological prototypes

- Electronics integration, power pulsing
- Compact design: absorbers and PCBs
- Scalability
- Integration solutions exist
- Components were prototyped
- Si ECAL, scintillator HCAL: small set-ups tested,
 <10 small layers
- Gas HCAL: the only large 2nd gen prototype
- None addresses all integration issues yet
- Funding limited

System integration & Tooling

Industrialisation: Numbers!

- The AHCAL
- 60 sub-modules
- 3000 layers
- 10,000 slabs
- 60,000 HBUs
- 200'000 ASICs
- 8,000,000 tiles and SiPMs

- One year
- 46 weeks
- 230 days
- 2000 hours

• 100,000 minutes

• 7,000,000 seconds

Felix Sefkow

Directions in tile and SiPM R&D

- Revise tile design in view of automatic pick & place procedures
- Consider SMD approach, originally proposed by NIU
- Light yield becomes an issue again
 - build on advances in SiPMs

Mainz

Very different assembly, QC and characterisation chain

ITEP

High Granularity for CMS

- CMS decided for a high granularity option of their endcap calorimeter upgrade
 - EM: Si Pb/Cu
 - 35 layers, 25 X0
 - HAD: Si brass
 - 12 layers, 5 λ
 - Backing: scint brass, 5 λ
 - 600 m² of Si
 - -0.5-1 cm²
- particle ID, pile-up subtraction, ..., particle flow
- radiation hardness, rate capabilities and cooling much more challenging than in e+e-

Conclusion

- Calorimetry has changed particle flow concept established experimentally
- Now fully in second phase: make it realistic
- There are many open issues = room for new ideas

Back-up slides

Shower simulation in Geant 4

Low energy: cascade models

The homogeneity of the detector and its readout electronics were studied

Beam spot position

Multiplicity

Power-Pulsing mode was tested in a magnetic field of 3 Tesla

The Power-Pulsing mode was applied on a GRPC in a 3 Tesla field at H2-CERN (2ms every 10ms) No effect on the detector performance

Containment – use of Tail Catcher

- Tail catcher gives us information about tails of hadronic showers.
- Use ECAL+HCAL+TCMT to emulate the effect of coil by omitting layers in software, assuming shower after coil can be sampled.
- Significant improvement in resolution, especially at higher energies.

2012_JINST_7_P04015

Common developments

Front end electronics

not reported here: test beam infrastructure, DAQ, software and computing

ILC Challenges for electronics

- Requirements for electronics
 - Large dynamic range (15 bits)
 - Auto-trigger on ½ MIP
 - On chip zero suppress
 - Front-end embedded in detector
 - 10⁸ channels
 - Ultra-low power: (25µW/ch)
 - Compactness

« Tracker electronics with calorimetric

ASICs for ILC prototypes

SPIROC2

Analog HCAL (AHCAL)
(SiPM)
36 ch. 32mm²
June 07, June 08, March 10

1st generation ASICs: FLC-PHY3 and FLC_SiPM (2003) for **physics prototypes**

2nd generation ASICs: ROC chips for **technological prototypes**

- ✓ Address integration issues
- ✓ Auto-trigger, analog storage, internal digitization and token-ring readout
- Include power pulsing : <1 % duty cycle</p>
- ✓ Optimize commonalities within CALICE (readout, DAQ...)

3rd generation ASICs (AIDA funded):

✓ Independent channels to perform Zero suppress

(RPC, µmegas or GEMs) 64 ch. 16mm²

Sept 06, June 08, March 10

SKIROC2

ECAL (Si PIN diode) 64 ch. 70mm²

March 10

