
D I S L I N 9.5

A Data Plotting

Library

by

Helmut Michels

c© Helmut Michels, Max-Planck-Institut fuer Sonnensystemforschung, Katlenburg-Lindau 1986 - 2009

All rights reserved.

Contents

1 Introduction 1

2 Basic Concepts and Conventions 3
2.1 Page Format. 3
2.2 File Format . 3
2.3 Level Structure of DISLIN. 5
2.4 Conventions. 5
2.5 Error Messages. 5
2.6 Programming in C. 6
2.7 Programming in Fortran 90. 6
2.8 Linking Programs. 7
2.9 Utility Programs. 7
2.10 WWW Homepage. 9
2.11 Reporting Bugs. 9
2.12 License Information. .10

3 Introductory Routines 11
3.1 Initialization and Termination. 11
3.2 Plotting of Text and Numbers. 11
3.3 Plotting Symbols .12
3.4 Plotting a Page Border, Background and Header. 13
3.5 Sending a Metafile to a Device. 13
3.6 Including Meta- and Bitmap files into a Graphics. 14

4 Plotting Axis Systems and Titles 15
4.1 Plotting Axis Systems. .15
4.2 Termination of Axis Systems. 16
4.3 Plotting Titles .16
4.4 Plotting Grid Lines .17
4.5 Plotting Additional Labels . 18
4.6 Secondary Axes. .18
4.7 Calculating Axis Parameters. 19

5 Plotting Curves 21
5.1 Plotting Curves. .21
5.2 Plotting Legends .22
5.3 Plotting Shaded Areas between Curves. 24
5.4 Plotting Error Bars .24
5.5 Plotting Vector Fields. .25

6 Parameter Setting Routines 27
6.1 Basic Routines .27

6.1.1 Resetting Parameters. 27
6.1.2 Changing the Plot Units. 27
6.1.3 Modifying the Origin. 27
6.1.4 File Format Control. 28

i

6.1.5 Page Control. .32
6.1.6 Error Handling. .35
6.1.7 Viewport Control. 36

6.2 Axis Systems. .39
6.2.1 Modifying the Type. 39
6.2.2 Modifying the Position and Size. 39
6.2.3 Axis Scaling .40
6.2.4 Modifying Ticks . 41
6.2.5 Modifying Labels. 43
6.2.6 Modifying Axis Titles . 47
6.2.7 Suppressing Axis Parts. 48
6.2.8 Modifying Clipping . 49
6.2.9 Framing Axis Systems. 49
6.2.10 Setting Colours. .50
6.2.11 Axis System Titles. 50

6.3 Colours .52
6.3.1 Changing the Foreground Colour. 52
6.3.2 Modifying Colour Tables. 53
6.3.3 Utitily Routines for Colours. 54

6.4 Text and Numbers. .54
6.5 Fonts .57
6.6 Indices and Exponents. .70
6.7 Instruction Alphabet .71
6.8 TeX Instructions for Mathematical Formulas. 74

6.8.1 Introduction. .74
6.8.2 Enabling TeX Mode and TeX Options. 74
6.8.3 Exponents and Indices. 75
6.8.4 Fractions .75
6.8.5 Roots .75
6.8.6 Sums and Integrals. 76
6.8.7 Greek Letters. .76
6.8.8 Mathematical Symbols. 76
6.8.9 Alternate Alphabets. 76
6.8.10 Function Names. 77
6.8.11 Accents. .77
6.8.12 Lines above and below Formulas. 77
6.8.13 Horizontal Spacing. 77
6.8.14 Selecting Character Size in TeX Mode. 77
6.8.15 Colours in TeX Mode. 77
6.8.16 Example .77

6.9 Curve Attributes. .80
6.10 Line Attributes .83
6.11 Shading. .85
6.12 Attribute Cycles. .86
6.13 Base Transformations. .87
6.14 Shielded Regions. .87

7 Parameter Requesting Routines 91

8 Elementary Plot Routines 97
8.1 Lines .97
8.2 Vectors .98
8.3 Filled Triangles. .99
8.4 Wind Speed Symbols. .100
8.5 Geometric Figures. .100

9 Utility Routines 103

ii

9.1 Transforming Coordinates. .103
9.2 String Arithmetic .105
9.3 Number Arithmetic. .106
9.4 Date Routines. .109
9.5 Bit Manipulation .110
9.6 Byte Swapping .111
9.7 Binary I/O .111
9.8 Window Terminals .113

9.8.1 Clearing the Screen. .113
9.8.2 Clearing the Output Buffer. .113
9.8.3 Multiple Windows .114
9.8.4 Cursor Routines. .115

9.9 Elementary Image Routines. .117
9.10 Transparency. .122
9.11 Using Threads. .124
9.12 Plotting the MPS Logo. .124

10 Business Graphics 125
10.1 Bar Graphs .125
10.2 Pie Charts. .129
10.3 Examples. .133

11 3-D Colour Graphics 139
11.1 Introduction. .139
11.2 Plotting Coloured Axis Systems. .139
11.3 Secondary Colour Bars. .139
11.4 Plotting Data Points. .140
11.5 Parameter Setting Routines. .141
11.6 Elementary Plot Routines. .143
11.7 Conversion of Coordinates. .144
11.8 Example. .145

12 3-D Graphics 147
12.1 Introduction. .147
12.2 Defining View Properties. .148
12.3 Plotting Axis Systems. .149
12.4 Plotting a Border around the 3-D Box. .150
12.5 Plotting Grids. .150
12.6 Plotting Curves. .150
12.7 Plotting Vector Fields. .151
12.8 Plotting a Surface Grid from a Function. .152
12.9 Plotting a Surface Grid from a Matrix. .152
12.10Plotting a Shaded Surface from a Matrix. .153
12.11Plotting a Shaded Surface from a Parametric Function.154
12.12Plotting a Shaded Surface from Triangulated Data. .154
12.13Plotting Isosurfaces. .154
12.14Plotting 3-D Bars. .155
12.15Additional Parameter Setting Routines. .156
12.16Lighting .159
12.17Surfaces from Randomly Distributed Points. .161
12.18Projection of 2-D-Graphics into 3-D Space. .164
12.19Using the Z-Buffer and Depth Sort. .164
12.20Elementary Plot Routines. .166
12.21Transformation of Coordinates. .171
12.22Examples. .173

13 Geographical Projections and Plotting Maps 179

iii

13.1 Axis Systems and Secondary Axes. .179
13.2 Defining the Projection. .180
13.3 Plotting Maps. .182
13.4 Plotting Data Points. .186
13.5 Parameter Setting Routines. .187
13.6 Conversion of Coordinates. .189
13.7 User-defined Projections. .190
13.8 Examples. .191

14 Contouring 199
14.1 Plotting Contours. .199
14.2 Plotting Filled Contours. .201
14.3 Generating Contours. .202
14.4 Parameter Setting Routines. .203
14.5 Examples. .206

15 Widget Routines 213
15.1 Widget Routines .213
15.2 Parameter Setting Routines. .219
15.3 Requesting Routines. .229
15.4 Utility Routines. .232
15.5 Dialog Routines. .233
15.6 Examples. .235

16 Quickplots 241
16.1 Plotting Curves. .241
16.2 Scatter Plots. .241
16.3 Bar Graphs .241
16.4 Pie Charts. .242
16.5 3-D Colour Plots .242
16.6 Surface Plots. .242
16.7 Contour Plots. .242
16.8 Setting Parameters for Quickplots. .243

A Using DISLIN from Interpreting Languages 245
A.1 The DISLIN Interpreter DISGCL. .245
A.2 Using DISLIN from Perl .247
A.3 Using DISLIN from Python. .248
A.4 Using DISLIN from Java. .249

B Short Description of Routines 251

C Examples 267
C.1 Demonstration of CURVE. .268
C.2 Polar Plots. .270
C.3 Symbols. .272
C.4 Logarithmic Scaling. .274
C.5 Interpolation Methods. .276
C.6 Line Styles .278
C.7 Legends. .280
C.8 Shading Patterns (AREAF). .282
C.9 Vectors .284
C.10 Shading Patterns (PIEGRF). .286
C.11 3-D Bar Graph / 3-D Pie Chart. .288
C.12 Surface Plot (SURFUN). .290
C.13 Map Plot. .292

D Index 295

iv

Preface to Version 9.5

This manual describes the data plotting library DISLIN written in the programming languages Fortran
and C. The name DISLIN is an abbreviation for Device-Independent Software LINdau since applications
were designed to run on different computer systems without any changes. The library contains subrou-
tines and functions for displaying data graphically as curves, bar graphs, pie charts, 3-D colour plots,
surfaces, contours and maps.

DISLIN is intended to be a powerful and easy to use software package for programmers and scientists that
does not require knowledge of hardware features of output devices. The routines in the graphics library
are the result of my own work on many projects with different computers and many plotting packages.
There are only a few graphics routines with a short parameter list needed to display the desired graphical
output. A large variety of parameter setting routines can then be called to create individually customized
graphics.

Since the first version of DISLIN was released in Dec. 1986, many changes and corrections have been
made and new features and standards have been added to the software. Some of the new features are el-
ementary image routines, a graphical user interface, filled contour lines, flat and smooth shaded surfaces
and a C interface for reading binary data from Fortran programs. DISLIN supports now several hardware
platforms, operating systems and compilers. A real Fortran 90/95 library is available for most Fortran
90/95 compilers.

Although nearly all the routines and utilities of the software package are written by myself, DISLIN
would not have been possible without the help of many people. I would like to thank several people at
the Max-Planck-Institut in Lindau. First, Dr. W. Degenhardt, Dr. H. J. Mueller and Dr. I. Pardowitz who
gave their friendly assistance. To all the users of DISLIN, I am grateful for your helpful suggestions and
comments. I would especially like to thank the members of the computer center, Friederich Both, Terry
Ho, Godehard Monecke and Michael Bruns for their co-operation. Finally, I am grateful to Linda See
and Erika Eschebach who corrected the English and German manuals with great carefulness. To all of
them, my sincere thanks.

H. Michels Lindau, 15.4.2009

v

vi

Chapter 1

Introduction

DISLIN is a library of subroutines and functions that display data graphically. The routines can be used
with any display device capable of drawing straight lines with the exception of routines that generate 3-D
colour graphics which require special devices. Fortran 77, Fortran 90 and C versions of the library are
available.

DISLIN can display graphic information directly on graphic terminals or store them in metafiles. The
supported display types are VGA, X Windows, Windows API and Tektronix. The supported file formats
are GKSLIN, CGM, HPGL, PostScript, PDF, WMF, PNG, SVG, PPM, BMP, GIF and TIFF. DISLIN
metafiles can be printed on various devices using the DISLIN driver program DISDRV.

Chapter 2 describes the file and page formats and the overall structure of DISLIN programs.

Chapter 3 describes routines for the initialization, termination and plotting of text, numbers and symbols.

Chapter 4 presents the format of two-dimensional axis systems. Axes can be linearly or logarithmically
scaled and labeled with linear, logarithmic, date, time, map and user-defined formats.

Chapter 5 describes the routines for plotting curves. Several curves can appear in one axis system and
can be differentiated by colour, line style and pattern.

Chapter 6 summarizes parameter setting routines that overwrite default plotting parameters such as fonts,
character size and angle, colours, line styles and patterns.

Chapter 7 presents routines to request the values of plot parameters.

Chapter 8 describes the routines for plotting lines, circles, ellipses, vectors and shaded regions.

Chapter 9 describes the utilities available to transform coordinates, sort data and calculate the lengths of
numbers and character strings. Elementary image routines and some special routines that are only useful
for terminal output are also described in this chapter.

Chapter 10 introduces business graphic routines to create bar graphs and pie charts.

Chapter 11 presents 3-D colour graphics where points can be plotted with coloured or shaded rectangles.

Chapter 12 describes routines for 3-D coordinate systems. Axis systems, curves and surfaces can be
drawn from various angular perspectives. All 2-D plotting routines can be used in a 3-D axis system.

Chapter 13 presents 14 different methods to project geographical coordinates onto a plane surface. Sev-
eral base maps are stored in the library for map plotting.

Chapter 14 describes routines for contouring three-dimensional functions of the form Z = F(X,Y). Con-
tours can be filled with solid lines.

Chapter 15 offers routines for creating graphical user interfaces in Fortran and C programs.

Chapter 16 presents some quickplots that are collections of DISLIN routines for displaying data with one
statement.

1

2

Chapter 2

Basic Concepts and Conventions

2.1 Page Format

In DISLIN, the graphics are limited to a rectangular area called the page. All lines outside of or crossing
page borders will be suppressed.

The size of the page is determined by the routines SETPAG and PAGE. SETPAG corresponds to a
predefined page while PAGE defines a global page setting. In default mode, there are 100 points per
centimeter and the point (0, 0) is located in the upper left corner (Figure 2.1):

(0, 0)

(2969, 2099)

DIN A4 Landscape

Figure 2.1: Default Page (DA4L)

2.2 File Format

DISLIN can create several types of plotfiles. Device-independent plotfiles or metafiles can be coded in
ASCII or binary format. Device-dependent plotfiles are available for several printers and plotters.

The file formats are:

a) a CGM metafile according to the ANSI standard
Plot vectors are coded in binary format as non negative integers with 200 points per cm. Be-
cause of binary coding, CGM metafiles are smaller than other plotfiles.

b) a GKSLIN metafile
Plot vectors are stored as floating-point numbers between 0 and 1 in ASCII format. These files
are easily transferable from one computer to another.

3

c) a PostScript file
PostScript is an international standard language that has been developed for laserprinters in the
last few years. Some of the PostScript features such as hardware fonts and shading can be used
within DISLIN. PostScript is a trademark of Adobe Systems, Inc.

d) an EPS file
the Encapsulated PostScript file format is similar to the PostScript format. It is useful for
importing PostScript files into other applications.

e) a PDF file
The Portable Document Format is the de facto standard for the electronic exchange of docu-
ments. Compressed and non compressed PDF files can be created by DISLIN. PostScript fonts
can be used for PDF files in the same way as for PostScript files.

f) a HPGL file
Plot vectors and colours are coded in a language recognized by Hewlett-Packard plotters.

g) a WMF file
The Windows metafile format is also supported by DISLIN. Plot vectors are converted to
1/1440 inch. WMF files can contain hardware fonts defined with the DISLIN routine WINFNT.

h) a SVG file
Scalable Vector Graphics (SVG) is a language for describing graphics in XML. SVG files can
be displayed directly by some browsers if a corresponding plug-in is installed. The most of the
standard PostScript fonts are supported by the DISLIN SVG files.

i) a GIF file
The Graphics Interchange Format (c) is the Copyright property of Compuserve Incorporated.

j) a TIFF file
The raster format TIFF can be used for storing graphical output. DISLIN can create 8 bit
palette and truecolour TIFF files.

k) a PNG file
The Portable Network Graphics format is a compressed and therefore very small raster format
for storing graphical output. PNG files can be displayed directly by several Internet browsers.
The compression of PNG files is done in DISLIN with the zlib compression routines written
by Jean-loup Gailly and Mark Adler. DISLIN supports 8 bit palette and truecolour PNG files.

l) a PPM file
The portable pixmap format is a well-known colour image file format in the UNIX world.
There are many tools for converting PPM files into other image formats. The pixel values are
stored in DISLIN PPM files in plain bytes as RGB values.

m) a BMP file
The Windows Bitmap format can be used for storing graphical output. DISLIN can create
uncompressed 8 and 24 bit BMP files.

n) an IMAGE file
This easy raster format is used by DISLIN to store images. The files contain an ASCII header
of 80 bytes and the following image data.

o) a Tektronix, X Window and VGA emulation
Data can be displayed on graphic terminals such as X Window, VGA and Tektronix 4010/4014.

File formats can be set with the routine METAFL. The filename consists of the keyword ’DISLIN’ and
an extension that depends on the file format. An alternate filename can be chosen by calling the routine
SETFIL. Both subroutines must be called before the initialization routine DISINI.

4

2.3 Level Structure of DISLIN

Most routines in DISLIN can be called anywhere during program execution. Certain routines, however,
use parameters from other routines and must be called in a fixed order. DISLIN uses a level structure to
control the order in which routines are called. The levels are:

0 before initialization or after termination

1 after initialization or a call to ENDGRF

2 after a call to GRAF, GRAFP or GRAFMP

3 after a call to GRAF3 or GRAF3D.

Generally, programs should have the following structure:

(1) setting of page format, file format and filename

(2) initialization

(3) setting of plot parameters

(4) plotting of the axis system

(5) plotting the title

(6) plotting data points

(7) termination.

2.4 Conventions

The following conventions appear throughout this manual for the description of routine calls:

- INTEGER variables begin with the character N or I

- CHARACTER variables begin with the character C

- other variables are REAL

- arrays end with the keyword ’RAY’.

Additional notes:

- CHARACTER keywords may be specified in upper or lower case and may be shortened to
four characters.

- DISLIN stores parameters in common blocks whose names begin with the character ’C’.
Common block names in user programs should not begin with the character ’C’ to avoid
possible name equalities.

- The Fortran logical units 15, 16 and 17 are reserved by DISLIN for plot and parameter files.

- Two types of coordinates are continually referred to throughout the manual: plot coordinates
which correspond to the page and have by default 100 points per cm, and user coordinates
which correspond to the scaling of the axis system.

2.5 Error Messages

When a DISLIN subroutine or function is called with an illegal parameter or not according to the level
structure, DISLIN writes a warning to the screen. The call of the routine will be ignored and program
execution resumed. Points lying outside of the axis system will also be listed on the screen. Error
messages can be suppressed or written to a file with the routines ERRMOD and ERRDEV.

5

2.6 Programming in C

There are different DISLIN libraries for the programming languages Fortran 77, Fortran 90 and C. The
DISLIN C library is written in the programming language C and useful for C programmers.
Though it is possible to call C routines in Fortran programs and Fortran subroutines in C programs, it
is easier to use the corresponding library. Especially, the passing of strings can be complicate in mixed
language programming.
The number and meaning of parameters passed to DISLIN routines are identical for all libraries. The
Fortran versions use INTEGER, REAL and CHARACTER variables while the C library uses int, float
and char variables. A detailed description of the syntax of C routines is given by the utility program
DISHLP or can be found in the header file ’dislin.h’ which must be included in all C programs.
Here is a short example for a DISLIN C program:

#include<stdio.h>
#include ”dislin.h”
main()
{

disini ();
messag (”This is a test”, 100, 100);
disfin ();

}

An example for a DISLIN C++ programm is:

#include<iosteam>
namespace dislin{
#include ”dislin.h”
}
main()
{

dislin::disini ();
dislin::messag (”This is a test”, 100, 100);
dislin::disfin ();

}

2.7 Programming in Fortran 90

Several DISLIN distributions contain native libraries for the programming language Fortran 90 where
the source code of DISLIN is written in Fortran 90. Since the passing of parameters to subroutines and
functions can be different in Fortran 90 and Fortran 77, you should not link Fortran 77 programs with
Fortran 90 libraries and vice versa.

Additional notes:

- All program units in Fortran 90 programs that contain calls to DISLIN routines should in-
clude the statement ’USE DISLIN’. The module ’DISLIN’ contains interfaces for all DIS-
LIN routines and enables the compiler to check the number and type of parameters passed
to DISLIN routines.

- Since version 9.1 of DISLIN, the array declarations in the DISLIN module file are changed
from assumed-shape arrays to explicit-shape arrays for native Fortran 90 libraries. All DIS-
LIN Fortran 90 libaries (native of wrapper) use now the same interfaces. A missing ’USE
DISLIN’ statement for a native Fortran 90 library of DISLIN should no longer cause a
general protection fault.

For example:

6

PROGRAM TEST
USE DISLIN
CALL DISINI ()
CALL MESSAG (’This is a test’, 100, 100)
CALL DISFIN ()

END PROGRAM TEST

2.8 Linking Programs

The linking of programs with the graphics library depends upon the operating system of the computer.
Therefore, DISLIN offers a system-independent link procedure that can be used on all computers in the
same way.

Command: DLINK [option] main

option is an optional parameter containing a minus sign and a character. The follow-
ing options can be used on all computers:

-c for compiling programs before linking.

-cpp for compiling a C++ program before linking.

-r for running programs after linking.

-a for compiling, linking and running programs.

-r8 for using the double precision libraries of DISLIN.

main is the name of the main program.

Additional notes: - If DLINK is called without parameters, the description of the program will be
printed on the screen. There may be other local features available depending
upon the operating system used.

- Linking of C programs should be done with the procedure CLINK.

- Linking of Fortran 90 programs should be done with the procedure F90LINK.

- The most DISLIN distributions contain libraries for single precision (32 bit)
and double precision (64 bit) floatingpoint parameters. The double precision
libraries can be identified by the term ’d’ in the library filename.

2.9 Utility Programs

The following programs are useful for working with DISLIN. They send plotfiles to devices and and
print the description of routines on the screen.

D I S H L P

DISHLP prints the description of a DISLIN routine on the screen.

Command: DISHLP routine [options]

routine is the name of a DISLIN routine or a question mark. For a question mark, all
routine names will be listed. An empty input terminates the program.

options is an optional field of keywords (see DISHLP).

D I S M A N

DISMAN prints an ASCII version of the DISLIN manual on the screen.

7

Command: DISMAN [options]

options is an optional field of keywords (see DISMAN).

D I S D R V

DISDRV sends a plotfile to a device. CGM and GKSLIN files can be used for all devices while device-
dependent plotfiles can only be sent to corresponding devices.

Command: DISDRV filename[.MET] [device] [options]

filename is the name of a plotfile.

device is the name of a device where CONS refers to the graphics screen and XWIN
to a smaller graphics window.

options is an optional field of keywords (see DISDRV).

D I S I M G

DISIMG displays an image file on the screen, or converts it to PostScript and TIFF.

Command: DISIMG filename[.IMG] [device] [options]

filename is the name of the image file. The file must be created with the routine RIM-
AGE.

device is the device name.

options is an optional field of keywords (see DISIMG).

D I S M O V

DISMOV displays a sequence of image files.

Command: DISMOV filename[.MOV] [device] [options]

filename is the name of a data file where the filenames of the images are stored (1 line
for each filename). The images must be created with the routine RIMAGE.

device is the device name.

options is an optional field of keywords (see DISMOV).

D I S T I F

DISTIF displays a TIFF file created by DISLIN on the screen, or converts it to PostScript and an image
format.

Command: DISTIF filename[.TIF] [device] [options]

filename is the name of the TIFF file. The file must be created with DISLIN.

device is the device name.

options is an optional field of keywords (see DISTIF).

D I S G I F

DISGIF displays a GIF file, or converts it to another format.

Command: DISGIF filename[.GIF] [device] [options]

8

filename is the name of the GIF file.

device is the device name.

options is an optional field of keywords (see DISGIF).

D I S A P S

DISAPS converts an ASCII file to a PostScript file. Several page layouts can be defined.

Command: DISAPS filename [output] [options]

filename is the name of the ASCII file.

output is the name of the output file. By default, the name of the input file and the
extension ps will be used.

options is an optional field of keywords (see DISAPS).

Additional note: If a utility program is called without parameters, a description of possible pa-
rameters will be printed on the screen. DISDRV, for example, lists the local
output devices available.

D I S G C L

DISGCL is an interpreter for DISLIN. All DISLIN statements can be written to a script file and then be
executed with DISGCL, or can be entered in an interactive mode. High-level language elements such
variables, operators, expressions, array operations, loops and user-defined functions van be used within
DISGCL.

Command: DISGCL [filename[.gcl]] [args] [options]

filename is the name of a DISGCL script file. The extension ’.gcl’ is optional.

args are optional arguments that can be passed to DISGCL scripts (see DISGCL).

options is an optional field of keywords separated by blanks (see DISGCL).

2.10 WWW Homepage

DISLIN is available from the Web sites

http://www.dislin.de http://www.mps.mpg.de/dislin

2.11 Reporting Bugs

DISLIN is well tested by many users and should be very bug free. However, no software is perfect and
every change can cause new bugs. If you have any problems with DISLIN, contact the author:

Helmut Michels
Max-Planck-Institut fuer Sonnensystemforschung
D-37191 Katlenburg-Lindau, Max-Planck-Str. 2, Germany
E-Mail: michels@mps.mpg.de
Tel.: +49 5556 979 334
Fax: +49 5556 979 240

9

2.12 License Information

DISLIN is free for non-commercial use. Licenses for commercial use are available from the site
http://www.dislin.de. Commercial use means selling of programs linked with DISLIN or using DIS-
LIN in an environment related to business.

This manual of the data plotting software DISLIN can be copied and distributed freely.

10

Chapter 3

Introductory Routines

3.1 Initialization and Termination

DISINI initializes DISLIN by setting default parameters and creating a plotfile. The level is set to 1.
DISINI must be called before any other DISLIN routine except for those noted throughout the manual.

The call is: CALL DISINI level 0

or: void disini ();

DISFIN terminates DISLIN and prints a message on the screen. The level is set back to 0.

The call is: CALL DISFIN level 1, 2, 3

or: void disfin ();

Additional note: The printing of the protocol in DISFIN can be suppressed with the routine
ERRMOD.

3.2 Plotting of Text and Numbers

M E S S A G

MESSAG plots text.

The call is: CALL MESSAG (CSTR, NX, NY) level 1, 2, 3

or: void messag (char *cstr, int nx, int ny);

CSTR is a character string (≤ 256 characters).

NX, NY are the plot coordinates of the upper left corner.

N U M B E R

NUMBER plots a floating-point number or integer.

The call is: CALL NUMBER (X, NDIG, NX, NY) level 1, 2, 3

or: void number (float x, int ndig, int nx, int ny);

X is a floating-point number.

NDIG is the number of digits plotted after the decimal point. If NDIG = -1, X will be
plotted as an integer. The last digit of X will be rounded up.

NX, NY are the coordinates of the upper left corner.

11

RLMESS and RLNUMB are corresponding routines for user coordinates. They can be used for plotting
text and numbers in an axis system after a call to GRAF.

The calls are: CALL RLMESS (CSTR, XP, YP) level 2, 3

CALL RLNUMB (X, NDIG, XP, YP) level 2, 3

or: void rlmess (char *cstr, float xp, float yp);

void rlnumb (float x, int ndig, float xp, float yp);

Additional notes: - To continue character strings and numbers on the same line, the coordinates
(999, 999) should be sent to MESSAG and NUMBER. The text or numbers
will be plotted after the last plotted text character or number.

- The angle and height of the characters can be changed with the routines AN-
GLE and HEIGHT.

- The format of numbers can be modified with the routines NUMFMT and NU-
MODE.

- Text and numbers can be plotted in a box if the routine FRMESS is used.

- The starting point of text and numbers can be interpreted as upper left, upper
center and upper right point if the routine TXTJUS is used.

3.3 Plotting Symbols

S Y M B O L

The routine SYMBOL plots symbols.

The call is: CALL SYMBOL (NSYM, NX, NY) level 1, 2, 3

or: void symbol (int nsym, int nx, int ny);

NSYM is a symbol number between 0 and 23. Available symbols are given in the
Appendix C.

NX, NY is the centre of the symbol in plot coordinates.

Additional notes: - The size of symbols can be set with HSYMBL.

- SYMROT (ANGLE) defines a rotation angle for symbols (in degrees). The
symbol is rotated in a counter-clockwise direction.

- An user-defined symbol can be specified with the routine MYSYMB.

R L S Y M B

RLSYMB plots a symbol where the centre is specified by user coordinates.

The call is: CALL RLSYMB (NSYM, XP, YP) level 2, 3

or: void rlsymb (int nsym, float xp, float yp);

12

3.4 Plotting a Page Border, Background and Header

P A G E R A

PAGERA plots a border around the page.

The call is: CALL PAGERA level 1, 2, 3

or: void pagera ();

P A G F L L

The routine PAGFLL fills the page with a colour.

The call is: CALL PAGFLL (NCLR) level 1, 2, 3

or: void pagfll (int nclr);

NCLR is a colour value.

P A G H D R

PAGHDR plots a page header at a corner of the page. The header line contains date, time and user-defined
information.

The call is: CALL PAGHDR (CSTR1, CSTR2, IOPT, IDIR) level 1, 2, 3

or: void paghdr (char *cstr1, char *cstr2, int iopt, int idir);

CSTR1 is a character string preceding the header line.

CSTR2 is a character string following the header line.

IOPT is the page corner where the header is plotted:
= 1 is the lower left corner.
= 2 is the lower right corner.
= 3 is the upper right corner.
= 4 is the upper left corner.

IDIR is the direction of the header line:
= 0 is horizontal.
= 1 is vertical.

Additional note: The character size of the header line is 0.6 * NH where NH is the parameter
used in HEIGHT.

3.5 Sending a Metafile to a Device

A metafile can be converted with a driver program and sent from the operating system to several devices.
From within a user program, the SYMFIL routine is used for this purpose.

S Y M F I L

SYMFIL sends a metafile to a device. It must be called after DISFIN.

The call is: CALL SYMFIL (CDEV, CSTAT) level 0

or: void symfil (char *cdev, char *cstat);

CDEV is the name of the device. ’CONS’ refers to the graphics screen, ’XWIN’ to
a X Window terminal, ’PSCi’ to a PostScript printer, ’KYOi’ to a Kyocera
laserprinter with Prescribe and ’HPLi’ to a HP-plotter. The keyword ’NONE’
can be used to delete a metafile with no device plotting.

13

CSTAT is a status parameter and can have the values ’DELETE’ and ’KEEP’.

Additional note: SYMFIL calls the DISLIN driver utility DISDRV. The parameter ’REVERS’
can be passed to DISDRV from SYMFIL if the routine SCRMOD is called
before with the parameter ’REVERS’.

3.6 Including Meta- and Bitmap files into a Graphics

GKSLIN and CGM metafiles created by DISLIN and general BMP and GIF files can be included into a
graphics with the routine INCFIL.

I N C F I L

The routine INCFIL includes a GKSLIN or CGM metafile created by DISLIN, or general BMP and GIF
files into a graphics.

The call is: CALL INCFIL (CFIL) level 1, 2, 3

or: void incfil (char *cfil);

CFIL is a character string that contains the filename.

Additional notes: - For including BMP or GIF files, the output format must be a raster, PostScript
or PDF format.

- The routine FILBOX (NX, NY, NW, NH) defines a rectangular area on the
page where the file will be included. (NX, NY) are the plot coordinates of
the upper left corner, (NW, NH) are the width and length of the box in plot
coordinates. By default, the entire page will be used. If the file is a bitmap and
the output format a raster format, the file will be included at the point (NX,
NY) while NW and NH will be ignored. If the output format is PostScript or
PDF, the BMP/GIF file will be scaled into the box defined by the parameters
NX, NY, NW and NH. Therefore, NW and NH should have the same ratio as
the width and height of the BMP/GIF file.

- INCFIL draws by default a frame around the included file that can be modified
with the routine FRAME.

- With the statement CALL FILCLR (’NONE’), colour values in GKSLIN and
CGM metafiles will be ignored and the current colour is used. The default is
FILCLR (’ALL’).

14

Chapter 4

Plotting Axis Systems and Titles

4.1 Plotting Axis Systems

An axis system defines an area on the page for plotting data. Various axis systems can be plotted to
accommodate different applications. For two-dimensional graphics, a maximum of two parallel X- and
Y-axes can be drawn. The axis system is scaled to fit the range of data points and can be labeled with
values, names and ticks. Two-dimensional axis systems are plotted with a call to the routines GRAF or
GRAFP.

G R A F

GRAF plots a two-dimensional axis system.

The call is: CALL GRAF (XA, XE, XOR, XSTEP, YA, YE, YOR, YSTEP) level 1

or: void graf (float xa, float xe, float xor, float xstep,
float ya, float ye, float yor, float ystep);

XA, XE are the lower and upper limits of the X-axis.

XOR, XSTEP are the first X-axis label and the step between labels.

YA, YE are the lower and upper limits of the Y-axis.

YOR, YSTEP are the first Y-axis label and the step between labels.

Additional notes: - GRAF must be called in level 1 and automatically sets the level to 2. When
plotting more than 1 axis system on a page, ENDGRF must be called in be-
tween each new set of axes in order to set the level back to 1.

- The position of the lower left corner and the size of an axis system can be
changed with the routines AXSPOS and AXSLEN.

- The axis scaling is linear by default and can be changed with AXSSCL. For
logarithmic scaling, the corresponding parameters in GRAF must be exponents
of base 10.

- One of several label types can be chosen with the routine LABELS or user-
defined with MYLAB. Single labels can be suppressed by calling AXENDS.

- The routine NAME defines axis titles.

- The number of ticks between axis labels can be changed with the routine
TICKS.

- SETGRF can be used to remove a piece of or complete axis from an axis
system.

- If the numerical value of the lower limit of an axis is larger than the upper limit
and the label step is negative, axis scaling will be in descending order.

15

- The routine FRAME defines the thickness of a frame plotted around an axis
system. A frame can also be plotted outside of GRAF with the statement
CALL BOX2D.

- A crossed axis system can be defined with CALL AXSTYP (’CROSS’).

The following routine GRAFP can be used to plot a polar axis system and set up a scale for polar axes.

G R A F P

The routine GRAFP plots a two-dimensional polar axis system.

The call is: CALL GRAFP (XE, XOR, XSTEP, YOR, YSTEP) level 1

or: void grafp (float xe, float xor, float xstep, float yor, float ystep);

XE is the upper limit of the X-axis (radius coordinate).

XOR, XSTEP are the first X-axis label and the step between labels.

YOR, YSTEP are the first Y-axis label and the step between labels specified in degrees. The
Y-axis is scaled from 0 to 360 degrees.

Additional notes: - The direction and position of the angle labels can be modified with the routine
POLMOD.

- GRAFP is a new name for the old routine POLAR, since polar is also a C99
function. The old routine POLAR is still in the DISLIN libraries.

4.2 Termination of Axis Systems

E N D G R F

The routine ENDGRF terminates an axis system and sets the level back to 1.

The call is: CALL ENDGRF level 2, 3

or: void endgrf ();

4.3 Plotting Titles

T I T L E

This routine plots a title over an axis system. The title may contain up to four lines of text designated
with TITLIN.

The call is: CALL TITLE level 2, 3

or: void title ();

Additional note: All lines are centred by default but can be left- or right-justified using TITJUS.

16

4.4 Plotting Grid Lines

G R I D

The routine GRID overlays a grid on an axis system.

The call is: CALL GRID (IXGRID, IYGRID) level 2, 3

or: void grid (int ixgrid, int iygrid);

IXGRID, IYGRID are the numbers of grid lines between labels.

Additional note: GRID uses automatically GRDPOL for a polar axis system.

G R D P O L

The routine GRDPOL plots a polar grid.

The call is: CALL GRDPOL (IXGRID, IYGRID) level 2, 3

or: void grdpol (int ixgrid, int iygrid);

IXGRID is the numbers of circles between labels.

IYGRID is the numbers of sector lines between 360 degrees.

Example:

The statements

CALL AXSLEN (1400,1400)
CALL GRAF (-3., 3., -3., 1., -3., 3., -3., 1.)
CALL GRDPOL (3, 16)

produce the following figure:

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Figure 4.1: GRDPOL

A X G I T

The routine AXGIT plots vertical and horizontal lines through X = 0 and Y = 0.

The call is: CALL AXGIT level 2, 3

or: void axgit ();

17

Additional note: The statement CALL XAXGIT plots only the line Y = 0 while CALL YAXGIT
plots only X = 0.

C R O S S

The routine CROSS plots vertical and horizontal lines with additional ticks through X = 0 and Y = 0.

The call is: CALL CROSS level 2, 3

or: void cross ();

Additional note: The statement CALL XCROSS plots only the line Y = 0 while CALL
YCROSS plots only X = 0.

4.5 Plotting Additional Labels

A D D L A B

Additional single labels can be plotted on an axis system with the routine ADDLAB.

The call is: CALL ADDLAB (CSTR, V, ITIC, CAX) level 2, 3

or: void addlab (char *cstr, float v, int itic, char *cax);

CSTR is a character string containing a label.

V is an user coordinate that defines the axis position of the label.

ITIC is an integer option that defines if a tick mark is plotted. ITIC = 0 means that
no tick is plotted, ITIC = 1 defines a minor tick and ITICK = 2 defines a major
tick.

CAX is a character string that defines the axis. CAX can have the values ’X’, ’Y’,
’Z’, ’XTOP’ and ’YRIGHT’.

4.6 Secondary Axes

The following routines plot single X- and Y-axes; they are called secondary axes because they do not
define or change any of the axis scaling parameters. Secondary axes can be used to add additional labels
to the axis systems.

The plotting routines for secondary axes are:

XAXIS plots a linear X-axis. level 1, 2, 3

YAXIS plots a linear Y-axis. level 1, 2, 3

XAXLG plots a logarithmic X-axis. level 1, 2, 3

YAXLG plots a logarithmic Y-axis. level 1, 2, 3

The call is: CALL XAXIS (A, B, OR, STEP, NL, CSTR, IT, NX, NY)

or: void xaxis (float a, float b, float or, float step, int nl, char *cstr, int it,
int nx, int ny);

A, B are the lower and upper limits of the axis.

OR, STEP are the first label and the step between labels.

18

NL is the length of the axis in plot coordinates.

CSTR is a character string containing the axis name.

IT indicates how ticks, labels and the axis name are plotted.
If IT = 0, they are plotted in a clockwise direction. If IT = 1, they are plotted
in an counter-clockwise direction.

NX, NY are the plot coordinates of the axis start point. The X-axis will be plotted from
left to right and the Y-axis from bottom to top.

Analog: YAXIS, XAXLG, YAXLG

Additional notes: - Secondary axes can be called from level 1, 2 or 3. Note again that secondary
axes do not change the scaling of an axis system defined by GRAF. Similarly,
curves cannot be plotted with only secondary axes, they require a call to GRAF.

- As in GRAF, the parameters of logarithmic axes must be exponents of base 10.

- User-defined labels may also be plotted on secondary axes with MYLAB and
the argument ’USER’ in the routine LABELS. The number of ticks can be
changed by calling TICKS.

4.7 Calculating Axis Parameters

G A X P A R

The routine GAXPAR calculates parameters for GRAF from a minimum and maximum of data values.

The call is: CALL GAXPAR (V1,V2,COPT,CAX,A,B,OR,STEP,NDIG) level 1, 2, 3

or: void gaxpar (float v1, float v2, char *copt, char *cax,
float *a, float *b, float *or, float *step, int *ndig);

V1, V2 are the lower and upper limits of the axis. If V1> V2, the calculated parame-
ters will be in descending order.

COPT is a character string that can have the values ’NOEXTEND’ and ’EXTEND’.
For COPT = ’EXTEND’, the calculated axis limits are extended to a full axis
step. Otherwise, V1 and V2 are used as axis limits.

CAX is a character string that defines the axis. CAX can have the values ’X’, ’Y’,
and ’Z’.

A, B are the calculated limits of the axis.

OR, STP are the first axis label and the step between labels.

NDIG is the calculated number of digits after the decimal point that should be set
with the routine LABDIG for the labels.

Additional notes: - The same algorithm as in SETSCL for setting automatic axis scaling is applied
to GAXPAR.

- The current axis settings such as linear or logarithmic scaling are used by
GAXPAR. For logarithmic scaling, the parameters V1 and V2 must be ex-
ponents of base 10.

19

20

Chapter 5

Plotting Curves

This chapter describes how to plot curves with lines and symbols. Several curves can be plotted in one
axis system and can be differentiated by colour, line style and pattern. Curve attributes can be plotted in
a legend.

5.1 Plotting Curves

C U R V E

CURVE connects data points with lines or plots them with symbols.

The call is: CALL CURVE (XRAY, YRAY, N) level 2, 3

or: void curve (float *xray, float *yray, int n);

XRAY, YRAY are arrays that contain X- and Y-coordinates. For a polar scaling, XRAY must
hold the radial values and YRAY the angular values expressed in radians.

N is the number of data points.

Additional notes: - CURVE must be called after GRAF or GRAFP from level 2 or 3.

- By default, data points that lie outside of an axis system are listed on the screen.
The listing can be suppressed with the routine NOCHEK.

- For a logarithmic scaling of an axis, CURVE suppresses the plotting of curves
and prints a warning if some corresponding data coordinates have non positive
values. After the statement CALL NEGLOG (EPS), where EPS is a small
positiv floating-point number, CURVE will use the value EPS for non positive
values.

- CURVE suppresses lines outside the borders of an axis system. Suppressing
can be disabled with NOCLIP or the margins of suppression can be changed
with GRACE.

- INCMRK determines if CURVE plots lines or symbols.

- When plotting several curves, attributes such as colour and line style can be
changed automatically by DISLIN or directly by the user. The routine CHN-
CRV defines which attributes are changed automatically. The routines COLOR
or SETCLR are used to define colours, SOLID, DOT, DASH, CHNDOT,
CHNDSH, DOTL, DASHM and DASHL to define line styles and MARKER
to define symbols plotted with the routine CURVE.

- Different data interpolation methods can be chosen with POLCRV.

21

5.2 Plotting Legends

To differentiate multiple curves in an axis system, legends with text can be plotted. DISLIN can store up
to 30 curve attributes such as symbols, thicknesses, line styles and colours and these can be incorporated
in a legend.

Legends are created with the following steps:

(1) define a character variable used to store the lines of text in the legend

(2) initialize the legend

(3) define the lines of text

(4) plot the legend.

The corresponding routines are:

L E G I N I

LEGINI initializes a legend.

The call is: CALL LEGINI (CBUF, NLIN, NMAXLN) level 1, 2, 3

or: void legini (char *cbuf, int nlin, int nmaxln);

CBUF is a character variable used to store the lines of text in the legend. The variable
must be defined by the user to have at least NLIN * NMAXLN characters.

NLIN is the number of text lines in the legend.

NMAXLN is the number of characters in the longest line of text.

L E G L I N

LEGLIN stores lines of text for the legend.

The call is: CALL LEGLIN (CBUF, CSTR, ILIN) level 1, 2, 3

or: void leglin (char *cbuf, char *cstr, int ilin);

CBUF see LEGINI.

CSTR is a character string that contains a line of text for the legend.

ILIN is the number of the legend line between 1 and NLIN.

L E G E N D

LEGEND plots legends.

The call is: CALL LEGEND (CBUF, NCOR) level 2, 3

or: void legend (char *cbuf, int ncor);

CBUF see LEGINI.

NCOR indicates the position of the legend:
= 1 is the lower left corner of the page.
= 2 is the lower right corner of the page.
= 3 is the upper right corner of the page.
= 4 is the upper left corner of the page.
= 5 is the lower left corner of the axis system.
= 6 is the lower right corner of the axis system.
= 7 is the upper right corner of the axis system.
= 8 is the upper left corner of the axis system.

22

Additional notes: The following routines change the position and appearance of a legend. They
must be called after LEGINI except for the routines FRAME and LINESP.

- LEGTIT (CTIT) sets the title of the legend.
Default: CTIT = ’Legende’.

- LEGPOS (NX, NY) defines a global position for the legend where NX
and NY are the plot coordinates of the upper left corner. After a call to
LEGPOS, the second parameter in LEGEND will be ignored.

- NLX = NXLEGN (CBUF) and NYL = NYLEGN (CBUF) return the
length and the height of a legend in plot coordinates.

- FRAME (NFRA) defines the thickness of a frame plotted around a legend.

- LINESP (XF) changes the spacing of lines in a legend.

- LEGCLR retains the same colour for curves and lines of text in the legend.

- The statement CALL MIXLEG enables multiple text lines in legends. By
default, the character ’/’ is used as a newline character but can be changed
with the routine SETMIX.

L E G P A T

The routine LEGPAT stores curve attributes plotted in legends. Normally, this is done automatically by
routines such as CURVE and BARS.

The call is: CALL LEGPAT (ITYP, ITHK, ISYM, ICLR, IPAT, ILIN) level 1, 2, 3

or: void legpat (int ityp, int ithk, int isym, int iclr, long ipat, int ilin);

ITYP is the line style between -1 and 7 (see LINTYP). IF ITYP = -1, no line will be
plotted in the legend line.

ITHK defines the thickness of lines (> 0).

ISYM is the symbol number between -1 and 21. If ISYM = -1, no symbol will be
plotted in the legend line.

ICLR is the colour value. If ICLR = -1, the current colour will be used.

IPAT is the shading pattern (see SHDPAT). If IPAT = -1, no pattern will be plotted
in the legend line.

ILIN is the legend line between 1 and NLIN.

Additional notes: - The routine LEGPAT is useful to create legends without calls to CURVE.

- LEGPAT must be called after LEGINI.

L E G O P T

The routine LEGOPT modifies the appearance of legends.

The call is: CALL LEGOPT (XF1, XF2, XF3) level 1, 2, 3

or: void legopt (float xf1, float xf2, float xf3);

XF1 is a multiplier for the length of the pattern field. The length is XF1 * NH,
where NH is the current character height. If XF1 = 0., the pattern field will be
suppressed.

XF2 is a multiplier for the distance between legend frames and text. The distance
is XF2 * NH * XSPC, where XSPC is the spacing between legend lines (see
LINESP).

23

XF3 is a multiplier for the spacing between multiple text lines. The space is XF3 *
NH * XSPC.

Default: (4.0, 0.5, 1.0).

L E G V A L

The routine LEGVAL modifies the appearance of legends.

The call is: CALL LEGVAL (X, COPT) level 1, 2, 3

or: void legval (float x, char *copt);

COPT is a character string that can have the value ’SYMBOL’. For COPT = ’SYM-
BOL’, the parameter X defines the size of symbols used in legends. The size
is X * NH, where NH is the current character height.

Default: (0.8, ’SYMBOL’).

5.3 Plotting Shaded Areas between Curves

S H D C R V

SHDCRV plots a shaded area between two curves.

The call is: CALL SHDCRV (X1RAY, Y1RAY, N1, X2RAY, Y2RAY, N2) level 2, 3

or: void shdcrv (float *x1ray, float *y1ray, int n1, float *x2ray, float *y2ray,
int n2);

X1RAY, Y1RAY are arrays with the X- and Y-coordinates of the first curve. Values are not
changed by SHDCRV.

N1 is the number of points in the first curve.

X2RAY, Y2RAY are arrays with the X- and Y-coordinates of the second curve. Values are not
changed by SHDCRV.

N2 is the number of points in the second curve.

Additional notes: - The maximum number of data points cannot be greater than 25000 in Fortran
77 programs. There is no restriction for Fortran 90 and C.

- Different shading patterns can be selected with SHDPAT. The pattern number
will automatically be incremented by 1 after a call to SHDCRV.

- Legends may be plotted for shaded curves.

- The routine NOARLN will suppress border lines around shaded areas.

5.4 Plotting Error Bars

E R R B A R

The routine ERRBAR plots error bars.

The call is: CALL ERRBAR (XRAY, YRAY, E1RAY, E2RAY, N) level 2, 3

or: void errbar (float *xray, float *yray, float *e1ray, float *e2ray, int n);

XRAY, YRAY are arrays that contain the X- and Y-coordinates.

24

E1RAY, E2RAY are arrays that contain the errors. Lines will be drawn from YRAY - E1RAY
to YRAY + E2RAY.

N is the number of data points.

Additional notes: - Horizontal bars will be drawn after CALL BARTYP (’HORI’).

- A symbol can be selected with MARKER and the symbol size with HSYMBL.

5.5 Plotting Vector Fields

F I E L D

The routine FIELD plots a vector field where the start and end points of the vectors are already calculated.
The vectors are displayed as arrows.

The call is: CALL FIELD (X1RAY, Y1RAY, X2RAY, Y2RAY, N, IVEC) level 2, 3

or: void field (float *x1ray, float *y1ray, float *x2ray, float *y2ray, int n, int ivec);

X1RAY, Y1RAY are arrays that contain the X- and Y-coordinates of the start points.

X2RAY, Y2RAY are arrays that contain the X- and Y-coordinates of the end points.

N is the number of vectors.

IVEC is an integer that specifies the form of the arrows (see VECTOR).

V E C F L D

The routine VECFLD plots a vector field of given vectors and positions. The vectors are displayed as
arrows.

The call is: CALL VECFLD (XVRAY, YVRAY, XPRAY, YPRAY, N, IVEC) level 2, 3

or: void vecfld (float *xvray, float *yvray, float *xpray, float *ypray, int n, int
ivec);

XVRAY, YVRAY are arrays that contain the X- and Y-coordinates of the vectors.

XPRAY, YPRAY are arrays that contain the X- and Y-coordinates of the start points.

N is the number of vectors.

IVEC is an integer that specifies the form of the arrows (see VECTOR).

Additional notes: - The length of the arrows is atomatically scaled by DISLIN in the routine
VECFLD. This behavour can be changed with the routine VECOPT, that may
also modify the apperance of arrows.

- The vectors can be scaled with different colours if the routine VECCLR is
called before with the parameter -2. If VECFLD and FIELD are called after
GRAF, the minimum and maximum of the vector lengths are used for colour
scaling. If VECFLD and FIELD are called after GRAF3, the Z-scaling in
GRAF3 is used for calculating colours.

25

26

Chapter 6

Parameter Setting Routines

All parameters in DISLIN have default values set by the initialization routine DISINI. This chapter
summarizes subroutines that allow the user to alter default values. The following routines can be called
from level 1, 2 or 3 except for those noted throughout the chapter. Subroutines that can only be called
from level 0 must appear before DISINI. In general, parameter setting routines should be called between
DISINI and the plotting routines they affect.

6.1 Basic Routines

6.1.1 Resetting Parameters

R E S E T
RESET sets parameters back to their default values.

The call is: CALL RESET (CNAME) level 1, 2, 3

or: void reset (char *cname);

CNAME is a character string containing the name of the routine whose parameters will
be set back to default values. If CNAME = ’ALL’, all parameters in DISLIN
will be reset.

6.1.2 Changing the Plot Units

U N I T S
The routine UNITS defines the plot units.

The call is: CALL UNITS (COPT) level 0

or: void units (char *copt);

COPT is a character string that can have the values ’CM’, ’INCH’, ’POINTS’ and
’TWIPS’. ’CM’ means 100 points per centimeter, ’INCH’ means 100 points
per inch, ’POINTS’ means 720 points per inch and ’TWIPS’ means 1440
points per inch.

Default: COPT = ’CM’.

6.1.3 Modifying the Origin

P A G O R G
The routine PAGORG sets the origin of the page. By default, the page origin is located in the upper left
corner of the page.

27

The call is: CALL PAGORG (COPT) level 1, 2, 3

or: void pagorg (char *copt);

COPT is a character string that can have the values ’TOP’ and ’BOTTOM’. The key-
word ’TOP’ sets the page origin to the upper left corner, ’BOTTOM’ to the
lower left corner.

Default: COPT = ’TOP’.

O R I G I N
In DISLIN, all lines are plotted relative to a point on the page which is by default identical with the page
origin. Modifying this point by ORIGIN produces a shifting of plot vectors on the page.

The call is: CALL ORIGIN (NX0, NY0) level 1

or: void origin (int nx0, int ny0);

NX0, NY0 are the coordinates of the origin. Default: (0, 0).

6.1.4 File Format Control

M E T A F L
METAFL defines the metafile format.

The call is: CALL METAFL (CFMT) level 0

or: void metafl (char *cfmt);

CFMT is a character string that defines the file format.

= ’GKSL’ defines a GKSLIN metafile.

= ’CGM’ defines a CGM metafile.

= ’PS’ defines a coloured PostScript file.

= ’EPS’ defines an Encapsulated PostScript file. The format is nearly the same as for
’PS’.

= ’PDF’ defines a PDF file.

= ’HPGL’ defines a HPGL file.

= ’SVG’ defines a Scalable Vector Graphics file.

= ’JAVA’ defines a Java applet file.

= ’WMF’ defines a Windows metafile.

= ’GIF’ defines a GIF file.

= ’TIFF’ defines a TIFF file.

= ’PNG’ defines a PNG file.

= ’PPM’ defines a portable pixmap format.

= ’IMAG’ defines a DISLIN image format.

= ’BMP’ defines a Windows Bitmap format.

= ’VIRT’ defines a virtual file. The metafile is hold in a raster format in computer mem-
ory.

= ’CONS’ defines a graphics output on the screen. If the screen is a windows display, a
graphical window is used that has nearly the size of the screen.

28

= ’XWIN’ defines a window for graphical output. By default, the size of the window is
nearly 2/3 of the size of the screen.

Default: CFMT = ’GKSL’.

Notes: - The default size of TIFF, GIF, PNG, PPM, BMP, IMAGE, SVG and virtual
files is set to 853 x 603 points but can be modified with the routine WINSIZ.
The size of graphical windows can also be changed with WINSIZ.

- The default background colour for graphical windows and image formats such
as TIFF, GIF and PNG is black but can be changed to white with the routine
SCRMOD.

- The format of VIRT, TIFF, PNG, BMP and IMAGE is by default a 8 bit palette
format, but can be changed to a truecolour format with the parameter ’RGB’ in
the routine IMGFMT. GIF files created by DISLIN have always a 8 bit palette
format.

S E T F I L
By default, the plotfile name consists of the keyword ’dislin’ and an extension that depends on the file
format. An alternate filename can be set with SETFIL.

The call is: CALL SETFIL (CFIL) level 0

or: void setfil (char *cfil);

CFIL is a character string that contains the filename.

F I L M O D
The routine FILMOD determines if a new plotfile name is created for existing files.

The call is: CALL FILMOD (CMOD) level 0, 1, 2, 3

or: void filmod (char *cmod);

CMOD is a character string containing the mode.

= ’COUNT’ means that a new file version will be created. An increasing version number is
added to the filename and the filename is shortened to eight characters.

= ’VERSION’ is a similar option to ’COUNT’ that creates a new file version, but without
shorten the filename.

= ’DELETE’ means that the existing file will be overwritten.

= ’BREAK’ means that the program will be terminated by DISINI.
Default: CMOD = ’COUNT’.

F I L O P T
The routine FILOPT modifies rules for creating file version names.

The call is: CALL FILOPT (COPT, CKEY) level 0, 1, 2, 3

or: void filopt (char *copt, char *ckey);

COPT is a character string containing an option.

CKEY is a character string that can have the values ’SEPARATOR’, ’NUMBER’ and
’DIGITS’. The keyword ’SEPARATOR’ defines the separator between file-
names and version numbers. If CKEY = ’SEPARATOR’, COPT can have the
values ’UNDERSCORE’, ’HYPHEN’ and ’NONE’. If CKEY = ’NUMBER’,
COPT can have the values ’SHORT’ and ’LONG’. The option ’LONG’ means

29

that leading zeros are used in the version number. The keyword ’DIGITS’
sets the number of digits that are used for version numbers. For that keyword,
COPT can have the values ’2’, ’3’, ’4’, ’5’ and ’6’.

Defaults: (’SEPARATOR’, ’’), (’NUMBER’, ’SHORT’),
(’DIGITS’, ’4’).

S C R M O D
Normally, the background of screens and image formats such as TIFF, GIF, BMP and PNG is set to
’BLACK’. With the routine SCRMOD, the back and foreground colours can be swapped.

The call is: CALL SCRMOD (CMOD) level 0

or: void scrmod (char *cmod);

CMOD = ’AUTO’ uses a ’BLACK’ background colour for screen output and image files.

CMOD = ’REVERS’ means that the background colour is set to ’WHITE’ and the foreground colour
to ’BLACK’.

CMOD = ’NOREV’ means that the background colour is set to ’BLACK’ and the foreground colour
to ’WHITE’.

Default: CMOD = ’AUTO’.

C G M B G D
The routine CGMBGD sets the background colour for CGM files.

The call is: CALL CGMBGD (XR, XG, XB) level 0, 1, 2, 3

or: void cgmbgd (float xr, floar xg, float xb);

XR, XG, XB are the RGB coordinates of the background colour in the range 0 to 1.
Default: (1., 1., 1.).

C G M P I C
The routine CGMPIC modifies the picture ID in CGM files. The picture ID may be referenced by some
browsers.

The call is: CALL CGMPIC (CSTR) level 0, 1, 2, 3

or: void cgmpic (char *cstr);

CSTR is a character string containing the picture ID (≤ 256 characters). By default,
the ID ’Picture n’ is used where n is the picture number beginning with 1.

T I F M O D
The routine TIFMOD modifies the physical resolution of TIFF files.

The call is: CALL TIFMOD (N, CVAL, COPT) level 0

or: void tifmod (int n, char *cval, char *copt);

N is an integer value containing the number of pixels per resolution unit.

CVAL is a character string containing the resolution unit. CVAL can have the values
’INCH’ and ’CM’.

COPT is a character string that can have the value ’RESOLUTION’.
Default: (100, ’INCH’, ’RESOLUTION’).

30

B M P M O D
The routine BMPMOD modifies the physical resolution of BMP files.

The call is: CALL BMPMOD (N, CVAL, COPT) level 0

or: void bmpmod (int n, char *cval, char *copt);

N is an integer value containing the number of pixels per resolution unit.

CVAL is a character string containing the resolution unit. CVAL can have the values
’INCH’ and ’METER’.

COPT is a character string that can have the value ’RESOLUTION’.
Default: (2500, ’METER’, ’RESOLUTION’).

W M F M O D
The routine WMFMOD modifies the appearance of WMF files.

The call is: CALL WMFMOD (CMOD, CKEY) level 0

or: void wmfmod (char *cmod, char *ckey);

CMOD is a character string containing the values ’STANDARD’ or ’PLACEABLE’.
If CMOD = ’PLACEABLE’, an additional leading header of 22 byte is added
to the WMF file. The format is also known as Aldus Placeable Metafile.

CKEY is a character string that can have the value ’FORMAT’.
Default: CMOD = ’STANDARD’.

P D F M O D
The routine PDFMOD selects between compressed and non compressed PDF files, and can enable PDF
buffer output instead of file output.

The call is: CALL PDFMOD (CMOD, CKEY) level 0

or: void pdfmod (char *cmod, char *ckey);

CMOD is a character string that can have the values ’ON’ and ’OFF’.

CKEY is a character string that can have the values ’COMPRESSION’ and
’BUFFER’. For CKEY = ’BUFFER’ and CMOD = ’ON’, the PDF file is hold
in memory and can be copied to an user buffer with the routine PDFBUF after
DISFIN.

Default: (’ON’, ’COMPRESSION’),
Default: (’OFF’, ’BUFFER’).

P D F M R K
The routine PDFMRK writes bookmarks to PDF files. This makes it possible to navigate through PDF
files that contain multiple pages.

The call is: CALL PDFMRK (CSTR, COPT) level 1 ,2 ,3

or: void pdfmrk (char *cstr, char *copt);

CSTR is a character string that contains the text of the bookmark.

COPT is a character string that can have the values ’CHAPTER’, ’SECTION’, ’SUB-
SECTION’, ’PARAGRAPH’ and ’SUBPARAGRAPH’. This option defines
the level of a bookmark in the hierarchy of bookmarks. A bookmark with the
option ’SECTION’ can only be defined if a bookmark with the option ’CHAP-
TER’ is defined before, and so on.

31

G I F M O D
The routine GIFMOD enables transparency for GIF files.

The call is: CALL GIFMOD (CMOD, CKEY) level 0

or: void gifmod (char *cmod, char *ckey);

CMOD is a character string that can have the values ’ON’ and ’OFF’.

CKEY is a character string that can have the value ’TRANSPARENCY’.
Default: (’OFF’, ’TRANSPARENCY’).

P N G M O D
The routine PNGMOD enables transparency for PNG files.

The call is: CALL PNGMOD (CMOD, CKEY) level 0

or: void pngmod (char *cmod, char *ckey);

CMOD is a character string that can have the values ’ON’ and ’OFF’.

CKEY is a character string that can have the value ’TRANSPARENCY’.
Default: (’OFF’, ’TRANSPARENCY’).

Additional note: For indexed PNG files, the colour table entry 0 is used for transparency. For
RGB files, the colour White is used for transparency.

H P G M O D
The routine HPGMOD defines options for HPGL files.

The call is: CALL HPGMOD (CMOD, CKEY) level 0

or: void hpgmod (char *cmod, char *ckey);

CMOD is a character string that can have the values ’STAN’ and ’ARISTO’. For
COPT = ’ARISTO’, the DISLIN HPGL file will begin with the commands
’IN;SP1;LT;PU’.

CKEY is a character string that can have the value ’PLOTTER’.
Default: (’STAN’, ’PLOTTER’).

I M G F M T
The routine IMGFMT defines palette or truecolour mode for DISLIN image formats such as TIFF, PNG,
BMP and IMAGE.

The call is: CALL IMGFMT (CMOD) level 0

or: void imgfmt (char *cmod);

CMOD is a character string that can have the values ’INDEX’ and ’RGB’. For TIFF
files, the additional keyword ’BILEVEL’ is allowed for creating bilevel TIFF
files.

Default: CMOD = ’INDEX’.

6.1.5 Page Control

P A G E
PAGE determines the size of the page.

The call is: CALL PAGE (NXP, NYP) level 0

32

or: void page (int nxp, int nyp);

NXP, NYP are the length and height of the page in plot coordinates. The lower right corner
of the page is the point (NXP-1, NYP-1).

Default: (2970, 2100).

S E T P A G
SETPAG selects a predefined page format.

The call is: CALL SETPAG (CPAGE) level 0
or: void setpag (char *cpage);

CPAGE is a character string that defines the page format.

= ’DA4L’ DIN A4, landscape, 2970 * 2100 points.
= ’DA4P’ DIN A4, portrait, 2100 * 2970 points.
= ’DA3L’ DIN A3, landscape, 4200 * 2970 points.
= ’DA3P’ DIN A3, portrait, 2970 * 4200 points.
= ’DA2L’ DIN A2, landscape, 5940 * 4200 points.
= ’DA2P’ DIN A2, portrait, 4200 * 5940 points.
= ’DA1L’ DIN A1, landscape, 8410 * 5940 points.
= ’DA1P’ DIN A1, portrait, 5940 * 8410 points.
= ’DA0L’ DIN A0, landscape, 11890 * 8410 points.
= ’DA0P’ DIN A0, portrait, 8410 * 11890 points.
= ’USAL’ US paper size A, landscape, 2790 * 2160 points.
= ’USAP’ US paper size A, portrait, 2160 * 2790 points.
= ’USBL’ US paper size B, landscape, 4320 * 2790 points.
= ’USBP’ US paper size B, portrait, 2790 * 4320 points.
= ’USCL’ US paper size C, landscape, 5590 * 4320 points.
= ’USCP’ US paper size C, portrait, 4320 * 5590 points.
= ’USDL’ US paper size D, landscape, 8640 * 5590 points.
= ’USDP’ US paper size D, portrait, 5590 * 8640 points.
= ’USEL’ US paper size E, landscape, 11180 * 8640 points.
= ’USEP’ US paper size E, portrait, 8640 * 11180 points.
= ’PS4L’ PostScript A4, landscape, 2800 * 1950 points.
= ’PS4P’ PostScript A4, portrait, 1950 * 2800 points.
= ’HP4L’ HP-plotter A4, landscape, 2718 * 1900 points.
= ’HP4P’ HP-plotter A4, portrait, 1900 * 2718 points.
= ’HP3L’ HP-plotter A3, landscape, 3992 * 2718 points.
= ’HP3P’ HP-plotter A3, portrait, 2718 * 3992 points.
= ’HP2L’ HP-plotter A2, landscape, 5340 * 3360 points.
= ’HP2P’ HP-plotter A2, portrait, 3360 * 5340 points.
= ’HP1L’ HP-plotter A1, landscape, 7570 * 5340 points.
= ’HP1P’ HP-plotter A1, portrait, 5340 * 7570 points.

Default: CPAGE = ’DA4L’.
S C L F A C

SCLFAC sets the scaling factor for an entire plot.

The call is: CALL SCLFAC (XFAC) level 0

or: void sclfac (float xfac);

XFAC is the scaling factor by which the entire plot is scaled up or down.
Default: XFAC = 1.

33

S C L M O D
The method by which graphics are scaled to the hardware pages of devices such as a graphics terminal
can be selected with the routine SCLMOD.

The call is: CALL SCLMOD (CMOD) level 0

or: void sclmod (char *cmod);

CMOD = ’DOWN’ means that graphics will be scaled down if the hardware page of a device is
smaller than the plotting page.

= ’FULL’ means that the graphics will be scaled up or down depending upon the size of
the hardware page.

Default: CMOD = ’DOWN’.

Additional notes: - The size of a graphics screen will be interpreted as DIN A4 landscape. This
means that by default graphics which are smaller than DIN A4 will not fill the
entire screen.

- SCLFAC and SCLMOD can affect each other.

P A G M O D
GKSLIN and CGM files can be rotated by 90 degrees to use the full hardware page of a device. In
general, this is done automatically by the driver program.

The call is: CALL PAGMOD (CMOD) level 0

or: void pagmod (char *cmod);

CMOD = ’LAND’ means that the metafile is not rotated.

= ’PORT’ means that the metafile is rotated by 90 degrees.

= ’NONE’ can be used to disable automatic plotfile rotation in the driver program (i.e. for
PostScript files).

Default: CMOD = ’LAND’.

Figure 6.1 shows the effect of PAGMOD:

Landscape

Portrait

-

X

Y

6

�

6

Y

X

Figure 6.1: PAGMOD

N E W P A G
NEWPAG creates a new page.

The call is: CALL NEWPAG level 1

or: void newpag ();

34

Additional notes: - PostScript, PDF and CGM files can store multiple pages. For other output
formats, NEWPAG is not useful.

- On Window terminals, NEWPAG is waiting for a mouse button 2 event before
displaying the next page. This mode can be changed with the routine WIN-
MOD. On other terminals, NEWPAG has the same effect as ERASE.

H W P A G E
The routine HWPAGE defines the size of the PostScript hardware page.

The call is: CALL HWPAGE (NW, NH) level 0

or: void hwpage (int nw, int nh);

NW, NH are the width and height of the PostScript hardware page in plot coordinates.
Default: (1950, 2800).

H W O R I G
The routine HWORIG defines the hardware origin of the PostScript hardware page.

The call is: CALL HWORIG (NX, NY) level 0

or: void hworig (int nx, int ny);

NX, NY are the plot coordinates of the hardware origin.
Default: (75, 100).

H W S C A L
The routine HWSCAL modifies the scale operator in PostScript files.

The call is: CALL HWSCAL (XSCL) level 0

or: void hwscal (float xscl);

XSCL is a floatingpoint value used for the scale operator.
Default: 1.

6.1.6 Error Handling

E R R M O D
The printing of warnings and the output of the protocol in DISFIN can be disabled with the routine
ERRMOD.

The call is: CALL ERRMOD (CKEY, CMOD) level 1, 2, 3

or: void errmod (char *ckey, char *cmod);

CKEY is a character string that can have the values ’WARNINGS’, ’CHECK’, ’PRO-
TOCOL’ and ’ALL’. ’WARNINGS’ means the error messages about bad pa-
rameters passed to DISLIN routines, ’CHECK’ the out of range check of co-
ordinates passed to plotting routines such as CURVE and ’PROTOCOL’ the
output of the protocol in DISFIN.

CMOD is a character string that can have the values ’ON’ and ’OFF’. For CKEY =
’PROTOCOL’, CMOD can have the additional value ’FILE’ that means that
the protocol in DISFIN is also written to the error file.

Default: (’ALL’, ’ON’)

35

E R R D E V
The routine ERRDEV defines the output device for DISLIN warnings. By default, warnings are written
to the screen.

The call is: CALL ERRDEV (COPT) level 0

or: void errdev (char *copt);

COPT is a character string that can have the values ’CONS’, ’FILE’ and ’APPEND’.
’APPEND’ means that all error messages are appended to the same file while
for the keyword ’FILE’ a new error file is created for each DISINI/DISFIN
cycle.

Default: COPT = ’CONS’.

E R R F I L
By default, the name of the error file is ’dislin.err’. An alternate filename can be set with ERRFIL.

The call is: CALL ERRFIL (CFIL) level 0

or: void errfil (char *cfil);

CFIL is a character string that contains the filename.

U N I T
UNIT defines the logical unit used for printing error messages and listing data points that lie outside of
the axis scaling.

The call is: CALL UNIT (NU) level 1, 2, 3

or: void unit (FILE *nu);

NU is the logical unit. If NU = 0, all messages will be suppressed.
Default: NU = 6

Additional note: UNIT is an old DISLIN routine for suppressing error messages. It should be
replaced by the newer routines ERRMOD, ERRDEV and ERRFIL.

W I N A P P
The routine WINAPP defines if a DISLIN program should look like a Windows console, or more like a
Windows program. If Windows mode is selected, all warnings are written to an error file and the protocol
in disfin is displayed in a widget.

The call is: CALL WINAPP (COPT) level 0

or: void winapp (char *copt);

COPT is a character string that can have the values ’CONSOLE’ and ’WINDOWS’.
Default: COPT = ’CONSOLE’.

6.1.7 Viewport Control

W I N D O W
This routine defines, for X Window terminals, a region on the screen where the graphics will be dis-
played. By default, the window size is set to 2/3 of the screen size and located in the lower right corner
of the screen.

The call is: CALL WINDOW (NX, NY, NW, NH) level 0, 1, 2, 3

or: void window (int nx, int ny, int nw, int nh);

36

NX, NY are the screen coordinates of the upper left corner.

NW, NH are the width and height of the window in screen coordinates.

Additional note: In general, the screen size is 1280 * 1024 pixels.

W I N S I Z
This routine defines the size of windows and the resolution of DISLIN image formats such as TIFF, PNG,
BMP, PPM and IMAGE. By default, the window size is set to 2/3 of the screen size, and the resolution
of image formats is 853 x 603 pixels.

The call is: CALL WINSIZ (NW, NH) level 0, 1, 2, 3

or: void winsiz (int nw, int nh);

NW, NH are the width and height of the window in pixels.

C L R M O D
The routine CLRMOD defines the colour mode used for output on window terminals.

The call is: CALL CLRMOD (CMOD) level 0

or: void clrmod (char *cmod);

CMOD is a character string defining the mode.

= ’NONE’ means that a colour table with 256 colours will be reduced to 129 colours
to conserve current screen and window colours. The colour values will be
reduced by the formula (0⇔ 0, i = (iclr + 1) / 2, iclr = 1, ... 255).

= ’FULL’ means that all 256 colours will be displayed.

= ’CONT’ means that a colour table with less than 129 entries will be used.
Default: CMOD = ’NONE’.

X 1 1 M O D
The routine X11MOD enables or disables backing store for graphic windows.

The call is: CALL X11MOD (CMOD) level 0

or: void x11mod (char *cmod);

CMOD is a character string containing the mode.

= ’NOSTORE’ means that graphical output is sent directly to the graphics window.

= ’STORE’ means that graphical output is sent to a pixmap that will be copied to the graph-
ics window.

= ’AUTO’ means that ’NOSTORE’ will be used on X11 and ’STORE’ on Windows ter-
minals.

= ’PIXMAP’ means that only a pixmap is used. The graphics window will be invisible.
Default: CMOD = ’STORE’.

W I N M O D
The routine WINMOD affects the handling of windows in the termination routine DISFIN.

The call is: CALL WINMOD (CMOD) level 1, 2, 3

or: void winmod (char *cmod);

CMOD is a character string containing the mode.

37

= ’FULL’ means that DISFIN is waiting for a mouse button 2 event. After program
continuation, all windows are deleted.

= ’NOHOLD’ means that DISFIN is not waiting for a mouse button 2 event. After a call to
DISFIN, all windows are deleted.

= ’NOERASE’ means that the program is still blocked in DISFIN but windows will not be
deleted after program continuation.

= ’NONE’ means that the program is not blocked in DISFIN and windows are not deleted.

= ’DELAY’ means that the program is blocked for a short time in DISFIN before it is
continued. The delay time can be defined with the routine WINOPT.

Default: CMOD = ’FULL’.

W I N O P T
The routine WINOPT sets the delay time for the keyword ’DELAY’ in WINMOD.

The call is: CALL WINOPT (IOPT, CKEY) level 1, 2, 3

or: void winopt (int iopt, char *ckey);

IOPT is the delay time in seconds or milliseconds.

CKEY is a character string that can have the values ’DELAY’ and ’MDELAY’. For
CKEY = ’MDELAY’, IOPT must contain milliseconds, otherwise seconds.

Default: (10, ’DELAY’).

W I N K E Y
The routine WINKEY enables a an additional key that can be used for program continuation is DISFIN.
Normally, the mouse button 2 can be used for closing the graphics window.

The call is: CALL WINKEY (CKEY) level 1, 2, 3

or: void winkey (char *ckey);

CKEY is a character string that can have the values ’NONE’, ’RETURN’ and ’ES-
CAPE’.

Default: CKEY = ’NONE’.

S E T X I D
The routine SETXID defines an external graphics window for X11 and Windows displays. All graphical
output is sent to the external window. For X11 displays, an external pixmap can also be defined.

The call is: CALL SETXID (ID, CTYPE) level 0, 1, 2, 3

or: void setxid (int id, char *ctype);

ID is the window or pixmap ID.

CTYPE is a character string that can have the values ’NONE’, ’WINDOW’, ’PIXMAP’
and ’WIDGET’. For the keyword ’WIDGET’, the ID of a DISLIN draw widget
can be used.

Default: (0, ’NONE’).

Additional notes: - If an external pixmap is used, backing store must also be enabled with the
routine X11MOD.

- An external window is not erased by DISINI. This can be done with the routine
ERASE.

- External windows are not blocked in DISFIN (see WINMOD).

- External windows can also be used for multiple DISLIN windows that are
defined with the routine OPNWIN.

38

6.2 Axis Systems

This section describes subroutines that allow the user to modify axis systems. The position of an axis
system, the size, the scaling, ticks, labels and axis titles can be altered in any way. Some of the routines
defining axis attributes can also be used with secondary axes. Routines that set axis attributes can be
used for one or for any combination of axes. The axes are identified by a character string that can contain
the characters ’X’, ’Y’ and ’Z’ in any combination.

6.2.1 Modifying the Type

A X S T Y P
The routine AXSTYP defines the type of an axis system. Axis systems can be plotted as rectangles or in
a crossed form. For crossed axis systems, the scaling must be linear and the axis limits must contain the
origin.

The call is: CALL AXSTYP (COPT) level 1

or: void axstyp (char *copt);

COPT is a character string defining the type.

= ’RECT’ defines a rectangular axis system.

= ’CROSS’ defines a crossed axis system.
Default: COPT = ’RECT’.

The following figure shows a rectangular and a crossed axis system:

-4.0 -2.0 0.0 2.0 4.0
X-axis

-5.0

-3.0

-1.0

1.0

3.0

5.0

Y
-a

xi
s

-4.0 -2.0 2.0 4.0
X-axis

-5.0

-3.0

-1.0

1.0

3.0

5.0

Y
-a

xi
s

Figure 6.2: Rectangular and Crossed Axis Systems

6.2.2 Modifying the Position and Size

A X S P O S
AXSPOS determines the position of an axis system.

The call is: CALL AXSPOS (NXA, NYA) level 1

or: void axspos (int nxa, int nya);

NXA, NYA are plot coordinates that define the lower left corner of an axis system. By
default, axis systems are centred in the X-direction while NYA is set to the
value (page height - 300).

A X S O R G
AXSORG is an alternate routine for defining the position of a crossed axis system.

39

The call is: CALL AXSORG (NX, NY) level 1

or: void axsorg (int nx, int ny);

NX, NY are plot coordinates that define the position of the origin of a crossed axis
system.

A X S L E N
AXSLEN defines the size of an axis system.

The call is: CALL AXSLEN (NXL, NYL) level 1

or: void axslen (int nxl, int nyl);

NXL, NYL are the length and height of an axis system in plot coordinates. The default
values are set to 2/3 of the page length and height.

C E N T E R
A call to the routine CENTER will centre the axis system on the page. All elements of an axis system,
including titles, axis labels and names, will be taken into consideration. The centralisation is done by
GRAF through changing the position of the origin. Therefore, all plotting routines called after GRAF
will work with the new origin.

The call is: CALL CENTER level 1, 2, 3

or: void center ();

Additional notes: - If there are several axis systems on the page, the origin will be changed only
by the first call to GRAF.

- The character height of titles should be defined with HTITLE if it is different
from the current character height in GRAF.

6.2.3 Axis Scaling

A X S S C L
This routine sets the axis scaling to logarithmic or linear.

The call is: CALL AXSSCL (CSCL, CAX) level 1, 2, 3

or: void axsscl (char *cscl, char *cax);

CSCL = ’LIN’ denotes linear scaling.

= ’LOG’ denotes logarithmic scaling.

CAX is a character string that defines the axes.
Default: (’LIN’, ’XYZ’).

Additional notes: - For logarithmic scaling, the corresponding parameters in GRAF must be ex-
ponents of base 10.

- The routine AXSSCL replaces the DISLIN routine SCALE because SCALE
is also a Fortran 90 intrinsic function.

S E T S C L
The parameters in GRAF will be calculated automatically by DISLIN if the routine SETSCL is used. In
this case, GRAF must have dummy parameters in which DISLIN returns the calculated values.

40

The call is: CALL SETSCL (XRAY, N, CAX) level 1

or: void setscl (float *xray, int n, char *cax);

XRAY is a vector that contains user coordinates. SETSCL calculates the minimum
and maximum values of the data and stores them in a common block.

N is the number of points in XRAY.

CAX is a character string that defines the axes. CAX can have the additional val-
ues ’XRESET’, ’YRESET’, ’ZRESET’ and ’RESET’ for disabling automatic
scaling. The parameter ’RESET’ resets automatic scaling for all axes.

Additional notes: - SETSCL can be used with linear and logarithmic scaling and with all label
types.

- The calculation of scaling and label values is done by GRAF. The minimum
and maximum of the data are always used for the lower and upper limits of an
axis while even values are calculated for the labels.

- The number of digits after the decimal point will be set automatically.

- If the scaling of an axis is logarithmic, labels will be plotted with the format
’LOG’.

6.2.4 Modifying Ticks

T I C K S
This routine is used to define the number of ticks between axis labels.

The call is: CALL TICKS (NTIC, CAX) level 1, 2, 3

or: void ticks (int ntic, char *cax);

NTIC is the number of ticks (≥ 0).

CAX is a character string that defines the axes.
Default: (2, ’XYZ’).

T I C P O S
This routine defines the position of ticks.

The call is: CALL TICPOS (CPOS, CAX) level 1, 2, 3

or: void ticpos (char *cpos, char *cax);

CPOS is a character string defining the position.

= ’LABELS’ means that ticks will be plotted on the same side as labels.

= ’REVERS’ means that ticks will be plotted inside of an axis system.

= ’CENTER’ means that ticks will be centred on the axis line.

CAX is a character string that defines the axes.
Default: (’LABELS’, ’XYZ’).

41

T I C L E N
TICLEN sets the lengths of major and minor ticks.

The call is: CALL TICLEN (NMAJ, NMIN) level 1, 2, 3

or: void ticlen (int nmaj, int nmin);

NMAJ is the length of major ticks in plot coordinates (> 0).

NMIN is the length of minor ticks in plot coordinates (> 0).
Default: (24, 16).

T I C M O D
The routine TICMOD modifies the plotting of minor tick marks on calendar axes. By default, a major
tick is plotted at each date label and no minor ticks are plotted.

The call is: CALL TICMOD (COPT, CAX) level 1, 2, 3

or: void ticmod (char *copt, char *cax);

COPT is a character string defining the tick marks.

= ’NONE’ means that no minor ticks will be plotted.

= ’DAYS’ means that ticks will be plotted for every day.

= ’MONTH’ means that ticks will be plotted for every month.

= ’DMONTH’ means that ticks will be plotted for every second month.

= ’QUARTER’ means that ticks will be plotted on the first of January, April, July and October.

= ’HALF’ means that ticks will be plotted on the first of January and July.

= ’YEAR’ means that ticks will be plotted for every year.

CAX is a character string that defines the axes.
Default: (’NONE’, ’XYZ’).

L O G T I C
The appearance of minor ticks on logarithmic axes differs slightly from linear axes. By default, loga-
rithmic minor ticks are generated automatically if the label step is 1 or -1 and if the number of ticks in
TICKS is greater than 1. If the step has another value, minor ticks are plotted as specified in TICKS.
This algorithm can be modified with LOGTIC.

The call is: CALL LOGTIC (CMOD) level 1, 2, 3

or: void logtic (char *cmod);

CMOD is a character string defining the appearance of logarithmic ticks.

= ’AUTO’ defines default ticks.

= ’FULL’ means that logarithmic minor ticks will be generated for every cycle even if
the label step is not 1 but some other integer.

Default: CMOD = ’AUTO’.

42

6.2.5 Modifying Labels

L A B E L S
LABELS determines which label types will be plotted on an axis.

The call is: CALL LABELS (CLAB, CAX) level 1, 2, 3

or: void labels (char *clab, char *cax);

CLAB is a character string that defines the labels.

= ’NONE’ will suppress all axis labels.

= ’FLOAT’ will plot labels in floating-point format.

= ’EXP’ will plot floating-point labels in exponential format where fractions range be-
tween 1 and 10.

= ’FEXP’ will plot labels in the format fEn where f ranges between 1 and 10.

= ’LOG’ will plot logarithmic labels with base 10 and the corresponding exponents.

= ’CLOG’ is similar to ’LOG’ except that the entire label is centred below the tick mark;
with ’LOG’, only the base ’10’ is centred.

= ’ELOG’ will plot only the logarithmic values of labels.

= ’TIME’ will plot time labels in the format ’hhmm’.

= ’HOURS’ will plot time labels in the format ’hh’.

= ’SECONDS’ will plot time labels in the format ’hhmmss’.

= ’DATE’ defines date labels.

= ’MAP’ defines geographical labels which are plotted as non negative floating-point
numbers with the following characters ’W’, ’E’, ’N’ and ’S’.

= ’LMAP’ is similar to ’MAP’ except that lowercase characters are used.

= ’DMAP’ selects labels that are plotted as floating-point numbers with degree symbols.

= ’MYLAB’ selects labels that are defined with the routine MYLAB.

CAX is a character string that defines the axes.
Default: (’FLOAT’, ’XYZ’).

Additional notes: - The values ’LOG’, ’CLOG’ and ’ELOG’ can be only used with logarithmic
scaling. If these label types are used with linear scaling, DISLIN will change
them to ’FLOAT’.

- For the values ’TIME’, ’HOURS’ and ’SECONDS’, the corresponding param-
eters in GRAF must be in seconds since midnight.

- For the value ’DATE’, the corresponding parameters in GRAF must be in days
since a base date. The base date can be defined with the routine BASDAT
while the number of days since the base date can be calculated with the routine
INCDAT. Date labels can be modified with the routine LABMOD.

M Y L A B
MYLAB defines user labels.

The call is: CALL MYLAB (CSTR, ITICK, CAX) level 1, 2, 3

or: void mylab (char *cstr, int itick, char *cax);

CSTR is a character string containing a label (≤ 32 characters).

43

ITICK is the tick number where the label will be plotted (≤ 20). Tick numbering
starts with 1.

CAX is a character string that defines the axes.

L A B T Y P
LABTYP defines horizontal or vertical labels.

The call is: CALL LABTYP (CTYPE, CAX) level 1, 2, 3

or: void labtyp (char *ctype, char *cax);

CTYPE is a character string defining the direction.

= ’HORI’ defines horizontal labels.

= ’VERT’ defines vertical labels.

CAX is a character string that defines the axes.
Default: (’HORI’, ’XYZ’).

L A B P O S
LABPOS defines the position of labels.

The call is: CALL LABPOS (CPOS, CAX) level 1, 2, 3

or: void labpos (char *cpos, char *cax);

CPOS is a character string defining the position.

= ’TICKS’ means that labels will be plotted at major ticks.

= ’CENTER’ means that labels will be centred between major ticks.

= ’SHIFT’ means that the starting and end labels will be shifted.

CAX is a character string that defines the axes.
Default: (’TICKS’, ’XYZ’).

L A B J U S
LABJUS defines the alignment of axis labels.

The call is: CALL LABJUS (CJUS, CAX) level 1, 2, 3

or: void labjus (char *cjus, char *cax);

CJUS is a character string defining the alignment of labels.

= ’AUTO’ means that labels are automatically justified.

= ’LEFT’ means that labels are left-justified.

= ’RIGHT’ means that labels are right-justified.

= ’OUTW’ means that labels are left-justified on the left and lower axes of an axis system.
On the right and upper axes, labels are right-justified.

= ’INWA’ means that labels are right-justified on the left and lower axes of an axis system.
On the right and upper axes, labels are left-justified.

CAX is a character string that defines the axes.
Default: (’AUTO’, ’XYZ’).

44

L A B D I G
This routine sets the number of digits after the decimal point displayed in labels.

The call is: CALL LABDIG (NDIG, CAX) level 1, 2, 3

or: void labdig (int ndig, char *cax);

NDIG = -2 the number of digits is automatically calculated by DISLIN.

= -1 defines integer labels.

= 0 defines integer labels followed by a decimal point.

= n defines the number of digits after the decimal point. The last digit will be
rounded up.

CAX is a character string that defines the axes.
Default: (1, ’XYZ’).

Additional note: The routine LABDIG replaces the DISLIN routine DIGITS because DIGITS
is also a Fortran 90 intrinsic function.

I N T A X
With the routine INTAX, all axes will be labeled with integers.

The call is: CALL INTAX level 1, 2, 3

or: void intax ();

L A B D I S
This routine sets the distance between labels and ticks.

The call is: CALL LABDIS (NDIS, CAX) level 1, 2, 3

or: void labdis (int ndis, char *cax);

NDIS is the distance in plot coordinates.

CAX is a character string that defines the axes.
Default: (24, ’XYZ’).

L A B M O D
The routine LABMOD modifies the appearance of date labels enabled with the keyword ’DATE’ in the
routine LABELS. Normally, date labels will be plotted in the form dd-mmm-yyyy.

The call is: CALL LABMOD (CKEY, CVAL, CAX) level 1, 2, 3

or: void labmod (char *ckey, char *cval, char *cax);

CKEY is a character string containing one of the following keywords:

= ’YEAR’ means that the century field will be modified in date labels. For CKEY =
’YEAR’, CVAL can have the values ’NONE’, ’SHORT’ and ’FULL’. ’NONE’
suppresses the year field while ’SHORT’ suppresses the century in the year
field. The default value is ’FULL’.

= ’DAYS’ means that the day field will be modified. CVAL can have the values ’NONE’,
’SHORT’, ’LONG’, ’NAME’ and ’FULL’. For CVAL = ’NONE’, the day field
will be suppressed, for CVAL = ’SHORT’, the day will be plotted as a number
without a leading zero. CVAL = ’LONG’ means that the day will be plotted
as a number with two digits, CVAL = ’NAME’ means that abbreviations of
the weekday names will be plotted and CVAL = ’FULL’ means that the full
weekday names will be displayed. The default value is CVAL = ’LONG’.

45

= ’MONTH’ means that the month field will be modified. CVAL can have the values
’NONE’, ’SHORT’, ’LONG’, ’NAME’, ’TINY’ and ’FULL’. For CVAL =
’NONE’, the month field will be suppressed, for CVAL = ’SHORT’, the month
will be plotted as a number without a leading zero. CVAL = ’LONG’ means
that the month will be plotted as a number with two digits, CVAL = ’NAME’
means that abbreviations of the month names will be plotted, CVAL = ’TINY’
means that only the first character of month names will be plotted and CVAL =
’FULL’ means that the full month names will be displayed. The default value
is CVAL = ’NAME’.

= ’LANG’ defines the language used for weekdays and month names in date labels. CVAL
can have the values ’ENGLISH’, ’GERMAN’ and ’SPANISH’. The default
value for CVAL is ’ENGLISH’.

= ’FORM’ defines the order of the date fields. CVAL can have the values ’DMY’, ’DYM’,
’YDM’, ’YMD’, ’DYM’ and ’MDY’. The default is CVAL = ’DMY’.

= ’SEPA’ defines a separator character used in date labels. CVAL is a character string
containing the separator character. The default is CVAL = ’-’.

= ’CASE’ defines if weekdays and month names are plotted in uppercase characters or in
lowercase characters with a leading uppercase character. CVAL can have the
values ’UPPER’ and ’NONE’. The default value is ’NONE’.

= ’STEP’ defines a step between labels. CVAL can have the values ’DAYS’, ’MONTH’,
’DMONTH’, ’QUARTER’, ’HALF’ and ’YEAR’. For CVAL = ’DAYS’, the
label step specified in the routine GRAF will be used. The default value is
CVAL = ’DAYS’.

CAX is a character string that defines the axes.

P O L M O D
The routine POLMOD modifies the appearance of angle labels plotted with the routine GRAFP.

The call is: CALL POLMOD (CPOS, CDIR) level 1, 2, 3

or: void polmod (char *cpos, char *cdir);

CPOS is a character string that defines the position of the first label. CPOS can have
the values ’RIGHT’, ’TOP’, ’LEFT’ and ’BOTTOM’.

CDIR defines the direction of the labels. CDIR can have the values ’CLOCKWISE’
and ’ANTICLOCK’.

Default: (’RIGHT’, ’ANTICLOCK’).

T I M O P T
With TIMOPT time labels can be plotted in the format ’hh:mm’. The default is ’hhmm’.

The call is: CALL TIMOPT level 1, 2, 3

or: void timopt ();

R G T L A B
The routine RGTLAB right-justifies user labels. By default, user labels are left-justified.

The call is: CALL RGTLAB level 1, 2, 3

or: void rgtlab ();

46

6.2.6 Modifying Axis Titles

N A M E
NAME defines axis titles.

The call is: CALL NAME (CSTR, CAX) level 1, 2, 3

or: void name (char *cstr, char *cax);

CSTR is a character string containing the axis title (≤ 132 characters).

CAX is a character string that defines the axes.
Default: (’ ’, ’XYZ’).

H N A M E
HNAME defines the character height for axis names.

The call is: CALL HNAME (NHNAME) level 1, 2, 3

or: void hname (int nhname);

NHNAME is the character height in plot coordinates.
Default: NHNAME = 36

N A M D I S
NAMDIS sets the distance between axis names and labels.

The call is: CALL NAMDIS (NDIS, CAX) level 1, 2, 3

or: void namdis (int ndis, char *cax);

NDIS is the distance in plot coordinates.

CAX is a character string that defines the axes.
Default: (30, ’XYZ’).

N A M J U S
The routine NAMJUS defines the alignment of axis titles.

The call is: CALL NAMJUS (CJUS, CAX) level 1, 2, 3

or: void namjus (char *cjus, char *cax);

CJUS is a character string that can have the values ’CENT’, ’LEFT’ and ’RIGHT’.

CAX is a character string that defines the axes.
Default: (’CENT’, ’XYZ’).

R V Y N A M
The routine RVYNAM is used to plot names and labels on right Y-axes and colour bars at an angle of 90
degrees. By default, they are plotted at an angle of 270 degrees.

The call is: CALL RVYNAM level 1, 2, 3

or: void rvynam ();

47

6.2.7 Suppressing Axis Parts

N O L I N E
After a call to NOLINE the plotting of axis lines will be suppressed.

The call is: CALL NOLINE (CAX) level 1, 2, 3

or: void noline (char *cax);

CAX is a character string that defines the axes.

A X E N D S
With a call to AXENDS certain labels can be suppressed.

The call is: CALL AXENDS (COPT, CAX) level 1, 2, 3

or: void axends (char *copt, char *cax);

COPT is a character string that defines which labels will be suppressed.

= ’NONE’ means that all labels will be displayed.

= ’FIRST’ means that only the starting label will be plotted.

= ’NOFIRST’ means that the starting label will not be plotted.

= ’LAST’ means that only the ending label will be plotted.

= ’NOLAST’ means that the ending label will not be plotted.

= ’ENDS’ means that only the start and end labels will be plotted.

= ’NOENDS’ means that start and end labels will be suppressed.

CAX is a character string that defines the axes.
Default: (’NONE’, ’XYZ’).

N O G R A F
The routine NOGRAF suppresses the plotting of an axis system.

The call is: CALL NOGRAF level 1

or: void nograf ();

A X 2 G R F
The routine AX2GRF suppresses the plotting of the upper X- and left Y-axis.

The call is: CALL AX2GRF level 1, 2, 3

or: void ax2grf ();

S E T G R F
SETGRF removes a part of an axis or a complete axis from an axis system.

The call is: CALL SETGRF (C1, C2, C3, C4) level 1, 2, 3

or: void setgrf (char *c1, char *c2, char *c3, char *c4);

Ci are character strings corresponding to the four axes of an axis system. C1
corresponds to the lower X-axis, C2 to the left Y-axis, C3 to the upper X-
axis and C4 to the right Y-axis. The parameters can have the values ’NONE’,
’LINE’, ’TICKS’, ’LABELS’ and ’NAME’. With ’NONE’, complete axes will
be suppressed, with ’LINE’, only axis lines will be plotted, with ’TICKS’, axis
lines and ticks will be plotted, with ’LABELS’ axis lines, ticks and labels will
be plotted and with ’NAME’, all axis elements will be displayed.

Default: (’NAME’, ’NAME’, ’TICKS’, ’TICKS’).

48

Additional notes: - By default, GRAF plots a frame of thickness 1 around axis systems. There-
fore, in addition to the parameter ’NONE’, FRAME should be called with the
parameter 0 for suppressing complete axes.

- SETGRF does not reset the effect of NOGRAF and NOLINE. This must be
done using RESET.

6.2.8 Modifying Clipping

C L P W I N
The routine CLPWIN defines a rectangular clipping area on the page.

The call is: CALL CLPWIN (NX, NY, NW, NH) level 1, 2, 3

or: void clpwin (int nx, int ny, int nw, int nh);

NX, NY are the plot coordinates of the upper left corner.

NW, NH are the width and height of the rectangle in plot coordinates.

C L P B O R
The routine CLPBOR sets the clipping area to the entire page or to the axis system.

The call is: CALL CLPBOR (COPT) level 1, 2, 3

or: void clpbor (char *copt);

COPT is a character string that can have the values ’PAGE’ and ’AXIS’.
Default: COPT = ’PAGE’.

N O C L I P
The suppressing of lines outside of the borders of an axis system can be disabled with NOCLIP.

The call is: CALL NOCLIP level 1, 2, 3

or: void noclip ();

G R A C E
GRACE defines a margin around axis systems where lines will be clipped.

The call is: CALL GRACE (NGRA) level 1, 2, 3

or: void grace (int ngra);

NGRA is the width of the margin in plot coordinates. If NGRA is negative, lines will
be clipped inside the axis system.

Default: NGRA = -1

6.2.9 Framing Axis Systems

F R A M E
FRAME defines the thickness of frames plotted by routines such as GRAF and LEGEND.

The call is: CALL FRAME (NFRM) level 1, 2, 3

or: void frame (int nfrm);

49

NFRM is the thickness of the frame in plot coordinates. If NFRM is negative, the
frame will be thickened from the inside. If positive, the frame will be thickened
towards the outside.

Default: NFRM = 1

F R M C L R
The colour of frames can be defined with the routine FRMCLR.

The call is: CALL FRMCLR (NCLR) level 1, 2, 3

or: void frmclr (int nclr);

NCLR is a colour value. If NCLR = -1, the current colour is used.
Default: NCLR = -1

6.2.10 Setting Colours

A X S B G D
The routine AXSBGD defines a background colour for axis systems.

The call is: CALL AXSBGD (NCLR) level 1, 2, 3

or: void axsbgd (int nclr);

NCLR is a colour value. If NCLR = -1, the background of an axis system is not filled
in GRAF.

Default: NCLR = -1

A X C L R S
AXCLRS selects colours for single parts of axes.

The call is: CALL AXCLRS (NCLR, COPT, CAX) level 1, 2, 3

or: void axclrs (int nclr, char *copt, char *cax);

NCLR is a colour value. If NCLR = -1, the actual colour is used.

COPT is a character string that can have the values ’LINE’, ’TICKS’, ’LABELS’,
’NAME’ and ’ALL’.

CAX is a character string that defines the axes.
Default: (-1, ’ALL’, ’XYZ’).

Additional note: By default, a frame of thickness 1 is plotted around axis systems. This may
overplot the colour of axis lines (see FRAME, FRMCLR).

6.2.11 Axis System Titles

T I T L I N
This subroutine defines up to four lines of text used for axis system titles. The text can be plotted with
TITLE after a call to GRAF.

The call is: CALL TITLIN (CSTR, N) level 1, 2, 3

or: void titlin (char *cstr, int n);

CSTR is a character string (≤ 132 characters).

50

N is an integer that contains a value between 1 and 4 or -1 and -4. If N is negative,
the line will be underscored.

Default: All lines are filled with blanks.

T I T J U S
The routine TITJUS defines the alignment of title lines.

The call is: CALL TITJUS (CJUS) level 1, 2, 3

or: void titjus (char *cjus);

CJUS is a character string that can have the values ’CENT’, ’LEFT’ and ’RIGHT’.
Default: CJUS = ’CENT’.

L F T T I T
Title lines are centred above axis systems by default but can be left-justified with a call to LFTTIT. This
routine has the same meaning as TITJUS (’LEFT’).

The call is: CALL LFTTIT level 1, 2, 3

or: void lfttit ();

T I T P O S
The routine TITPOS defines the position of title lines which can be plotted above or below axis systems.

The call is: CALL TITPOS (CPOS) level 1, 2, 3

or: void titpos (char *cpos);

CPOS is a character string that can have the values ’ABOVE’ and ’BELOW’.
Default: CPOS = ’ABOVE’.

L I N E S P
LINESP defines the spacing between title and legend lines.

The call is: CALL LINESP (XFAC) level 1, 2, 3

or: void linesp (float xfac);

XFAC The space between lines is set to XFAC * character height.
Default: XFAC = 1.5

H T I T L E
HTITLE defines the character height for titles. The character height defined by HEIGHT will be used if
HTITLE is not called.

The call is: CALL HTITLE (NHCHAR) level 1, 2, 3

or: void htitle (int nhchar);

NHCHAR is the character height in plot coordinates.

V K Y T I T
The space between titles and axis systems can be enlarged or reduced with VKYTIT. By default, the
space is 2 * character height.

The call is: CALL VKYTIT (NV) level 1, 2, 3

or: void vkytit (int nv);

NV is an integer that determines the spacing between axis systems and titles. If
NV is negative, the space will be reduced by NV plot coordinates. If NV is
positive, the space will be enlarged by NV plot coordinates.

Default: NV = 0

51

6.3 Colours

This paragraph describes routines that modify colours. A colour value in DISLIN may be an entry of the
current colour table, or an explicit RGB value. When specifying an explicit RGB value, the colour value
must have the following hexadecimal form: 01bbggrr. The low-order byte contains the intensity of red,
the second byte the intensity of green and the third byte the intensity of blue. The high-order byte must
have the value 1. The function INTRGB creates an explicit RGB value from RGB coordinates. If the
output device can only display 256 colours and an explicit RGB value is given, the nearest entry in the
current colour table that matches the RGB coordinates will be used. Some routines define colours also
by name such as COLOR, or by RGB coordinates such as SETRGB.

6.3.1 Changing the Foreground Colour

C O L O R
COLOR defines the colours used for plotting text and lines.

The call is: CALL COLOR (CNAME) level 1, 2, 3

or: void color (char *cname);

CNAME is a character string that can have the values ’BLACK’, ’RED’, ’GREEN’,
’BLUE’, ’CYAN’, ’YELLOW’, ’ORANGE’, ’MAGENTA’, ’WHITE’, ’FO-
RE’ and ’BACK’. The keyword ’FORE’ resets the color to the default value,
while the keyword ’BACK’ sets the colour to the background colour.

Additional note: The values ’BLACK’ and ’WHITE’ define not absolute colours. If the output
format is in reverse mode, ’BLACK’ is interpreted as ’WHITE’ and ’WHITE’
is interpreted as ’BLACK’. If you want to use true black and true white, you
can use the routine SETRGB (0., 0., 0.) and SETRGB (1., .1., 1.).

S E T C L R
The routine SETCLR sets the foreground colour where the colour can be specified as a colour table entry
or as an explicit RGB colour.

The call is: CALL SETCLR (NCOL) level 1, 2, 3

or: void setclr (int ncol);

NCOL is a colour value.
Default: NCOL = 255 (White).

S E T R G B
The routine SETRGB defines the foreground colour specified in RGB coordinates.

The call is: CALL SETRGB (XR, XG, XB) level 1, 2, 3

or: void setrgb (float xr, float xg, float xb);

XR, XG, XB are the RGB coordinates of a colour in the range 0 to 1. If the output device
cannot display true colours, SETRGB sets the nearest entry in the colour table
that matches the RGB coordinates.

52

6.3.2 Modifying Colour Tables

S E T V L T
SETVLT selects a colour table.

The call is: CALL SETVLT (CVLT) level 1, 2, 3

or: void setvlt (char *cvlt);

CVLT is a character string that defines the colour table.

= ’SMALL’ defines a small colour table with the 8 colours:
1 = BLACK, 2 = RED, 3 = GREEN, 4 = BLUE, 5 = YELLOW, 6 = ORANGE,
7 = CYAN and 8 = MAGENTA.

= ’VGA’ defines the 16 standard colours of a VGA graphics card.

= ’RAIN’ defines 256 colours arranged in a rainbow where 0 means black and 255 means
white.

= ’SPEC’ defines 256 colours arranged in a rainbow where 0 means black and 255 means
white. This colour table uses more violet colours than ’RAIN’.

= ’GREY’ defines 256 grey scale colours where 0 means black and 255 is white.

= ’RRAIN’ is the reverse colour table of ’RAIN’.

= ’RSPEC’ is the reverse colour table of ’SPEC’.

= ’RGREY’ is the reverse colour table of ’GREY’.

= ’TEMP’ defines a temperature colour table. The default colour table is ’RAIN’.

M Y V L T
The routine MYVLT changes the current colour table.

The call is: CALL MYVLT (XR, XG, XB, N) level 1, 2, 3

or: void myvlt (float *xr, float *xg, float *xb, int n);

XR, XG, XB are arrays containing RGB coordinates in the range 0 to 1.

N is the number of colour entries.

S E T I N D
The routine SETIND allows the user to change the current colour table.

The call is: CALL SETIND (INDEX, XR, XG, XB) level 1, 2, 3

or: void setind (int index, float xr, float xg, float xb);

INDEX is an index between 0 and 255.

XR, XG, XB are the RGB coordinates of a colour in the range 0 to 1.

V L T F I L
The routine VLTFIL saves the current colour table to a file, or loads a colour table from a file.

The call is: CALL VLTFIL (CFIL, COPT) level 1, 2, 3

or: void vltfil (char *cfil, char *copt);

CFIL is a character string containing a filename. Colour entries are stored in the file
as RGB coordinates in the range 0 to 1.

COPT is a character string that can have the values ’SAVE’ and ’LOAD’.

53

6.3.3 Utitily Routines for Colours

I N T R G B
The function INTRGB creates an explicit colour value from RGB coordinates.

The call is: NCLR = INTRGB (XR, XG, XB) level 1, 2, 3

or: int intrgb (float xr, float xg, float xb);

XR, XG, XB are the RGB coordinates of a colour in the range 0 to 1.

NCLR is the returned colour value.

I N D R G B
The function INDRGB returns the nearest entry in the current colour table that matches given RGB
coordinates.

The call is: N = INDRGB (XR, XG, XB) level 1, 2, 3

or: int indrgb (float xr, float xg, float xb);

XR, XG, XB are the RGB coordinates of a colour in the range 0 to 1.

N is the returned colour index.

Sometimes, it is easier to specify colours as HSV coordinates where H is the hue, S the saturation and V
the value of a colour. The following routines convert coordinates from the HSV to the RGB model and
vice versa.

H S V R G B
The routine HSVRGB converts HSV coordinates to RGB coordinates.

The call is: CALL HSVRGB (XH, XS, XV, XR, XG, XB) level 1, 2, 3

or: void hsvrgb (float xh, float xs, float xv, float *xr, float *xg, float *xb);

XH, XS, XV are the hue, saturation and value of a colour. XH must be in the range 0 to 360
degrees while XS and XV can have values between 0 and 1. In the HSV model,
colours lie in a spectral order on a six-sided pyramid where red corresponds to
the angle 0, green to 120 and blue to 240 degrees.

XR, XG, XB are the RGB coordinates in the range 0 to 1 calculated by HSVRGB.

R G B H S V
The routine RGBHSV converts RGB coordinates to HSV coordinates.

The call is: CALL RGBHSV (XR, XG, XB, XH, XS, XV) level 1, 2, 3

or: void rgbhsv (float xr, float xg, float xb, float *xh, float *xs, float *xv);

6.4 Text and Numbers

H E I G H T
HEIGHT defines the character height.

The call is: CALL HEIGHT (NHCHAR) level 1, 2, 3

or: void height (int nhchar);

54

NHCHAR is the character height in plot coordinates.
Default: NHCHAR = 36

A N G L E
This routine modifies the direction of text plotted with the routines MESSAG, NUMBER, RLMESS and
RLNUMB.

The call is: CALL ANGLE (NDEG) level 1, 2, 3

or: void angle (int ndeg);

NDEG is an angle measured in degrees and a counter-clockwise direction.
Default: NDEG = 0

T X T J U S
The routine TXTJUS defines the alignment of text plotted with the routines MESSAG and NUMBER.

The call is: CALL TXTJUS (CJUS) level 1, 2, 3

or: void txtjus (char *cjus);

CJUS is a character string that can have the values ’LEFT’, ’RIGHT’ and ’CENT’.
The starting point of text and numbers will be interpreted as upper left, upper
right and upper centre point.

Default: CJUS = ’LEFT’.

F R M E S S
FRMESS defines the thickness of frames around text plotted by MESSAG.

The call is: CALL FRMESS (NFRM) level 1, 2, 3

or: void frmess (int nfrm);

NFRM is the thickness of frames in plot coordinates. If NFRM is negative, frames
will be thickened from the inside. If positive, frames will be thickened towards
the outside.

Default: NFRM = 0

N U M F M T
NUMFMT modifies the format of numbers plotted by NUMBER and RLNUMB.

The call is: CALL NUMFMT (COPT) level 1, 2, 3

or: void numfmt (char *copt);

COPT is a character string defining the format.

= ’FLOAT’ will plot numbers in floating-point format.

= ’EXP’ will plot numbers in exponential format where fractions range between 1 and
10.

= ’FEXP’ will plot numbers in the format fEn where f ranges between 1 and 10.

= ’LOG’ will plot numbers logarithmically with base 10 and the corresponding expo-
nents. The exponents must be passed to NUMBER and RLNUMB.

Default: COPT = ’FLOAT’.

Additional note: SETEXP and SETBAS alter the position and size of exponents.

N U M O D E
NUMODE alters the appearance of numbers plotted by NUMBER and RLNUMB.

55

The call is: CALL NUMODE (CDEC, CGRP, CPOS, CFIX) level 1, 2, 3

or: void numode (char *cdec, char *cgrp, char *cpos, char *cfix);

CDEC is a character string that defines the decimal notation.

= ’POINT’ defines a point.

= ’COMMA’ defines a comma.

CGRP is a character string that defines the grouping of 3 digits.

= ’NONE’ means no grouping.

= ’SPACE’ defines a space as separator.

= ’POINT’ defines a point as separator.

= ’COMMA’ defines a comma as separator.

CPOS is a character string that defines the sign preceding positive numbers.

= ’NONE’ means no preceding sign.

= ’SPACE’ defines a space as a preceding sign.

= ’PLUS’ defines a plus as a preceding sign.

CFIX is a character string specifying character spacing.

= ’NOEQUAL’ is used for proportional spacing.

= ’EQUAL’ is used for non-proportional spacing.

Default: (’POINT’,’NONE’,’NONE’,’NOEQUAL’).

C H A S P C
CHASPC affects intercharacter spacing.

The call is: CALL CHASPC (XSPC) level 1, 2, 3

or: void chaspc (float xspc);

XSPC is a real number that contains a multiplier. If XSPC< 0, the intercharacter
spacing will be reduced by XSPC * NH plot coordinates where NH is the
current character height. If XSPC> 0, the spacing will be enlarged by XSPC
* NH plot coordinates.

Default: XSPC = 0.

C H A W T H
CHAWTH affects the width of characters.

The call is: CALL CHAWTH (XWTH) level 1, 2, 3

or: void chawth (float xwth);

XWTH is a real number between 0 and 2. If XWTH< 1, the character width will be
reduced. If XWTH> 1, the character width will be enlarged.

Default: XWTH = 1.

C H A A N G
CHAANG defines an inclination angle for characters.

The call is: CALL CHAANG (ANGLE) level 1, 2, 3

or: void chaang (float angle);

56

ANGLE is the inclination angle between characters and the vertical direction in degrees
(-60.≤ ANGLE ≤60).

Default: ANGLE = 0.

F I X S P C
All fonts in DISLIN except for the default font are proportional. After a call to FIXSPC the characters
of a proportional font will also be plotted with a constant character width.

The call is: CALL FIXSPC (XFAC) level 1, 2, 3

or: void fixspc (float xfac);

XFAC is a real number containing a scaling factor. Characters will be centred in a
box of width XFAC * XMAX where XMAX is the largest character width of
the current font.

6.5 Fonts

The following routines define character sets of varying style and plot velocity. All fonts except for the
default font DISALF are proportional. Each font provides 6 alphabets.

The calls are: CALL DISALF - default font, single stroke, low resolution

CALL SIMPLX - single stroke font

CALL COMPLX - complex font

CALL DUPLX - double stroke font

CALL TRIPLX - triple stroke font

CALL GOTHIC - gothic font

CALL SERIF - complex shaded font

CALL HELVE - shaded font

CALL HELVES - shaded font with small characters

Additional note: If one of the shaded fonts SERIF, HELVE or HELVES is used, only the outlines
of characters are plotted to minimize plotting time. With the statement CALL
SHDCHA characters will be shaded.

P S F O N T
PSFONT defines a PostScript font.

The call is: CALL PSFONT (CFONT) level 1, 2, 3

or: void psfont (char *cfont);

CFONT is a character string containing the font. Standard font names in PostScript are:

Times-Roman Courier
Times-Bold Courier-Bold
Times-Italic Courier-Oblique
Times-BoldItalic Courier-BoldOblique
Helvetica AvantGarde-Book

57

Helvetica-Bold AvantGarde-Demi
Helvetica-Oblique AvantGarde-BookOblique
Helvetica-BoldOblique AvantGarde-DemiOblique
Helvetica-Narrow Bookman-Light
Helvetica-Narrow-Bold Bookman-LightItalic
Helvetica-Narrow-Oblique Bookman-Demi
Helvetica-Narrow-BoldOblique Bookman-DemiItalic
NewCenturySchlbk-Roman Palatino-Roman
NewCenturySchlbk-Italic Palatino-Italic
NewCenturySchlbk-Bold Palatino-Bold
NewCenturySchlbk-BoldItalic Palatino-BoldItalic
ZapfChancery-MediumItalic Symbol
ZapfDingbats

Additional notes: - The file format must be set to ’PS’, ’EPS’, ’PDF’ or ’SVG’ with the routine
METAFL. For SVG files, the Times, Helvetica and Courier fonts can be used.

- Font names cannot be shortened. Some printers provide additional non-
standard fonts. These fonts should be specified exactly in upper and lower
characters as they are described in the printer manuals. PostScript suppresses
any graphics if there is a syntax error in the font name. Standard font names
are not case-sensitive.

- A call to a DISLIN font resets PostScript fonts.

- The character coding defined with CHACOD should be ’STANDARD’ or
’ISO1’ for PostScript fonts. Otherwise, the DISLIN font ’COMPLX’ is used.

W I N F N T
WINFNT defines a TrueType font for WMF files and screen output on Windows displays.

The call is: CALL WINFNT (CFONT) level 1, 2, 3

or: void winfnt (char *cfont);

CFONT is a character string containing the font. The following fonts can normally be
used on the Windows 9x/NT/2000 operating system:

Courier New Times New Roman Italic
Courier New Bold Times New Roman Bold Italic
Courier New Italic Arial
Courier New Bold Italic Arial Bold
Times New Roman Arial Italic
Times New Roman Bold Arial Bold Italic

Additional note: - The coding of a Windows font should correspond to the character coding de-
fined with CHACOD. For example, if the character coding in CHACOD is set
to ’STANDARD’ or ’ISO1’, an ISO-Latin-1 should be used. If the character
coding is set to ’UTF8’, an Unicode font should be loaded.

X 1 1 F N T
X11FNT defines an X11 font for screen output on X11 displays.

The call is: CALL X11FNT (CFONT, COPT) level 1, 2, 3

or: void x11fnt (char *cfont, char *copt);

CFONT is a character string containing the first part of an X11 font.

58

COPT is a character string containing the last part of an X11 font. IF COPT = ’STAN-
DARD’, the value ’-*-*-*-*-iso8859-1’ is used for the last part of an X11 font.

Additional notes: - CFONT must begin and end with the separator ’-’ and must contain the first
five fields of an X11 font. DISLIN adds then the point size and a transfor-
mation matrix to the font. IF COPT has not the value ’STANDARD’, it must
begin with the character ’-’ and contain the last 6 fields of an X11 font.

- The coding of the X11 font should correspond to the coding defined with CHA-
COD (see WINFNT).

Here are some examples for the contents of CFONT:

-Adobe-Times-Medium-R-Normal-
-Adobe-Times-Bold-R-Normal-
-Adobe-Times-Bold-I-Normal-
-Adobe-Helvetica-Bold-R-Normal-
-Adobe-Courier-Medium-R-Normal-

B M P F N T
DISLIN contains some bitmap fonts that can be set with the routine BMPFNT. Bitmap fonts are allowed
for screen output and for a bitmap file format. They can be used to increase the quality of directly created
raster formats such as PNG and TIFF.

The call is: CALL BMPFNT (CFONT) level 1, 2, 3

or: void bmpfnt (char *cfont);

CFONT is a character string that can have the values ’COMPLEX’, ’SIMPLEX’ and
’HELVE’. The DISLIN bitmap fonts contain characters for ’STANDARD’,
’ISO1’, ’ISO2’ and ’ISO3’ codings.

H W F O N T
The routine HWFONT sets a standard hardware font if hardware fonts are supported by the current file
format. For example, if the file format is PostScript, the font ’Times-Roman’ is used, if the file format is
’CONS’ or ’XWIN’, ’Times New Roman’ is used for Windows and ’-*-Times-Bold-R-Normal-’ is used
for X11. If no hardware fonts are supported, COMPLX is used.

The call is: CALL HWFONT level 1, 2, 3

or: void hwfont ();

C H A C O D
The routine CHACOD defines the coding of characters.

The call is: CALL CHACOD (COPT) level 1, 2, 3

or: void chacod (char *copt);

COPT is a character string that can have the values ’STANDARD’, ’ISO1’, ’ISO2’,
’ISO3’, ’ISO5’, ’ISO7’, ’KOI8’ and ’UTF8’. The keyword ’STANDARD’
means the DISLIN coding of characters as displayed in the figures 6.4 to 6.10.
’ISO5’ and ’KOI8’ are encodings for Cyrillic characters while ’ISO7’ is a
coding for Greek characters. ’UTF8’ is a coding for Unicode characters. If
COPT is not ’STANDARD’, the coding is mapped to the available DISLIN
characters.

Default: ’STANDARD’.

59

B A S A L F
BASALF defines the base alphabet.

The call is: CALL BASALF (CALPH) level 1, 2, 3

or: void basalf (char *calph);

CALPH is a character string that can have the values ’STANDARD’, ’ITALIC’,
’GREEK’, ’SCRIPT’, ’RUSSIAN’ and ’MATHEMATIC’. These alphabets
can be used with all fonts, but may be ignored for some special character cod-
ings.

Default: ’STANDARD’.

S M X A L F
SMXALF defines shift characters to shift between the base and an alternate alphabet.

The call is: CALL SMXALF (CALPH, C1, C2, N) level 1, 2, 3

or: void smxalf (char *calph, char *c1, char *c2, int n);

CALPH is a character string containing an alphabet. In addition to the names in
BASALF, CALPH can have the value ’INSTRUCTION’.

C1 is a character that shifts to the alternate alphabet.

C2 is a character that shifts back to the base alphabet. C1 and C2 may be identical.
After the last plotted character of a character string, DISLIN automatically
shifts back to the base alphabet.

N is an integer between 1 and 6. Up to 6 alternate alphabets can be defined.

P S M O D E
The routine PSMODE sets PostScript options.

The call is: CALL PSMODE (COPT) level 0, 1, 2, 3

or: void psmode (char *copt);

COPT is a character string that can have the values ’NONE’, ’GREEK’, ’ITALIC’,
’BOTH’, ’SINGLE’ and ’MULTI’. The options ’GREEK’, ’ITALIC’ and
’BOTH’ enable Greek and Italic PostScript characters. If they are disabled,
DISLIN vector characters are used. PSMODE must be called in level 1, 2 or 3
for this options.
The option ’SINGLE’ defines an old-style PostScript format without
PostScript commands for multiple pages. PSMODE must be called in level
0 for the options ’SINGLE’ and ’MULTI’.

Defaults: ’NONE’, ’MULTI’.

E U S H F T
European characters can be plotted by using their character codes in text strings where different character
codings are available (see CHACOD), or by defining a shift character that converts the following char-
acter into a European character. The routine EUSHFT defines shift characters for European characters.

The call is: CALL EUSHFT (COPT, CSHIFT) level 1, 2, 3

or: void eushft (char *copt, char *cshift);

COPT is a character string that can have the values ’GERMAN’, ’FRENCH’, ’SPAN-
ISH’, ’DANISH’, ’ACUTE’, ’GRAVE’, ’CIRCUM’ and ’TURKISH’.

60

CSHIFT is a shift character. The character placed directly after CSHIFT will be plotted
as the corresponding European character. Figure 6.3 shows a table of the
possible European characters.

Additional notes: - Shift characters can be defined multiple where the characters must be different.

- The Turkish characters are only supported by COMPLX and by the bitmap
fonts defined with BITMAP. The other European characters are also supported
by PostScript.

- If the shift characters should be plotted in a text string, they must be doubled.

- European characters are not available for the character codings ’ISO5’, ’ISO7’
and ’KOI8’.

The following table shows all possible European characters. The characters on the left side of a column
are shifted to the characters on the right side of that column:

GERMAN DANISH SPANISH FRENCH ACUTE GRAVE CIRCUM

A Ä
O Ö
U Ü
a ä
o ö
u ü
s ß

A Å
O Ø
E Æ
a å
o ø
e æ

N Ñ
n ñ
! ¡
? ¿

C Ç
c ç
E Ë
I Ï
e ë
i ï

A Á
E É
I Í
O Ó
U Ú
a á
e é
i í
o ó
u ú

A À
E È
I Ì
O Ò
U Ù
a à
e è
i ì
o ò
u ù

A Â
E Ê
I Î
O Ô
U Û
a â
e ê
i î
o ô
u û

Figure 6.3: EUSHFT Character Set

Example:

PROGRAM EUSHFT
CALL METAFL (’CONS’)
CALL DISINI
CALL PAGERA
CALL HWFONT

CALL EUSHFT (’GERMAN’, ’!’)
CALL MESSAG (’!A, !O, !U, !a, !o, !u, !s’, 100, 100)
CALL DISFIN
END

The next figures show several software and PostScript fonts that can be used in DISLIN. The full set
of special European characters (ASCII code> 126) is available in the software font COMPLX and in
PostScript, X11 and TrueType fonts. The coding of the characters in figure 6.10 is the default char-
acter coding in DISLIN. An ISO-Latin-1 coding of characters can be defined with the DISLIN routine
CHACOD.

61

ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.4: DISALF Character Set

62

ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.5: SIMPLX Character Set

63

ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.6: COMPLX Character Set

64

ASCII SCRI. RUSS. MATH. ASCII SCRI. RUSS. MATH. ASCII SCRI. RUSS. MATH.

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.7: COMPLX Character Set

65

ASCII STAN. ITAL. SCRI. ASCII STAN. ITAL. SCRI. ASCII STAN. ITAL. SCRI.

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.8: GOTHIC Character Set

66

ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK ASCII STAN. ITAL. GREEK

 32

 33

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

 49

 50

 51

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 62

 63

 64

 65

 66

 67

 68

 69

 70

 71

 72

 73

 74

 75

 76

 77

 78

 79

 80

 81

 82

 83

 84

 85

 86

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

Figure 6.9: HELVE Character Set

67

Times-Roman

ASCII CHAR ASCII CHAR ASCII CHAR ASCII CHAR ASCII CHAR

 32

 33 !
 34 "
 35 #
 36 $
 37 %
 38 &
 39 ’
 40 (
 41)
 42 *
 43 +
 44 ,
 45 -
 46 .
 47 /
 48 0
 49 1
 50 2
 51 3
 52 4
 53 5
 54 6
 55 7
 56 8
 57 9
 58 :
 59 ;
 60 <
 61 =
 62 >

 63 ?
 64 @
 65 A
 66 B
 67 C
 68 D
 69 E
 70 F
 71 G
 72 H
 73 I
 74 J
 75 K
 76 L
 77 M
 78 N
 79 O
 80 P
 81 Q
 82 R
 83 S
 84 T
 85 U
 86 V
 87 W
 88 X
 89 Y
 90 Z
 91 [
 92 \
 93]

 94 ^
 95 _
 96 ‘
 97 a
 98 b
 99 c
100 d
101 e
102 f
103 g
104 h
105 i
106 j
107 k
108 l
109 m
110 n
111 o
112 p
113 q
114 r
115 s
116 t
117 u
118 v
119 w
120 x
121 y
122 z
123 {
124 |

125 }
126 ~
127 Ä
128 Ö
129 Ü
130 ä
131 ö
132 ü
133 ß
134 Å
135 Ø
136 Æ
137 å
138 ø
139 æ
140 Ñ
141 ñ
142 Ç
143 ç
144 Ë
145 Ï
146 ë
147 ï
148 Á
149 É
150 Í
151 Ó
152 Ú
153 á
154 é
155 í

156 ó
157 ú
158 À
159 È
160 Ì
161 Ò
162 Ù
163 à
164 è
165 ì
166 ò
167 ù
168 Â
169 Ê
170 Î
171 Ô
172 Û
173 â
174 ê
175 î
176 ô
177 û
178 Ã
179 ã
180 Õ
181 õ
182 Ý
183 ý
184 ÿ
185 ¡
186 ¿

Figure 6.10: Times-Roman Character Set

68

PostScript Fonts

This is Times-Roman
This is Times-Bold
This is Times-Italic
This is Times-BoldItalic
This is Helvetica
This is Helvetica-Bold
This is Helvetica-Oblique
This is Helvetica-BoldOblique
This is Helvetica-Narrow
This is Helvetica-Narrow-Bold
This is Helvetica-Narrow-Oblique
This is Helvetica-Narrow-BoldOblique
This is NewCenturySchlbk-Roman
This is NewCenturySchlbk-Italic
This is NewCenturySchlbk-Bold
This is NewCenturySchlbk-BoldItalic
This is ZapfChancery-MediumItalic

❁▼▲
This is Courier
This is Courier-Bold
This is Courier-Oblique
This is Courier-BoldOblique
This is AvantGarde-Book
This is AvantGarde-Demi
This is AvantGarde-BookOblique
This is AvantGarde-DemiOblique
This is Bookman-Light
This is Bookman-LightItalic
This is Bookman-Demi
This is Bookman-DemiItalic
This is Palatino-Roman
This is Palatino-Italic
This is Palatino-Bold
This is Palatino-BoldItalic
Τηισ ισ Σψµβολ

Figure 6.11: PostScript Fonts

69

6.6 Indices and Exponents

Indices and exponents can be plotted by using control characters in characters strings, or by using the
TeX syntax described in paragraph 6.7. There are 3 predefined control characters in DISLIN which can
be altered with the routines NEWMIX and SETMIX. The predefined character

[is used for exponents. The character height is reduced by the scaling factor FEXP and the
pen is moved up FBAS * NH plot coordinates where NH is the current character height.

] is used for indices. The pen is moved down FBAS * NH plot coordinates and the character
height is reduced by the scaling factor FEXP.

$ is used to move the pen back to the base-line. This will automatically be done at the end of
a character string.

FBAS and FEXP have the default values 0.6 and 0.8, respectively, these values can be changed with the
routines SETBAS and SETEXP.

M I X A L F
This routine instructs DISLIN to search for control characters in character strings.

The call is: CALL MIXALF level 1, 2, 3

or: void mixalf ();

S E T B A S
SETBAS defines the position of indices and exponents. This routine also affects logarithmic axis labels.

The call is: CALL SETBAS (FBAS) level 1, 2, 3

or: void setbas (float fbas);

FBAS is a real number used as a scaling factor. The pen will be moved up or down by
FBAS * NH plot coordinates to plot exponents or indices. NH is the current
character height.

Default: FBAS = 0.6.

S E T E X P
SETEXP sets the character height of indices and exponents.

The call is: CALL SETEXP (FEXP) level 1, 2, 3

or: void setexp (float fexp);

FEXP is a real number used as a scaling factor. The character height of indices and
exponents is set to FEXP * NH where NH is the current character height.

Default: FEXP = 0.8

N E W M I X
NEWMIX defines an alternate set of control characters for plotting indices and exponents. The default
characters ’[’, ’]’ and ’$’ are replaced by ’ˆ’, ’ ’ and ’%’.

The call is: CALL NEWMIX level 1, 2, 3

or: void newmix ();

S E T M I X
SETMIX defines global control characters for plotting indices and exponents.

70

The call is: CALL SETMIX (C, CMIX) level 1, 2, 3

or: void setmix (char *c, char *cmix);

C is a new control character.

CMIX is a character string that defines the function of the control character. CMIX
can have the values ’EXP’, ’IND’, ’RES’, ’LEG’ and ’TEX’ for exponents,
indices, resetting the base-line, for multiple text lines in legends and for TeX
instructions, respectively.

Additional note: The routines NEWMIX and SETMIX only modify the control characters. A
call to MIXALF is always necessary to plot indices and exponents.

6.7 Instruction Alphabet

The instruction alphabet contains commands that control pen movements and character sizes during
the plotting of character strings. It is provided for the representation of complicated formulas. An
alternate method for plotting of complicated formulas is described in paragraph 6.7, “TeX Instructions
for Mathematical Formulas”.
The instruction alphabet can be used in the same way as other alphabets in DISLIN. Shift characters
must be defined with the routine SMXALF to switch between the base and the instruction alphabet.
The commands of the instruction alphabet consist of a single character and an optional parameter. If the
parameter is omitted, DISLIN will use default values. A parameter can be a real number, an integer or
the character ’X’ which resets the parameter back to the entry value at the beginning of the character
string.
Commands of the instruction alphabet can only change plot parameters temporarily within a character
string. At the end of a character string, all parameters are reset to their entry values.
The following table summarizes all instruction commands. The character r means a real parameter and
i an integer. The base-line of character strings is placed directly below them. Commands can be given
in uppercase or lowercase letters. Real parameters can be specified without decimal points while integer
parameters cannot have decimal points. Several commands can follow one another. Blanks between
commands will be ignored.

Instruction-Alphabet

Command Parameter Default Description

A real 1. moves the pen horizontally by r * NH plot coordi-
nates where NH is the current character height. If r
< 0, the pen will be moved backwards.

C integer 1 moves the pen horizontally by i character spaces. If
i < 0, the pen will be moved backwards.

D real 1. moves the pen down from the base-line by r * NH
plot coordinates. If r> 0, NH is the entry character
height. If r< 0, NH is the current character height.

E moves the pen up by 0.75 * character height and re-
duces the character height by the scaling factor 0.6
(for exponents).

F integer 1 moves the pen horizontally by i spaces. If i is nega-
tive, the pen is moved backwards.

G integer 1 moves the pen horizontally to the tab position with
the index i, where 1≤ i ≤ 20.

71

Command Parameter Default Description

H real 0.6 sets the character height to r * NH. If r> 0, NH is
the entry character height. If r< 0, NH is the current
character height.

I moves the pen down by 0.35 * character height and
multiplies the character height by 0.6 (for indices).

J integer 1 underscores twice from the tab position i to the cur-
rent pen position.

K real 0.8 is used to plot characters with constant widths.
Characters will be centred in a box with the width
r * W where W is the largest character length in the
current font. The global routine is FIXSPC.

L integer 1 underscores from the tab position i to the current pen
position.

M integer 1 defines the base alphabet.
(1 = STAND., 2 = GREEK, 3 = MATH.,
4 = ITAL., 5 = SCRIPT, 6 = RUSSIAN).

N integer 1 sets a colour i, where 0≤ i ≤ 255). The global rou-
tine is SETCLR.

O real 0. moves the base-line vertically by r * character
height. If r< 0 the base-line is moved down.

P integer 1 defines a horizontal tab position with the index i at
the current pen position, where 1≤ i ≤ 20.
All tab positions are initialized to the beginning of
the string.

R resets the character height and the base-line to their
entry values.

S integer 0 plots a symbol with the number i, where 0≤ i ≤ 21.

T integer 0 moves the pen horizontally from the beginning of
the string by i plot coordinates.

U real 1. moves the pen up from the base-line by r * NH plot
coordinates. If r> 0, NH is the entry character
height. If r< 0, NH is the current character height.

V integer 1 plots a horizontal line from the tab position i to the
current pen position. The line is moved up from the
base-line by 0.5 * character height plot coordinates.

W real 1. affects the width of characters. The global routine is
CHAWTH.

Y real 0. affects the character spacing. The global routine is
CHASPC.

Z real 0. defines an inclination angle for characters, where -
60≤ r ≤ 60. The global routine is CHAANG.

For the following examples, the characters ’{’ and ’}’ are defined with CALL SMXALF (’INST’, ’{’,
’}’, 1) to switch between the instruction and the base alphabet.

72

Figure 6.12: Instruction Alphabet

73

6.8 TeX Instructions for Mathematical Formulas

6.8.1 Introduction

This paragraph presents an alternate method to the DISLIN instruction alphabet for plotting mathemat-
ical formulas. The text formatting language TeX has a very easy method for describing mathematical
formulas. Since this method is well-known by many scientists, an emulation mode for TeX instructions
is added to DISLIN with version 7.4.
TeX instructions can be enabled in DISLIN with the statement CALL TEXMOD (’ON’). If TeX mode
is enabled, mixed alphabets defined with SMXALF and the control characters for indices and exponents
described in paragraph 6.5 will be ignored.
Mathematical formulas in TeX mode are produced in DISLIN by some special descriptive text. This
means that DISLIN must be informed that the following text is to be interpreted as a mathematical
formula. The character $ in a text switches from text to math mode, and from math to text mode.
Therefore, mathematical formulas must be enclosed in a pair of dollar signs.
Numbers that appear within formulas are called constants, whereas simple variables are represented by
single letters. The universal practice in mathematical typesetting is to put constants in Roman typeface
and variables in italics. DISLIN uses this rule by default in math mode. The rule can be modified with
the routine TEXOPT. Blanks are totally ignored in math mode and spaces are included automatically by
DISLIN between constants, variables and operators.
The characters $,{, } and\ have a special meaning in TeX mode and therefore cannot act as printable
characters. To include them in normal text, the commands\$, \{, \} and\\ must be used. Additional,
the characters andˆ have a special meaning in math mode and can be handled in the same way.

Note: Some Fortran compilers treat the character ’\’ as a special control character, so that an
additional flag has to be used for compiling (i.e. -fno-backslash for g77), or the TeX control
character ’\’ can be replaced by another character with the routine SETMIX.

6.8.2 Enabling TeX Mode and TeX Options

T E X M O D
The routine TEXMOD can be used to enable TeX mode in DISLIN. In TeX mode, all character strings
passed to DISLIN routines can contain TeX instructions for plotting mathematical formulas.

The call is: CALL TEXMOD (CMODE) level 1, 2, 3

or: void texmod (char *cmode);

CMODE is a character string that can have the values ’ON’ and ’OFF’. CMODE = ’ON’
enables TeX mode and CMODE = ’OFF’ disables TeX mode.

Default: CMODE = ’OFF’.

T E X O P T
The routine TEXOPT sets some TeX options.

The call is: CALL TEXOPT (COPT, CTYPE) level 1, 2, 3

or: void texopt (char *copt, char *ctype);

COPT is a character string that can have the values ’ON’ and ’OFF’.

CTYPE is a character string that can contain the keywords ’LIMITS’ and ’ITALIC’.
’LIMITS’ means that the limits for sums and integrals will be placed above
and below the sum and integral signs instead of following them. ’ITALIC’
means that for math mode variables will be put in italics.

Default: (’ON’, ’LIMITS’),
(’ON’, ’ITALIC’).

74

T E X V A L
The routine TEXVAL sets a factor for the size of indices and exponents.

The call is: CALL TEXVAL (X, COPT) level 1, 2, 3

or: void texval (float x, char *copt);

X is a floatingpoint variable containing the factor.

COPT is a character string that can contain the keyword ’EXP’.
Default: (1.0, ’EXP’).

6.8.3 Exponents and Indices

Exponents and indices are characters that are either raised or lowered relative to the base line of the text.
The character̂ sets the next character as an exponent, while the charactersets it as an index:

x2 xˆ2 an a n xn
i x iˆn

When exponents and indices occur together, their order is unimportant. If the exponent or index contains
more than one character, the group of characters must be inclosed in braces{ }:

x2n xˆ{2n} x2y x {2y} A−n+2
i,j,k A {i,j,k}ˆ{-n+2}

Multiple raisings and lowerings are generated by applyingˆ and to the exponents and indices:

xy2
xˆ{yˆ2}

Additional note: The commandŝ and are only allowed in math mode.

6.8.4 Fractions

The instruction\frac{numerator}{denominator} can be used in TeX math mode for plotting fractions.
The numerator is plotted on top of the denominator with a horizontal fraction line between them.

1
x+ y

\frac{1}{x+y}

a2 − b2

a+ b
= a− b \frac{â 2 - b̂ 2}{a+b} = a - b

Fractions may be nested to a depth of 8 within one another:

a
x−y + b

x+y

1 + a−b
a+b

\frac{\frac{a}{x-y} + \frac{b}{x+y}
{1 + \frac{a-b}{a+b}}

6.8.5 Roots

Roots can be plotted with the syntax\sqrt[n]{arg} where the optional part [n] can be omitted.

Examples:

3
√

8 = 2 \sqrt[3]{8} = 2

√
x2 + y2 + 2xy = x+ y \sqrt{xˆ2 + ŷ 2 + 2xy} = x + y

Roots may be nested inside one another to a depth of 8:√
−q +

√
q2 + p2 \sqrt{-q +\sqrt{qˆ2 + p̂ 2}}

75

6.8.6 Sums and Integrals

Summation and integral signs can be plotted with the two instructions\sum and\int. Sums and integrals
can posses upper and lower limits that can be plotted with the exponent and index instructionsˆ and . By
default, the limits are placed below and above the summation and integral signs. This can be modfified
with the routine TEXMOD or with the instruction\nolimits following the summation and integral signs.
Examples:

2
n∑

i=0
ai \sum{i=1}ˆn a i

∫ b
a fi(x)gi(x)dx \int\nolimits â b f i(x)g i(x)dx

6.8.7 Greek Letters

The following Greek letters are available in text and in math mode. If they are used in text mode, the first
blank character after the letter will be interpreted as a seperator and will be ignored.

α \alpha θ \theta o o χ \chi
β \beta ι \iota π \pi ψ \psi
γ \gamma κ \kappa ρ \rho ω \omega
δ \delta λ \lambda σ \sigma
ε \epsilon µ \mu τ \tau
ζ \zeta ν \nu υ \upsilon
η \eta ξ \xi ϕ \phi

Γ \Gamma Λ \Lambda Σ \Sigma Ψ \Psi
∆ \Delta Ξ \Xi Υ \Upsilon Ω \Omega
Θ \Theta Π \Pi Φ \Phi

6.8.8 Mathematical Symbols

The following mathematical symbols are available in text and in math mode.

± \pm · \cdot ∪ \cup � \odot
∓ \mp ∗ \ast ∨ \vee ⊕ \oplus
× \times ? \star ∧ \wedge 	 \ominus
÷ \div ∩ \cap \ \setminus

≤ \le \leq ≥ \ge \geq 6= \neq ∼ \sim
⊂ \subset ⊃ \supset ∼= \cong | \mid
⊆ \subseteq ⊇ \supseteq ≡ \equiv /∈ \notin
∈ \in 3 \ni ‖ \parallel 6= \not=

← \leftarrow → \rightarrow ⇔ \Leftrightarrow ↓ \downarrow
⇐ \Leftarrow ⇒ \Rightarrow ↑ \uparrow

∅ \emptyset
√

\surd ∀ \forall \ \backslash
∇ \nabla ∂ \partial ∃ \exists ∞ \infty
⊥ \perp

6.8.9 Alternate Alphabets

The DISLIN alphabets ’STANDARD’, ’ITALIC’, ’GREEK’, ’SCRIPT’ and ’RUSSIAN’ can be used in
TeX mode with the instructions\rm, \it, \gr, \cal and\ru.

76

6.8.10 Function Names

The standard for mathematical formulas is to set variable names in italics but the names of functions in
Roman. The following function names will be recognized by DISLIN and plotted in Roman.

\arccos \arcsin \arctan \arg \cos \cosh \cot
\coth \csc \dec \dim \exp \hom \ln
\log \sec \sin \sinh \tan \tanh

6.8.11 Accents

Accents are available in TeX mode in the same way as in normal DISLIN mode (see EUSHFT).

6.8.12 Lines above and below Formulas

The commands\overline{arg} and\underline{arg} can be used to draw lines over and under a formula.
The command\vec{arg} draws a vector over a formula. All commands can be used in TeX text and
math mode.

6.8.13 Horizontal Spacing

Small amounts of horizontal spacing can be added in TeX mode with the following commands:

\, small space = 3/18 of the current character size
\: medium space = 4/18 of the current character size
\; large space = 5/18 of the current character size
\! negative space = -3/18 of the current character size

Larger amounts of horizontal spacing can be added with the commands:

\quad extra space = 1/1 of the current character size
\qquad extra space = 2/1 of the current character size

6.8.14 Selecting Character Size in TeX Mode

The commands\tiny, \scriptsize,\footnotesize,\small,\normalsize,\large,\Large,\LARGE, \huge
and\Huge can be used in TeX mode for modifying the character size. The command\normalsize is
corresponding to the current character size before the call of the text plotting routine. The character size
is decreased or increased by a factor of 1.2 for neighbouring character size commands.

6.8.15 Colours in TeX Mode

The commands\black,\red,\green,\blue,\cyan,\yellow,\orange,\magenta,\white,\fore and\back
set the corresponding colours in TeX mode.

6.8.16 Example

PROGRAM EX6_2
CHARACTER CSTR*80

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX

77

CALL HEIGHT(40)

CSTR=’TeX Instructions for Mathematical Formulas’
NL=NLMESS(CSTR)
CALL MESSAG(CSTR, (2100 - nl)/2, 100)

CALL TEXMOD(’ON’)
CALL MESSAG(’$\frac{1}{x+y}$’, 150, 400)
CALL MESSAG(’$\frac{aˆ2 - bˆ2}{a+b} = a - b$’, 1200, 400)

CALL MESSAG(’$r = \sqrt{xˆ2 + yˆ2}’, 150, 700)
CALL MESSAG(’$\cos \phi = \frac{x}{\sqrt{xˆ2 + yˆ2}}$’,

* 1200, 700)

CALL MESSAG(’$\Gamma(x) = \int_0ˆ\infty eˆ{-t}tˆ{x-1}dt$’,
* 150, 1000)

CALL MESSAG(’$\lim_{x \to \infty} (1 + \frac{1}{x})ˆx = e$’,
* 1200, 1000)

CALL MESSAG(’$\mu = \sum_{i=1}ˆn x_i p_i$’, 150, 1300)
CALL MESSAG(’$\mu = \int_{-\infty}ˆ \infty x f(x) dx$’,

* 1200, 1300)

CALL MESSAG(’$\overline{x} = \frac{1}{n} \sum_{i=1}ˆn x_i$’,
* 150, 1600)

CALL MESSAG(’$sˆ2 = \frac{1}{n-1} \sum_{i=1}ˆn’ //
* ’(x_i - \overline{x})ˆ2$’, 1200, 1600)

CALL MESSAG(’$\sqrt[n]{\frac{xˆn - yˆn}{1 + uˆ{2n}}}$’,
* 150, 1900)

CALL MESSAG(’$\sqrt[3]{-q + \sqrt{qˆ2 + pˆ3}}$’, 1200, 1900)

CALL MESSAG(’$\int \frac{dx}{1+xˆ2} = \arctan x + C$’,
* 150, 2200)

CALL MESSAG(’$\int \frac{dx}{\sqrt{1+xˆ2}} = ’ //
* ’ {\rm arsinh} x + C$’, 1200, 2200)

CALL MESSAG(’$\overline{P_1P_2} = \sqrt{(x_2-x_1)ˆ2 + ’//
* ’(y_2-y_1)ˆ2}$’, 150,2500)

CALL MESSAG(’$x = \frac{x_1 + \lambda x_2}{1 + \lambda}$’,
* 1200, 2500)

CALL DISFIN
END

78

Figure 6.13: TeX Instructions for Mathematical Formulas

79

6.9 Curve Attributes

C H N C R V
CHNCRV defines attributes that will be automatically changed by CURVE after a certain number of calls
to the routine CURVE.

The call is: CALL CHNCRV (CATT) level 1, 2, 3

or: void chncrv (char *catt);

CATT = ’NONE’ means that CURVE changes no attributes.

= ’COLOR’ means that colours will be changed.

= ’LINE’ means that line styles will be changed.

= ’BOTH’ means that colours and line styles will be changed.
Default: CATT = ’NONE’.

Additional note: The sequence of colours is WHITE/BLACK, RED, GREEN, YELLOW,
BLUE, ORANGE, CYAN and MAGENTA.
The sequence of line styles is SOLID, DOT, DASH, CHNDSH, CHNDOT,
DASHM, DOTL and DASHL.
The symbol number is always changed. It will be incremented by 1 starting
with the current symbol defined by MARKER.

The following three routines are useful when automatic attribute setting is selected and the routine
CURVE is called several times to plot a single curve.

I N C C R V
INCCRV defines the number of calls after which CURVE will automatically change attributes.

The call is: CALL INCCRV (NCRV) level 1, 2, 3

or: void inccrv (int ncrv);

NCRV is the number of curves that will be plotted with identical attributes.
Default: NCRV = 1

C H N A T T
CHNATT is an alternative routine to INCCRV. It is useful when the number of curves plotted with
identical attributes varies. CHNATT defines new attributes that will be used by CURVE during the next
call.

The call is: CALL CHNATT level 1, 2, 3

or: void chnatt ();

Additional notes: - CHNATT changes only attributes specified with CHNCRV.

- Attributes cannot be skipped by calling CHNATT several times; the order of
the attribute cycles must be changed.

R E S A T T
In general, curve attributes will be repeated after 8 changes. With the routine RESATT, the attributes can
be reset earlier.

The call is: CALL RESATT level 1, 2, 3

or: void resatt ();

80

I N C M R K
INCMRK selects line or symbol mode for CURVE.

The call is: CALL INCMRK (NMRK) level 1, 2, 3

or: void incmrk (int nmrk);

NMRK = - n means that CURVE plots only symbols. Every n-th point will be marked by a
symbol.

= 0 means that CURVE connects points with lines.

= n means that CURVE plots lines and marks every n-th point with a symbol.
Default: NMRK = 0

M A R K E R
The symbols used to plot points can be selected with the routine MARKER. The symbol number will be
incremented by 1 after a certain number of calls to CURVE defined by INCCRV.

The call is: CALL MARKER (NSYM) level 1, 2, 3

or: void marker (int nsym);

NSYM is the symbol number between 0 and 21. The symbols are shown in appendix
C.

Default: NSYM = 0

H S Y M B L
HSYMBL defines the size of symbols.

The call is: CALL HSYMBL (NHSYM) level 1, 2, 3

or: void hsymbl (int nhsym);

NHSYM is the size of symbols in plot coordinates.
Default: NHSYM = 35

M Y S Y M B
MYSYMB sets an user-defined symbol.

The call is: CALL MYSYMB (XRAY, YRAY, N, ISYM, IFLAG) level 1, 2, 3

or: void mysymb (float *xray, float *yray, int n, int isym, int iflag);

XRAY, YRAY are the X- and Y-coordinates of the symbol in the range -1 and 1.

N is the number of coordinates in XRAY and YRAY.

ISYM is a non negative number that will be used as symbol number.

IFLAG is an Integer that can have the values 0 and 1. If IFLAG = 1, the symbol will
be filled.

Additional note: The number of points in MYSYMB is limited to 100 for Fortran 77. There is
no limitation for the C and Fortran 90 versions of DISLIN.

T H K C R V
THKCRV defines the thickness of curves.

The call is: CALL THKCRV (NTHK) level 1, 2, 3

or: void thkcrv (int nthk);

81

NTHK is the thickness of curves in plot coordinates.
Default: NTHK = 1

G A P C R V
GAPCRV defines a data gap used in the routine CURVE. If the distance between two neightbouring X
coordinates is greater than the gap value, CURVE will not connect these data points.

The call is: CALL GAPCRV (XGAP) level 1, 2, 3

or: void gapcrv (float xgap);

XGAP is the gap value.

P O L C R V
POLCRV defines an interpolation method used by CURVE to connect points.

The call is: CALL POLCRV (CPOL) level 1, 2, 3

or: void polcrv (char *cpol);

CPOL is a character string containing the interpolation method.

= ’LINEAR’ defines linear interpolation.

= ’STEP’ defines step interpolation.

= ’STAIRS’ defines step interpolation.

= ’BARS’ defines bar interpolation.

= ’FBARS’ defines filled bar interpolation.

= ’STEM’ defines stem interpolation.

= ’SPLINE’ defines spline interpolation.

= ’PSPLINE’ defines parametric spline interpolation.
Default: CPOL = ’LINEAR’.

Additional notes: - The width of bars can be set with BARWTH.

- For spline interpolation, the X-coordinates must have different values and be
in ascending order. There is no restriction for a parametric spline. The order
of spline polynomials and the number of interpolated points can be modified
with SPLMOD.

- The interpolation medthods ’LINEAR’, ’BARS’, ’FBARS’ and ’STEM’ can
also be used for polar scaling.

S P L M O D
SPLMOD defines the order of polynomials and the number of interpolated points used for the interpola-
tion methods ’SPLINE’ and ’PSPLINE’.

The call is: CALL SPLMOD (NGRAD, NPTS) level 1, 2, 3

or: void splmod (int ngrad, int npts);

NGRAD is the order of the spline polynomials (2 - 10). It affects the number of points
accepted by CURVE which is determined by the formula (2 * NGRAD + 1) *
N ≤ 1000. For example, with a cubic spline, up to 142 points can be passed to
CURVE.

NPTS is the number of points that will be interpolated in the range XRAY(1) to
XRAY(N).

Default: (3, 200).

82

B A R W T H
BARWTH sets the width of bars plotted by CURVE.

The call is: CALL BARWTH (XWTH) level 1, 2, 3

or: void barwth (float xwth);

XWTH defines the bar width. If positive, the absolute value of XWTH * (XRAY(2)-
XRAY(1)) is used. If negative, the absolute value of XWTH is used where
XWTH is specified in plot coordinates.

Default: XWTH = 0.75

Additional note: If XWTH is positive and polar scaling is enabled, the absolute value of XWTH
* (YRAY(2) - YRAY(1)) defines the width of bars. If XWTH is negative for
polar scaling, the absolute value of XWTH is used where XWTH must be
specified in degrees.

N O C H E K
The routine NOCHEK can be used to suppress the listing of points that lie outside of the axis scaling.

The call is: CALL NOCHEK level 1, 2, 3

or: void nochek ();

6.10 Line Attributes

L I N E S T Y L E S

The routines SOLID, DOT, DASH, CHNDSH, CHNDOT, DASHM, DOTL and DASHL define different
line styles. They are called without parameters. The routine LINTYP (NTYP) can also be used to set
line styles where NTYP is an integer between 0 and 7 and corresponds to the line styles above. The
routine MYLINE sets user-defined line styles.

M Y L I N E
MYLINE defines a global line style.

The call is: CALL MYLINE (NRAY, N) level 1, 2, 3

or: void myline (int *nray, int n);

NRAY is an array of positive integers characterizing the line style. Beginning with
pen-down, a pen-down and pen-up will be done alternately according to the
specified lengths in NRAY. The lengths must be given in plot coordinates.

N is the number of elements in NRAY.

Examples: The values of NRAY for the predefined line styles are given below:

SOLID : NRAY = {1}
DOT : NRAY = {1, 10}
DASH : NRAY = {10, 10}
CHNDSH: NRAY ={30, 15, 10, 15}
CHNDOT: NRAY = {1, 15, 15, 15}
DASHM : NRAY = {20, 15}
DOTL : NRAY = {1, 20}
DASHL : NRAY = {30, 20}

83

L I N W I D
The routine LINWID sets the line width.

The call is: CALL LINWID (NWIDTH) level 1, 2, 3

or: void linwid (int nwidth);

NWIDTH is the line width in plot coordinates. Default: NWIDTH = 1

Additional note: To define smaller line widhts than 1 (i.e. for PostScript files), the routine
PENWID (XWIDTH) can be used where XWIDTH has the same meaning
as NWIDTH.

L N C A P
The routine LNCAP sets the current line cap parameter.

The call is: CALL LNCAP (CAP) level 1, 2, 3

or: void lncap (char *cap);

CAP is a character string defining the line cap.

= ’ROUND’ defines rounded caps.

= ’CUT’ defines square caps.

= ’LONG’ defines square caps where stroke ends will be continued equal to half the line
width.

Default: CAP = ’LONG’.

L N J O I N
The routine LNJOIN sets the current line join parameter.

The call is: CALL LNJOIN (CJOIN) level 1, 2, 3

or: void lnjoin (char *cjoin);

CJOIN is a character string containing the the line join.

= ’SHARP’ defines sharp corners between path segments.

= ’TRUNC’ defines truncated corners between path segments.
Default: CJOIN = ’TRUNC’.

L N M L T
The routine LNMLT sets the current miter limit parameter. This routine can be useful if the line join is
set to ’SHARP’.

The call is: CALL LNMLT (XFC) level 1, 2, 3

or: void lnmlt (float xfc);

XFC is a floatingpoint number where XFC * line width will be used as the miter
limit. The miter length is the distance between the inner and outside edge of a
path corner.

Default: XFC = 2.

84

6.11 Shading

S H D P A T
SHDPAT selects shading patterns used by routines such as SHDCRV and AREAF.

The call is: CALL SHDPAT (IPAT) level 1, 2, 3

or: void shdpat (long ipat);

IPAT is an integer between 0 and 17. The predefined patterns are shown in appendix
C.

M Y P A T
MYPAT defines a global shading pattern.

The call is: CALL MYPAT (IANGLE, ITYPE, IDENS, ICROSS) level 1, 2, 3

or: void mypat (int iangle, int itype, int idens, int icross);

IANGLE is the angle of shading lines (0 - 179).

ITYPE defines the type of shading lines:
= 0 no shading lines.
= 1 equidistant lines.
= 2 double shading lines.
= 3 triple shading lines.
= 4 thick shading lines.
= 5 dotted lines.
= 6 dashed lines.
= 7 dashed-dotted lines.

IDENS defines the distance between shading lines (0: small distance, 9: big distance).

ICROSS indicates whether shading lines are hatched (0: not hatched, 1: hatched).

Examples: The following calls to MYPAT show the predefined shading patterns used by
SHDPAT:

IPAT = 0: CALL MYPAT (0, 0, 0, 0)
IPAT = 1: CALL MYPAT (45, 1, 5, 0)
IPAT = 2: CALL MYPAT (150, 4, 5, 0)
IPAT = 3: CALL MYPAT (135, 1, 5, 0)
IPAT = 4: CALL MYPAT (45, 4, 5, 0)
IPAT = 5: CALL MYPAT (45, 1, 5, 1)
IPAT = 6: CALL MYPAT (135, 2, 1, 0)
IPAT = 7: CALL MYPAT (45, 4, 5, 1)
IPAT = 8: CALL MYPAT (30, 1, 4, 0)
IPAT = 9: CALL MYPAT (45, 2, 1, 1)
IPAT = 10: CALL MYPAT (0, 1, 5, 1)
IPAT = 11: CALL MYPAT (45, 3, 1, 0)
IPAT = 12: CALL MYPAT (70, 4, 7, 0)
IPAT = 13: CALL MYPAT (45, 3, 1, 1)
IPAT = 14: CALL MYPAT (0, 4, 5, 1)
IPAT = 15: CALL MYPAT (45, 2, 1, 0)
IPAT = 16: CALL MYPAT (0, 1, 0, 0)
IPAT = 17: CALL MYPAT (0, 5, 5, 0)

85

N O A R L N
With the routine NOARLN the outlines of shaded regions can be suppressed.

The call is: CALL NOARLN level 1, 2, 3

or: void noarln ();

6.12 Attribute Cycles

The attributes line style, colour and shading pattern can be changed automatically by routines such as
CURVE, SHDCRV, BARS and PIEGRF according to a predefined cycle.

The cycles are:

Line styles: SOLID, DOT, DASH, CHNDSH, CHNDOT, DASHM, DOTL and DASHL.

Colours: WHITE/BLACK, RED, GREEN, YELLOW, BLUE, ORANGE, CYAN and MAGENTA.

Shading: Pattern numbers from 0 to 17.

The following subroutines allow the redefining of cycles.

L I N C Y C
LINCYC changes the line style cycle.

The call is: CALL LINCYC (INDEX, ITYP) level 1, 2, 3

or: void lincyc (int index, int ityp);

INDEX is an index between 1 and 30.

ITYP is an integer between 0 and 7 containing the line style (0 = SOLID, 1 = DOT, 2
= DASH, 3 = CHNDSH, 4 = CHNDOT, 5 = DASHM, 6 = DOTL, 7 = DASHL).

C L R C Y C
CLRCYC changes the colour cycle.

The call is: CALL CLRCYC (INDEX, ICLR) level 1, 2, 3

or: void clrcyc (int index, int iclr);

INDEX is an index between 1 and 30.

ICLR is a colour value (see SETCLR).

P A T C Y C
PATCYC changes the shading pattern cycle.

The call is: CALL PATCYC (INDEX, IPAT) level 1, 2, 3

or: void patcyc (int index, long ipat);

INDEX is an index between 1 and 30.

IPAT is a pattern number between 0 and 17 or is determined by the formula IANGLE
* 1000 + ITYPE * 100 + IDENS * 10 + ICROSS with the parameters described
in MYPAT.

86

6.13 Base Transformations

The following subroutines create a transformation matrix that affects plot vectors contained within page
borders. Vectors may be scaled, shifted and rotated and the transformations can be combined in any
order.

T R F S H F
TRFSHF affects the shifting of plot vectors.

The call is: CALL TRFSHF (NXSHFT, NYSHFT) level 1, 2, 3

or: void trfshf (int nxshft, int nyshft);

NXSHFT, NYSHFT are plot coordinates that define the magnitude of shifting in the X- and Y-
direction.

T R F S C L
TRFSCL affects the scaling of plot vectors.

The call is: CALL TRFSCL (XSCL, YSCL) level 1, 2, 3

or: void trfscl (float xscl, float yscl);

XSCL, YSCL are scaling factors for the X- and Y-direction.

T R F R O T
TRFROT affects the rotation of plot vectors around a point.

The call is: CALL TRFROT (XANG, NX, NY) level 1, 2, 3

or: void trfrot (float xang, int nx, int ny);

XANG is the rotation angle measured in degrees in a counter-clockwise direction.

NX, NY are the plot coordinates of the rotation point.

T R F R E S
TRFRES resets base transformations.

The call is: CALL TRFRES level 1, 2, 3

or: void trfres ();

6.14 Shielded Regions

This section describes how to protect regions from being overwritten. Shielded regions can be defined
automatically by DISLIN or explicitly by the user. Shielded regions are stored in a buffer which can then
be manipulated by the user.

S H I E L D
SHIELD selects shielded regions which are set automatically by DISLIN.

The call is: CALL SHIELD (CAREA, CMODE) level 1, 2, 3

or: void shield (char *carea, char *cmode);

CAREA is a character string defining the regions:

= ’MESSAG’ is used for text and numbers plotted by MESSAG and NUMBER.

= ’SYMBOL’ will shield symbols.

= ’BARS’ will shield bars plotted by BARS.

87

= ’PIE’ will shield pie segments plotted by PIEGRF.

= ’LEGEND’ will protect legends. All legend attributes should be set before calling CURVE
because the shielded region of a legend is defined by CURVE. If there is no
legend position defined with LEGPOS, CURVE assumes that the legend lies
in the upper right corner of the axis system.

CMODE is a character string defining a status:

= ’ON’ means that the regions defined above will be written to the shielding buffer and
are protected.

= ’OFF’ means that regions will not be written to the shielding buffer. Regions that are
still stored in the buffer will be shielded.

= ’DELETE’ removes regions from the shielding buffer.

= ’RESET’ is a combination of ’OFF’ and ’DELETE’. Regions are removed from and will
not be written to the shielding buffer. To save computing time, this command
should always be used when shielding is no longer needed.

= ’NOVIS’ The shielding of regions held in the shielding buffer is disabled. This is not
valid for regions newly written to the buffer.

= ’VIS’ Disabled regions will be protected. This is the default value for regions newly
written to the buffer.

The following routines set user-defined regions:

The calls are: CALL SHLREC (NX, NY, NW, NH) for rectangles
CALL SHLRCT (NX, NY, NW, NH, THETA) for rotated rectangles
CALL SHLCIR (NX, NY, NR) for circles
CALL SHLELL (NX, NY, NA, NB, THETA) for rotated ellipses
CALL SHLPIE (NX, NY, NR, ALPHA, BETA) for pie segments
CALL SHLPOL (NXRAY, NYRAY, N) for polygons.

NX, NY are plot coordinates of the upper left corner or the centre point.

NW, NH are the width and height of rectangles.

NR, NA, NB are radii in plot coordinates.

THETA is a rotation angle measured in degrees in a counter-clockwise direction.

ALPHA, BETA are starting and ending angles for pie segments measured in degrees in a
counter-clockwise direction.

NXRAY, NYRAY are arrays of the dimension N containing the corner points of a polygon.

S H L I N D
The index of shielded regions in the buffer can be requested with SHLIND. It returns the index of the
region last written to the buffer.

The call is: CALL SHLIND (ID) level 1, 2, 3

or: int shlind ();

ID is the returned index.

S H L D E L
SHLDEL removes entries from the shielding buffer.

The call is: CALL SHLDEL (ID) level 1, 2, 3

88

or: void shldel (int id);

ID is the index of a shielded region. If ID is 0, all regions defined by the user will
be deleted.

S H L R E S
SHLRES deletes regions last written to the shielding buffer.

The call is: CALL SHLRES (N) level 1, 2, 3

or: void shlres (int n);

N is the number of regions to delete.

S H L V I S
SHLVIS disables or enables shielded regions. Disabled regions are no longer protected but are still held
in the shielding buffer.

The call is: CALL SHLVIS (ID, CMODE) level 1, 2, 3

or: void shlvis (int id, char *cmode);

ID is the index of a shielded region. If ID is 0, all entries are disabled or enabled.

CMODE = ’ON’ enables shielded regions. This is the default value for regions newly written to
the buffer.

= ’OFF’ disables shielded regions.

Additional notes: - A frame is plotted around regions defined by the user. The thickness of frames
can be set with FRAME. Regions defined automatically by DISLIN are not
enclosed by a frame but frames plotted by MESSAG after using FRMESS and
shielded regions defined by MESSAG are identical.

- Shielded regions can overlap each other.

- The statement CALL RESET (’SHIELD’) resets shielding. All regions defined
by DISLIN and the user are removed from the shielding buffer and no new
regions will be written to the buffer.

- The number of shielded regions is limited to the size of the shielding buffer
which is set to 1000 words. The number of words used by regions are:
SHLREC = 6, SHLRCT = 7, SHLCIR = 5, SHLELL = 7, SHLPIE = 7 and
SHLPOL = 2*N+3.

- Shielding of regions is computer intensive. Therefore, shielding should be used
very carefully and shielded regions should be deleted from the buffer when no
longer needed.

- Base transformations do not affect the position of shielded regions.

- SHLPOL can be used between the routines GRFINI and GRFFIN. The
shielded region will be projected into 3-D space. This is not valid for other
shielded regions.

89

90

Chapter 7

Parameter Requesting Routines

This chapter describes subroutines that return the current values of plot parameters. All routines corre-
spond to parameter setting routines described in the last chapter or handled in chapter 11, ”3-D Colour
Graphics”. For a complete description of parameters, the user is referred to these chapters. If a character
string is returned, it will appear in uppercase letters and be shortened to four characters. For the language
C, if the value of a requesting routine is a character pointer, the pointer is the address of a static variable
in DISLIN and may not be freed.

G E T P A G
This routine returns the page size (see SETPAG, PAGE).

The call is: CALL GETPAG (NXPAG, NYPAG) level 1, 2, 3

or: void getpag (int *nxpag, int *nypag);

G E T F I L
The routine GETFIL returns the current plotfile name (see SETFIL).

The call is: CALL GETFIL (CFIL) level 1, 2, 3

or: char *getfil ();

CFIL is a character variable containing the filename.

G E T M F L
GETMFL returns the file format (see METAFL).

The call is: CALL GETMFL (CDEV) level 1, 2, 3

or: char *getmfl ();

CDEV is a character variable containing the file format.

G E T O R
GETOR returns the coordinates of the origin (see ORIGIN).

The call is: CALL GETOR (NX0, NY0) level 1, 2, 3

or: void getor (int *nx0, int *ny0);

G E T P O S
This routine returns the position of the lower left corner of an axis system in plot coordinates (see AXS-
POS).

The call is: CALL GETPOS (NXA, NYA) level 1, 2, 3

91

or: void getpos (int *nxa, int *nya);

G E T L E N
GETLEN returns the length of the X-, Y- and Z-axes (see AXSLEN, AX3LEN).

The call is: CALL GETLEN (NXL, NYL, NZL) level 1, 2, 3

or: void getlen (int *nxl, int *nyl, int *nzl);

G E T H G T
GETHGT returns the character height (see HEIGHT).

The call is: CALL GETHGT (NHCHAR) level 1, 2, 3

or: int gethgt ();

G E T H N M
GETHNM returns the character height of axis titles (see HNAME).

The call is: CALL GETHNM (NHNAME) level 1, 2, 3

or: int gethnm ();

G E T A N G
GETANG returns the current character angle used for text and numbers (see ANGLE).

The call is: CALL GETANG (NANG) level 1, 2, 3

or: int getang ();

G E T A L F
GETALF returns the base alphabet (see BASALF).

The call is: CALL GETALF (CALF) level 1, 2, 3

or: char *getalf ();

CALF is a character variable containing the returned base alphabet.

G E T M I X
GETMIX returns control characters used for plotting indices and exponents (see SETMIX, NEWMIX).

The call is: CALL GETMIX (CHAR, CMIX) level 1, 2, 3

or: char *getmix (char *cmix);

CHAR is a character string containing the control character.

CMIX is a character string that defines the function of the control character. CMIX
can have the values ’EXP’, ’IND’, ’RES’ and ’LEG’ for exponents, indices,
resetting the base-line, and for multiple text lines in legends.

G E T S H F
GETSHF returns shift characters used for plotting special European characters (see EUSHFT).

The call is: CALL GETSHF (CNAT, CHAR) level 1, 2, 3

or: char *getshf (char *cnat);

92

CNAT is a character string that can have the values ’GERMAN’, ’FRENCH’, ’SPAN-
ISH’, ’DANISH’, ’ACUTE’ , ’GRAVE’ and ’CIRCUM’.

CHAR is a character string containing the returned shift character.

G M X A L F
GMXALF returns shift characters used for shifting between the base and an alternate alphabet (see
SMXALF).

The call is: CALL GMXALF (CALPH, C1, C2, N) level 1, 2, 3

or: int gmxalf (char *calph, char *c1, char *c2);

CALPH is a character string containing an alphabet. In addition to the names in
BASALF, CALPH can have the value ’INSTRUCTION’.

C1, C2 are characters strings that contain the returned shift characters.

N is the returned index of the alphabet between 0 and 6. If N = 0, no shift
characters are defined for the alphabet CALPH.

G E T D I G
This routine returns the number of decimal places that are displayed in axis labels (see LABDIG).

The call is: CALL GETDIG (NXDIG, NYDIG, NZDIG) level 1, 2, 3

or: void getdig (int *nxdig, int *nydig, int *nzdig);

G E T G R F
The routine GETGRF returns the current scaling of an axis system.

The call is: CALL GETGRF (XA, XE, XOR, XSTP, CAX) level 2, 3

or: void getgrf (float *xa, float *xe, float *xor, float *xstp, char *cax);

XA, XE are the lower and upper limits of the axis.

XOR, XSTP are the first axis label and the step between labels.

CAX select the axis and can have the values ’X’, ’Y’ and ’Z’.

G E T T I C
GETTIC returns the number of ticks that are plotted between axis labels (see TICKS).

The call is: CALL GETTIC (NXTIC, NYTIC, NZTIC) level 1, 2, 3

or: void gettic (int *nxtic, int *nytic, int *nztic);

G E T T C L
GETTCL returns tick lengths (see TICLEN).

The call is: CALL GETTCL (NMAJ, NMIN) level 1, 2, 3

or: void gettcl (int *nmaj, int *nmin);

G E T S P 1
GETSP1 returns the distance between axis ticks and labels (see LABDIS).

The call is: CALL GETSP1 (NXDIS, NYDIS, NZDIS) level 1, 2, 3

or: void getsp1 (int *nxdis, int *nydis, int *nzdis);

93

G E T S P 2
GETSP2 returns the distance between axis labels and names (see NAMDIS).

The call is: CALL GETSP2 (NXDIS, NYDIS, NZDIS) level 1, 2, 3

or: void getsp2 (int *nxdis, int *nydis, int *nzdis);

G E T S C L
This routine returns the type of axis scaling used. For linear scaling, the value 0 is returned and for
logarithmic scaling, the value 1 is returned (see AXSSCL).

The call is: CALL GETSCL (NXLOG, NYLOG, NZLOG) level 1, 2, 3

or: void getscl (int *nxlog, int *nylog, int *nzlog);

G E T L A B
GETLAB returns the label types used for axis numbering (see LABELS).

The call is: CALL GETLAB (CXLAB, CYLAB, CZLAB) level 1, 2, 3

or: void getlab (char *cxlab, char *cylab, char *czlab);

G E T C L R
GETCLR returns the current colour as an index from the colour table (see SETCLR).

The call is: CALL GETCLR (NCOL) level 1, 2, 3

or: int getclr ();

G E T U N I
GETUNI returns the logical unit used for error messages.

The call is: CALL GETUNI (NU) level 1, 2, 3

or: FILE *getuni ();

G E T V E R
GETVER returns the version number of the currently used DISLIN library.

The call is: CALL GETVER (XVER) level 1, 2, 3

or: float getver ();

G E T P L V
GETPLV returns the patch level of the currently used DISLIN library.

The call is: CALL GETPLV (IPLV) level 1, 2, 3

or: int getplv ();

G E T L E V
GETLEV returns the level.

The call is: CALL GETLEV (NLEV) level 0, 1, 2, 3

or: int getlev ();

G E T S Y M
GETSYM returns the current symbol number and height of symbols.

94

The call is: CALL GETSYM (NSYM, NHSYMB) level 1, 2, 3

or: void getsym (int *nsym, int *nhsymb);

G E T T Y P
GETTYP returns the current line style (see LINTYP).

The call is: CALL GETTYP (NTYP) level 1, 2, 3

or: int gettyp ();

G E T L I N
The routine GETLIN returns the current line width (see LINWID).

The call is: CALL GETLIN (NWIDTH) level 1, 2, 3

or: int getlin ();

G E T P A T
The routine GETPAT returns the current shading pattern (see SHDPAT).

The call is: CALL GETPAT (NPAT) level 1, 2, 3

or: long getpat ();

G E T R E S
GETRES returns the width and height of rectangles plotted in 3-D colour graphics (see SETRES,
AUTRES).

The call is: CALL GETRES (NPB, NPH) level 1, 2, 3

or: void getres (int *npb, int *nph);

G E T V L T
GETVLT returns the current colour table (see SETVLT).

The call is: CALL GETVLT (CVLT) level 1, 2, 3

or: char *getvlt ();

G E T I N D
For a colour index, the routine GETIND returns the corresponding RGB coordinates stored in the current
colour table (see SETIND). If an explicit RGB value is specified, GETIND returns the RGB coordinates
of the RGB value.

The call is: CALL GETIND (I, XR, XG, XB) level 1, 2, 3

or: void getind (int i, float *xr, float *xg, float *xb);

G E T R G B
GETRGB returns the RGB coordinates of the current colour.

The call is: CALL GETRGB (XR, XG, XB) level 1, 2, 3

or: void getrgb (float *xr, float *xg, float *xb);

G E T S C R
GETSCR returns the width and height of the screen in pixels.

95

The call is: CALL GETSCR (NWPIX, NHPIX) level 0, 1, 2, 3

or: void getscr (int *nwpix, int *nhpix);

G E T B P P
GETBPP returns the number of bits per pixel used by graphics card.

The call is: CALL GETBPP (NBPP) level 0, 1, 2, 3

or: int getbpp ();

G E T D S P
The routine GETDSP returns the terminal type.

The call is: CALL GETDSP (CDSP) level 0, 1, 2, 3

or: char *getdsp ();

CDSP is a returned character string that can have the values ’XWIN’ for X Window
terminals, ’WIND’ for Windows terminals and ’NONE’ for none of them.

G E T R A N
GETRAN returns the colour range of colour bars (see COLRAN).

The call is: CALL GETRAN (NCA, NCE) level 1, 2, 3

or: void getran (int *nca, int *nce);

G E T W I D
GETWID returns the width of the colour bar plotted in 3-D colour graphics (see BARWTH).

The call is: CALL GETWID (NZB) level 1, 2, 3

or: int getwid ();

G E T V K
This routine returns the lengths used for shifting titles and colour bars (see VKYTIT, VKXBAR, VKY-
BAR).

The call is: CALL GETVK (NYTIT, NXBAR, NYBAR) level 1, 2, 3

or: void getvk (int *nytit, int *nxbar, int *nybar);

G E T W I N
This routine returns the upper left corner and the size of the graphics window (see WINDOW, WINSIZ).

The call is: CALL GETWIN (NX, NY, NW, NH) level 1, 2, 3

or: void getwin (int *nx, int *ny, int *nw, int *nh);

G E T C L P
The routine GETCLP returns the upper left corner and the size of the current clipping window (see
CLPWIN).

The call is: CALL GETCLP (NX, NY, NW, NH) level 1, 2, 3

or: void getclp (int *nx, int *ny, int *nw, int *nh);

G E T X I D
The routine GETXID returns the ID of the current X graphics window or pixmap.

The call is: CALL GETXID (ID, CTYPE) level 1, 2, 3

or: int getxid (char *ctype);

ID is the returned window ID.

CTYPE is a character string that can have the values ’WINDOW’ and ’PIXMAP’.

96

Chapter 8

Elementary Plot Routines

This chapter describes elementary subroutines that plot lines, vectors, circles, ellipses, pie segments and
polygons. There are versions for plot and user coordinates; the routines for user coordinates begin with
the keyword ’RL’. These routines can only be called from level 2 or 3 after an axis system has been
defined.

8.1 Lines

XMOVE and XDRAW are simple subroutines for plotting lines. They require absolute page coordinates
and are, therefore, not affected by a call to ORIGIN. Different line styles cannot be used. The routine
XMOVE moves the pen to a point while XDRAW draws a line to a point.

The calls are: CALL XMOVE (X, Y) level 1, 2, 3

CALL XDRAW (X, Y) level 1, 2, 3

or: void xmove(float x, float y);

void xdraw (float x, float y);

X, Y are absolute page coordinates.

The subroutines STRTPT and CONNPT require plot coordinates as real numbers and allow different line
styles to be used.

The calls are: CALL STRTPT (X, Y) level 1, 2, 3

CALL CONNPT (X, Y) level 1, 2, 3

or: void strtpt (float x, float y);

void connpt (float x, float y);

X, Y are real numbers containing the plot coordinates.

The corresponding routines for user coordinates are:

The calls are: CALL RLSTRT (X, Y) level 2, 3
CALL RLCONN (X, Y) level 2, 3

or: void rlstrt (float x, float y);

void rlconn (float x, float y);

97

Additional note: Lines plotted with RLSTRT and RLCONN will not be cut off at the borders of
an axis system. This can be enabled with the routine CLPBOR. Points lying
outside of the axis scaling will not be listed by RLSTRT and RLCONN.

L I N E

LINE joins two points with a line. Different line styles can be used.

The call is: CALL LINE (NX1, NY1, NX2, NY2) level 1, 2, 3

or: void line (int nx1, int ny1, int nx2, int ny2);

NX1, NY1 are the plot coordinates of the first point.

NX2, NY2 are the plot coordinates of the second point.

R L I N E

RLINE is the corresponding routine for user coordinates.

The call is: CALL RLINE (X1, Y1, X2, Y2) level 2, 3

or: void rline (float x1, float y1, float x2, float y2);

X1, Y1 are the user coordinates of the first point.

X2, Y2 are the user coordinates of the second point.

Additional note: RLINE draws only that part of the line lying inside the axis system. If
NOCHEK is not used, points lying outside the axis scaling will be listed.

8.2 Vectors

V E C T O R

VECTOR plots vectors with none, one or two arrow heads.

The call is: CALL VECTOR (IX1, IY1, IX2, IY2, IVEC) level 1, 2, 3

or: void vector (int ix1, int iy1, int ix2, int iy2, int ivec);

IX1, IY1 are the plot coordinates of the start point.

IX2, IY2 are the plot coordinates of the end point.

IVEC is an integer number that defines the form of the arrow heads. If IVEC = -1,
the arrow head can be defined with the routine VECOPT. Otherwise, IVEC
can contain a four digit number ’wxyz’ specifying the arrow heads where the
digits have the following meaning: (see appendix C for examples)

w: determines the ratio of width and length (0 - 9).

x: determines the size (0 - 9).

y: determines the form:
= 0 filled
= 1 not filled
= 2 opened
= 3 closed.

z: determines the position:
= 0 no arrow heads are plotted
= 1 at end points
= 2 at start and end points
= 3 at start and end points and in the same direction.

98

R L V E C

RLVEC is the corresponding routine for user coordinates.

The call is: CALL RLVEC (X1, Y1, X2, Y2, IVEC) level 2, 3

or: void rlvec (float x1, float y1, float x2, float y2, int ivec);

V E C C L R

VECCLR defines the colour of arrow heads, or enables colour scaling in the routines FIELD, VECFLD,
FIELD3D and VECF3D.

The call is: CALL VECCLR (ICLR) level 1, 2, 3

or: void vecclr (int iclr);

ICLR is a colour number. If ICLR has the value -2, colour scaling is enabled in
vector fields. If ICLR = -1, arrow heads are plotted in the foreground colour.
Otherwise, arrow heads are plotted in the colour ICLR.

Default: ICLR = -1.

V E C O P T

VECOPT modifies the appearance of arrow heads in vectors if the vector number has the value -1 in
vector plotting routines such as VECTOR and RLVEC, or disables automatic scaling in vector fields.

The call is: CALL VECOPT (XOPT, CKEY) level 1, 2, 3

or: void vecopt (float xopt, char *ckey);

XOPT contains a floatingpoint option.

CKEY is a character string that can have the values ’ANGLE’, ’LENGTH’ and
’SCALE’. The keyword ’ANGLE’ means the used angle for arrow heads in
degrees and ’LENGTH’ the ratio of the arrow head length and vector length.
’SCALE’ sets a scaling factor that is used in vector fields plotted by routines
such as VECFLD and VECF3D. If XOPT = 0, automatic scaling is used in
vector fields.

Defaults: (20., ’ANGLE’), (0.25, ’LENGTH’), (0., ’SCALE’).

8.3 Filled Triangles

T R I F L L

The routine TRIFLL plots solid filled triangles.

The call is: CALL TRIFLL (XRAY, YRAY) level 1, 2, 3

or: void trifll (float *xray, float *yray;

XRAY, YRAY are floatingpoint arrays containing the three corners of a triangle.

99

8.4 Wind Speed Symbols

W I N D B R

The routine WINDBR plots wind speed symbols.

The call is: CALL WINDBR (X, NXP, NYP, NW, A) level 1, 2, 3

or: void windbr (float x, int nxp, int nyp, int nw, float a);

X is the wind speed in knots.

NXP, NYP are the plot coordinates of the lower left corner of the wind speed symbol.

NW is the length of the symbol in plot coordinates.

A is the wind direction in degrees.

R L W I N D

RLWIND is the corresponding routine to WINDBR for user coordinates.

The call is: CALL RLWIND (X, XP, YP, NW, A) level 2, 3

or: void rlwind (float x, float yp, float xp, int nw, float a);

8.5 Geometric Figures

The following subroutines plot geometric figures such as rectangles, circles, ellipses, pie segments and
polygons. These routines can be used to plot only the outlines of figures or the figures can be filled in
with shaded patterns.

R E C T A N

RECTAN plots rectangles.

The call is: CALL RECTAN (NX, NY, NW, NH) level 1, 2, 3

or: void rectan (int nx, int ny, int nw, int nh);

NX, NY are the plot coordinates of the upper left corner.

NW, NH are the width and height in plot coordinates.

R N D R E C

RECTAN plots an rectangle where the corners will be rounded.

The call is: CALL RNDREC (NX, NY, NW, NH, IOPT) level 1, 2, 3

or: void rndrec (int nx, int ny, int nw, int nh, int iopt);

NX, NY are the plot coordinates of the upper left corner.

NW, NH are the width and height in plot coordinates.

IOPT defines the rounding of corners (0≤ IOPT≤ 9). For IOPT = 0, rounding is
disabled.

C I R C L E

CIRCLE plots circles.

100

The call is: CALL CIRCLE (NX, NY, NR) level 1, 2, 3

or: void circle (int nx, int ny, int nr);

NX, NY are the plot coordinates of the centre point.

NR is the radius in plot coordinates.

E L L I P S

ELLIPS plots ellipses.

The call is: CALL ELLIPS (NX, NY, NA, NB) level 1, 2, 3

or: void ellips (int nx, int ny, int na, int nb);

NX, NY are the plot coordinates of the centre point.

NA, NB are the radii in plot coordinates.

P I E

PIE plots pie segments.

The call is: CALL PIE (NX, NY, NR, ALPHA, BETA) level 1, 2, 3

or: void pie (int nx, int ny, int nr, float alpha, float beta);

NX, NY are the plot coordinates of the centre point.

NR is the radius in plot coordinates.

ALPHA, BETA are the start and end angles measured in degrees in a counter-clockwise direc-
tion.

A R C E L L

ARCELL plots elliptical arcs where the arcs can be rotated.

The call is: CALL ARCELL (NX, NY, NA, NB, ALPHA, BETA, THETA)
level 1, 2, 3

or: void arcell (int nx, int ny, int na, int nb, float alpha, float beta, float theta);

NX, NY are the plot coordinates of the centre point.

NA, NB are the radii in plot coordinates.

ALPHA, BETA are the start and end angles measured in degrees in a counter-clockwise direc-
tion.

THETA is the rotation angle measured in degrees in a counter-clockwise direction.

A R E A F

AREAF draws polygons.

The call is: CALL AREAF (NXRAY, NYRAY, N) level 1, 2, 3

or: void areaf (int *nxray, int *nyray, int n);

NXRAY, NYRAY are arrays containing the plot coordinates of the corner points. Start and end
points can be different.

N is the number of points.

101

The corresponding routines for user coordinates are:

The calls are: CALL RLREC (X, Y, WIDTH, HEIGHT)
CALL RLRND (X, Y, WIDTH, HEIGHT, IOPT)
CALL RLCIRC (XM, YM, R)
CALL RLELL (XM, YM, A, B)
CALL RLPIE (XM, YM, R, ALPHA, BETA)
CALL RLARC (XM, YM, A, B, ALPHA, BETA, THETA)
CALL RLAREA (XRAY, YRAY, N)

or: void rlrec (float x, float y, float width, float height);
void rlrnd (float x, float y, float width, float height, int iopt);
void rlcirc (float xm, float ym, float r);
void rlell (float xm, float ym, float a, float b);
void rplpie (float xm, float ym, float r, float alpha, float beta);
void rlarc (float xm, float ym, float a, float b, float alpha,

float beta, float theta);
void rlarea (float *xray, float *yray, int n);

Additional notes: - Shading patterns can be defined with SHDPAT and MYPAT. If the pattern num-
ber is zero, the figures will only be outlined. With CALL NOARLN, the out-
line will be suppressed.

- The number of points in AREAF and RLAREA is limited to 25000 for Fortran
77. There is no limitation for the C and Fortran 90 versions of DISLIN.

- For the calculation of the radius in RLCIRC and RLPIE, the X-axis scaling is
used.

- The interpolation of circles and ellipses can be altered with CIRCSP (NSPC)
where NSPC is the arc length in plot coordinates. The default value is 10.

102

Chapter 9

Utility Routines

This chapter describes the utilities available to transform coordinates, sort data and calculate the lengths
of numbers and character strings.

9.1 Transforming Coordinates

The following functions convert user coordinates to plot coordinates.

The calls are: IXP = NXPOSN (X) level 2, 3

IYP = NYPOSN (Y) level 2, 3

or: int nxposn (float x);

int nyposn (float y);

Plot coordinates can also be returned as real numbers.

The calls are: XP = XPOSN (X) level 2, 3

YP = YPOSN (Y) level 2, 3

or: float xposn (float x);

float yposn (float y);

The following two functions convert plot coordinates to user coordinates.

The calls are: XW = XINVRS (NXP) level 2, 3

YW = YINVRS (NYP) level 2, 3

or: float xinvrs (int nxp);

float yinvrs (int nyp);

The functions NXPIXL and NYPIXL convert plot coordinates to pixel.

The calls are: IXP = NXPIXL (IX, IY) level 1, 2, 3

IYP = NYPIXL (IX, IY) level 1, 2, 3

or: int nxpixl (int nx, int ix);

int nypixl (int nx, int iy);

T R F R E L
The routine TRFREL converts arrays of user coordinates to plot coordinates.

103

The call is: CALL TRFREL (XRAY, YRAY, N) level 2, 3

or: void trfrel (float *xray, float *yray, int n);

XRAY, YRAY are arrays containing the user coordinates. After the call, they contain the
calculated plot coordinates.

N is the number of points.

Additional note: The functions above can be used for linear and logarithmic scaling. For polar
scaling, TRFREL and POS2PT can be used for getting plot coordinates.

T R F C O 1
The routine TRFCO1 converts one-dimensional coordinates.

The call is: CALL TRFCO1 (XRAY, N, CFROM, CTO) level 0, 1, 2, 3

or: void trfco1 (float *xray, int n, char *cfrom, char *cto);

XRAY is an array containing angles expressed in radians or degrees. After a call to
TRFCO1, XRAY contains the converted coordinates.

N is the number of coordinates.

CFROM, CTO are character strings that can have the values ’DEGREES’ and ’RADIANS’.

T R F C O 2
The routine TRFCO2 converts two-dimensional coordinates.

The call is: CALL TRFCO2 (XRAY, YRAY, N, CFROM, CTO) level 0, 1, 2, 3

or: void trfco2 (float *xray, float *yray, int n, char *cfrom, char *cto);

XRAY, YRAY are arrays containing rectangular or polar coordinates. For polar coordinates,
XRAY contains the angles measured in degrees and YRAY the radii.

N is the number of coordinates.

CFROM, CTO are character strings that can have the values ’RECT’ and ’POLAR’.

T R F C O 3
The routine TRFCO3 converts three-dimensional coordinates.

The call is: CALL TRFCO3 (XRAY, YRAY, ZRAY, N, CFROM, CTO)
level 0, 1, 2, 3

or: void trfco3 (float *xray, float *yray, float *zray, int n, char *cfrom, char *cto);

XRAY, YRAY, ZRAY are arrays containing rectangular, spherical or cylindrical coordinates. Spher-
ical coordinates must be in the form (longitude, latitude, radius) where 0≤
longitude≤ 360 and -90≤ latitude≤ 90.
Cylindrical coordinates must be in the form (angle, radius, z).

N is the number of coordinates.

CFROM, CTO are character strings that can have the values ’RECT’,’SPHER’ and ’CYLI’.

T R F M A T
The routine TRFMAT converts a matrix to another matrix by bilinear interpolation.

The call is: CALL TRFMAT (ZMAT, NX, NY, ZMAT2, NX2, NY2)
level 0, 1, 2, 3

104

or: void trfmat (float *zmat, int nx, int ny, float *zmat2, int nx2, int ny2);

ZMAT is the input matrix of the dimesion (NX, NY).

NX, NY are the dimensions of the matrix ZMAT.

ZMAT2 is the output matrix of the dimesion (NX2, NY2).

NX2, NY2 are the dimensions of the matrix ZMAT2.

9.2 String Arithmetic

N L M E S S
The function NLMESS returns the length of text in plot coordinates.

The call is: NL = NLMESS (CSTR) level 1, 2, 3

or: int nlmess (char *cstr);

CSTR is a character string (≤ 256 characters).

NL is the length in plot coordinates.

T R M L E N
The function TRMLEN returns the number of characters in a character string.

The call is: NL = TRMLEN (CSTR) level 0, 1, 2, 3

or: int trmlen (char *cstr);

CSTR is a character string.

NL is the number of characters.

U P S T R
UPSTR converts a character string to uppercase letters.

The call is: CALL UPSTR (CSTR) level 0, 1, 2, 3

or: void upstr (char *cstr);

CSTR is a character string to be converted.

U T F I N T
UTFINT converts an UTF8 character string to Unicode numbers.

The call is: CALL UTFINT (CSTR, IRAY, NRAY, N) level 0, 1, 2, 3

or: int utfint (char *cstr, int *iray, int nray);

CSTR is a character string in UTF8 format.

IRAY is the returned array of Unicode numbers.

NRAY is the dimension of IRAY.

N is the returned number of calculated Unicode numbers. If an error occured, a
negative number is returned.

I N T U T F
INTUTF converts an array of Unicode number to an UTF8 character string.

105

The call is: CALL INTUTF (IRAY, NRAY, CSTR, NMAX, N) level 0, 1, 2, 3

or: int intutf (int *iray, int nray, char *cstr, int nmax, int nray);

IRAY is an integer array of Unicode numbers.

NRAY is the number elements in IRAY.

CSTR is the returned character string in UTF8 format. For the programming language
C the string is terminated by ’\0’.

NMAX is the maximal number of characters that CSTR can contain.

N is the returned length of CSTR. If an error occured, a negative number is re-
turned.

9.3 Number Arithmetic

N L N U M B
NLNUMB calculates the length of numbers in plot coordinates.

The call is: NL = NLNUMB (X, NDIG) level 1, 2, 3

or: int nlnumb (float x, int ndig);

X is a real number.

NDIG is the number of decimal places (≥ -1).

NL is the returned length in plot coordinates.

I N T L E N
INTLEN calculates the number of digits in integers.

The call is: CALL INTLEN (NX, NL) level 0, 1, 2, 3

or: int intlen (int nx);

NX is an integer.

NL is the returned number of digits.

F L E N
FLEN calculates the number of digits in real numbers.

The call is: CALL FLEN (X, NDIG, NL) level 0, 1, 2, 3

or: int flen (float x, int ndig);

X is a real number.

NDIG is the number of decimal places (≥ -1).

NL is the number of digits including the decimal point. For negative numbers, it
includes the minus sign.

I N T C H A
INTCHA converts integers to character strings.

The call is: CALL INTCHA (NX, NL, CSTR) level 0, 1, 2, 3

or: int intcha (int nx, char *cstr);

NX is the integer to be converted.

106

NL is the number of digits in NX returned by INTCHA.

CSTR is the character string containing the integer.

F C H A
FCHA converts real numbers to character strings.

The call is: CALL FCHA (X, NDIG, NL, CSTR) level 0, 1, 2, 3

or: int fcha (float x, int ndig, char *cstr);

X is the real number to be converted.

NDIG is the number of decimal places to be considered (≥ -1). The last digit will be
rounded up.

NL is the number of digits returned by FCHA.

CSTR is the character string containing the real number.

S O R T R 1
SORTR1 sorts real numbers.

The call is: CALL SORTR1 (XRAY, N, COPT) level 0, 1, 2, 3

or: void sortr1 (float *xray, int n, char *copt);

XRAY is an array containing real numbers.

N is the dimension of XRAY.

COPT defines the sorting direction. IF COPT = ’A’, the numbers will be sorted in
ascending order; if COPT = ’D’, they will be sorted in descending order.

S O R T R 2
SORTR2 sorts two-dimensional points in the X-direction.

The call is: CALL SORTR2 (XRAY, YRAY, N, COPT) level 0, 1, 2, 3

or: void sortr2 (float *xray, float *yray, int n, char *copt);

XRAY, YRAY are arrays containing the coordinates.

N is the number of points.

COPT defines the sorting direction. IF COPT = ’A’, the points will be sorted in as-
cending order; if COPT = ’D’, they will be sorted in descending order.

Additional note: The Shell-algorithm is used for sorting.

S P L I N E
SPLINE calculates splined points used in CURVE to plot a spline.

The call is: CALL SPLINE (XRAY, YRAY, N, XSRAY, YSRAY, NSPL) level 1, 2, 3

or: void spline (float *xray, float *yray, float *xsray, float *ysray, int *nspl);

XRAY, YRAY are arrays containing points of the curve.

N is the dimension of XRAY and YRAY.

XSRAY, YSRAY are the splined points returned by SPLINE.

NSPL is the number of calculated splined points returned by SPLINE. By default,
NSPL has the value 200.

107

Additional note: The number of interpolated points and the order of the polynomials can be
modified with SPLMOD.

B E Z I E R
The routine BEZIER calculates a Bezier interpolation.

The call is: CALL BEZIER (XRAY, YRAY, N, XPRAY, YPRAY, NP) level 0, 1, 2, 3

or: void bezier (float *xray, float *yray, int n, float *xpray, float *ypray, int np);

XRAY, YRAY are arrays containing points of the curve.

N is the dimension of XRAY and YRAY (1< N < 21).

XPRAY, YPRAY are the Bezier points returned by BEZIER.

NP is the number of calculated points defined by the user.

H I S T O G
The routine HISTOG calculates a histogram.

The call is: CALL HISTOG (XRAY, N, XHRAY, YHRAY, NH) level 0, 1, 2, 3

or: void histog (float *xray, int n, float *xhray, float *yhray, int *nh);

XRAY is an array containing floatingpoint numbers.

N is the dimension of XRAY.

XHRAY, YHRAY are arrays containing the calculated histogram. XHRAY contains distinct val-
ues from XRAY sorted in ascending order. YHRAY contains the frequency of
points.

NH is the number of points in XHRAY und YHRAY returned by HISTOG.

T R I A N G
The routine TRIANG calculates the Delaunay triangulation of an arbitrary collection of points in the
plane. The Delaunay triangulation can directly be used to display surfaces and contour lines of irregular-
ily distributed data points.

The call is: CALL TRIANG (XRAY, YRAY, N, I1RAY, I2RAY, I3RAY, NMAX, NTRI)
level 0, 1, 2, 3

or: ntri = triang (float *xray, float *yray, int n, int *i1ray, int *i2ray, int *i3ray,
int nmax);

XRAY, YRAY are arrays containing floatingpoint numbers. The dimension of XRAY and
YRAY must be greater or equal N + 3.

N is the number of points in XRAY and YRAY.

I1RAY, I2RAY, I3RAY are the returned vertices for each triangle in anticlockwise order.

NMAX is the dimension of I1RAY, I2RAY and I3RAY. NMAX must be greater or
equal 2 * N + 1.

NTRI is the returned number of triangles.

Additional notes: - The Watson algorithm is used for calculating the Delaunay triangulation. The
algorithm increases with the number of points as approximatelyO(N1.5).
Reference: S.W. Sloan and G.T. Houlsby, An Implementation of Watson’s al-
gorithm for computing 2-dimensional Delaunay triangulations, Advanced En-
gineering Software, 1984, Vol. 6, No. 4.

108

- Surfaces and contours can be directly plotted from the triangulation with the
routines CRVTRI, SURTRI and CONTRI.

C I R C 3 P
The routine CIRC3P calculates a circle specified by three points.

The call is: CALL CIRC3P (X1, Y1, X2, Y2, X3, Y3, XM, YM, R) level 0, 1, 2, 3

or: void circ3p (float x1, float y1, float x2, float y2, float x3, float y3,
float *xm, float *ym, float *r);

X1, Y1 are the X- and Y-coordinates of the first point.

X2, Y2 are the X- and Y-coordinates of the second point.

X3, Y3 are the X- and Y-coordinates of the third point.

XM, YM are the calculated coordinates of the centre point.

R is the calculated radius of the circle.

P O L C L P
The routine POLCLP clips a polygon against a rectangle. The Sutherland-Hodman algorithm is used by
POLCLP. This routine must be called four times to clip against all edges of the rectangle.

The call is: CALL POLCLP (XRAY, YRAY, N, XRAY2, YRAY2, NMAX, NOUT, XV,
CEDGE) level 0, 1, 2, 3

or: int polclp (float *xray, float *yray, int n, float *xray2, float *yray2, int nmax,
float xv, char *cedge);

XRAY, YRAY are arrays containing the polygon vertices.

N is the number of the polygon vertices.

XRAY2, YRAY2 are the returned clipped polygon vertices.

NMAX is the maximal number of allowed edges in XRAY2 and YRAY2.

NOUT is the number of vertices in the clipped polygon.

XV is the value of the current edge.

CEDGE is a character string that defines the edge. CEDGE can have the values ’TOP’,
’LEFT’, ’BOTTOM’ and ’RIGHT’.

9.4 Date Routines

B A S D A T
The routine BASDAT defines the base date. This routine is necessary for plotting date labels and data
containing date coordinates.

The call is: CALL BASDAT (IDAY, IMONTH, IYEAR) level 0, 1, 2, 3

or: void basbat (int iday, int imonth, int iyear);

IDAY is the day number of the date between 1 and 31.

IMONTH is the month number of the date between 1 and 12.

IYEAR is the four digit year number of the date.

109

I N C D A T
The function INCDAT returns the number of days between a specified date and the base date. This
calculated days can be passed as parameters to the routine GRAF and as coordinates to data plotting
routines such as CURVE.

The call is: N = INCDAT (IDAY, IMONTH, IYEAR) level 0, 1, 2, 3

or: int incdat (int iday, int imonth, int iyear);

N is the returned number of calculated days.

IDAY is the day number of the date between 1 and 31.

IMONTH is the month number of the date between 1 and 12.

IYEAR is the four digit year number of the date.

T R F D A T
The routine TRFDAT calculates for a number of days the corresponding date.

The call is: CALL TRFDAT (N, IDAY, IMONTH, IYEAR) level 0, 1, 2, 3

or: int trfdat (int n, int *iday, int *imonth, int *iyear);

N is the number of days.

IDAY is the returned day number.

IMONTH is the returned month number.

IYEAR is the returned four digit year number.

N W K D A Y
The function NWKDAY returns the weekday for a given date.

The call is: N = NWKDAY (IDAY, IMONTH, IYEAR) level 0, 1, 2, 3

or: int nwkday (int iday, int imonth, int iyear);

N is the returned weekday between 1 and 7 (1 = Monday, 2 = Tuesday, ...).

IDAY is the day number of the date between 1 and 31.

IMONTH is the month number of the date between 1 and 12.

IYEAR is the four digit year number of the date.

9.5 Bit Manipulation

B I T S I 2
The routine BITSI2 allows bit manipulation on 16 bit variables.

The call is: CALL BITSI2 (NBITS, NINP, IINP, NOUT, IOUT, IOPT) level 0, 1, 2, 3

or: short bitsi2 (int nbits, short ninp, int iinp, short nout, int iout);

NBITS is the number of bits to be shifted.

NINP is a 16 bit variable from which to extract the bit field.

IINP is the bit position of the leftmost bit of the bit field. The bits are numbered 0 -
15 where 0 is the most significant bit.

NOUT is a 16 bit variable into which the bit field is placed.

IOUT is the bit position where to put the bit field.

110

IOPT controls whether the bits outside of the field are set to zero or not. If IOPT
equal 0, the bits are set to zero. If IOPT not equal 0, the bits are left as they
are. For this case, NOUT is also used as input parameter. In the C function,
IOPT is missing in the parameter list and internally used with the value 1.

B I T S I 4
The routine BITSI4 allows bit manipulation on 32 bit variables.

The call is: CALL BITSI4 (NBITS, NINP, IINP, NOUT, IOUT, IOPT) level 0, 1, 2, 3

or: int bitsi4 (int nbits, int ninp, int iinp, int nout, int iout);

NBITS is the number of bits to be shifted.

NINP is a 32 bit variable from which to extract the bit field.

IINP is the bit position of the leftmost bit of the bit field. The bits are numbered 0 -
31 where 0 is the most significant bit.

NOUT is a 32 bit variable into which the bit field is placed.

IOUT is the bit position where to put the bit field.

IOPT controls whether the bits outside of the field are set to zero or not. If IOPT
equal 0, the bits are set to zero. If IOPT not equal 0, the bits are left as they
are. For this case, NOUT is also used as input parameter. In the C function,
IOPT is missing in the parameter list and internally used with the value 1.

9.6 Byte Swapping

S W A P I 2
The routine SWAPI2 swaps the bytes of 16 bit integer variables.

The call is: CALL SWAPI2 (IRAY, N) level 0, 1, 2, 3

or: void swapi2 (short *iray, int n);

IRAY is an array containing the 16 bit variables.

N is the number of variables.

S W A P I 4
The routine SWAPI4 swaps the bytes of 32 bit integer variables.

The call is: CALL SWAPI4 (IRAY, N) level 0, 1, 2, 3

or: void swapi4 (int *iray, int n);

IRAY is an array containing the 32 bit variables.

N is the number of variables.

9.7 Binary I/O

Binary I/O from Fortran can cause some problems: unformatted IO in Fortran is system-dependent and
direct access I/O needs a fixed record length. Therefore, DISLIN offers some C routines callable from
Fortran.

O P E N F L
The routine OPENFL opens a file for binary I/O.

111

The call is: CALL OPENFL (CFILE, NLU, IRW, ISTAT) level 0, 1, 2, 3

or: int openfl (char *cfile, int nlu, int irw);

CFILE is a character string containing the file name.

NLU is the logical unit for the I/O (0≤NLU ≤ 99). The units 15 and 16 are reserved
for DISLIN.

IRW defines the file access mode (0: READ, 1: WRITE, 2: APPEND).

ISTAT is the returned status (0: no errors).

C L O S F L
The routine CLOSFL closes a file.

The call is: CALL CLOSFL (NLU) level 0, 1, 2, 3

or: int closfl (int nlu);

NLU is the logical unit.

R E A D F L
The routine READFL reads a given number of bytes.

The call is: CALL READFL (NLU, IBUF, NBYT, ISTAT) level 0, 1, 2, 3

or: int readfl (int nlu, unsigned char *ibuf, int nbyt);

NLU is the logical unit.

IBUF is an array where to read the bytes.

NBYT is the number of bytes.

ISTAT is the number of bytes read (0 means end of file).

W R I T F L
The routine WRITFL writes a number of bytes.

The call is: CALL WRITFL (NLU, IBUF, NBYT, ISTAT) level 0, 1, 2, 3

or: int writfl (int nlu, unsigned char *ibuf, int nbyt);

NLU is the logical unit.

IBUF is an array containing the bytes.

NBYT is the number of bytes.

ISTAT is the number of bytes written (0 means an error).

S K I P F L
The routine SKIPFL skips a number of bytes from the current position.

The call is: CALL SKIPFL (NLU, NBYT, ISTAT) level 0, 1, 2, 3

or: int skipfl (int nlu, int nbyt);

NLU is the logical unit.

NBYT is the number of bytes.

ISTAT is the returned status (0: OK).

112

T E L L F L
The routine TELLFL returns the current position in bytes.

The call is: CALL TELLFL (NLU, NBYT) level 0, 1, 2, 3

or: int tellfl (int nlu);

NLU is the logical unit.

NBYT is the returned position in bytes where byte numbering begins with zero.
NBYT = -1, if an error occurs.

P O S I F L
The routine POSIFL skips to a certain position relative to the start.

The call is: CALL POSIFL (NLU, NBYT, ISTAT) level 0, 1, 2, 3

or: int posifl (int nlu, int nbyt);

NLU is the logical unit.

NBYT defines the position. Byte numbering begins with zero.

ISTAT is the returned status (0: OK).

9.8 Window Terminals

9.8.1 Clearing the Screen

E R A S E
The routine ERASE clears the screen, a graphics window or the page of a raster format such as TIFF,
PNG, PPM and BMP. In general, this is done by DISINI at the beginning of a plot.

The call is: CALL ERASE level 1, 2, 3

or: void erase ();

Additional note: If backing store is enabled in DISLIN with the routine X11Mod, the routine
ERASE clears just the pixmap and not directly the graphics window. Clear-
ing just the pixmap has the advantage that a new plot can be created on the
pixmap while the graphics window remains unchanged. The pixmap can then
be copied to the graphics window with the routine SENDBF. This double frame
buffer effect avoids flickering.

9.8.2 Clearing the Output Buffer

S E N D B F
Normally, the graphical output to the screen is buffered. To send the buffer to the screen, the routine
SENDBF can be used.

The call is: CALL SENDBF level 0, 1, 2, 3

or: void sendbf ();

Additional note: SENDBF updates also a graphics window with the current pixmap if backing
store is enabled in the routine X11MOD. SENDBF can be used after DISFIN
if there is still a graphics window (i.e. after WINMOD (’NONE’)).

113

9.8.3 Multiple Windows

The following routines allow programs to create up to 8 windows for graphics output on X11 and Win-
dows terminals. Note, that multiple windows can be used with graphic windows but are not compatible
with other file formats in DISLIN.

O P N W I N
The routine OPNWIN creates a new window for graphics output on the screen.

The call is: CALL OPNWIN (ID) level 1, 2, 3

or: void opnwin (int id);

ID is the window number between 1 and 8.

Additional notes: - The file format must be set to X Window emulation in the routine METAFL
(i.e. with the keyword ’XWIN’).

- The size and position of windows can be changed with the routines WINDOW
and WINSIZ. Note that some X11 Window Managers ignore the user-defined
position of windows.

- An individual page size can be defined for the window with the routine PAG-
WIN.

- Windows can be closed and selected with the routines CLSWIN and SELWIN.

- A created window with OPNWIN is selected automatically for graphics output.

- External windows can also be used with OPNWIN if the routine SETXID is
called before.

- The routine WINMOD affects the handling of windows in the termination rou-
tine DISFIN.

C L S W I N
The routine CLSWIN closes a window created with OPNWIN.

The call is: CALL CLSWIN (ID) level 1, 2, 3

or: void clswin (int id);

ID is the window number between 1 and 8.

S E L W I N
The routine SELWIN selects a window on the screen where the following graphics output will be sent
to.

The call is: CALL SELWIN (ID) level 1, 2, 3

or: void selwin (int id);

ID is the window number between 1 and 8.

P A G W I N
PAGWIN defines the page size for multiple windows. If PAGWIN is not called, the current page size
defined by PAGE or SETPAG is used.

The call is: CALL PAGWIN (NXP, NYP) level 1, 2, 3

or: void pagwin (int nxp, int nyp);

114

NXP, NYP are the length and height of the page in plot coordinates. The lower right corner
of the page is the point (NXP-1, NYP-1).

W I N I D
The routine WINID returns the ID of the currently selected window.

The call is: CALL WINID (ID) level 1, 2, 3

or: int winid ();

ID is the returned window number.

W I N T I T
The routine WINTIT changes the window title of the currently selected window.

The call is: CALL WINTIT (CSTR) level 1, 2, 3

or: void wintit (char *cstr);

CSTR is a character string containing the new window title.

9.8.4 Cursor Routines

The following routines allow an user to collect some X- and Y-coordinates in a graphics window with
the mouse. The coordinates can be returned in pixels and in DISLIN plot coordinates. All routines are
also available in DISLIN draw widgets.

C S R P O S
The routine CSRPOS sets the position of the mouse pointer and returns the position if a character key or
a mouse button is pressed. This routine can be used for cursor navigation.

The call is: CALL CSRPOS (NX, NY, IKEY) level 1, 2, 3

or: int csrpos (int *nx, int *ny);

NX, NY are integer coordinates. On entry, the mouse pointer is set to the position (NX,
NY). If a character key is pressed, the position of the mouse is returned in NX
and NY.

IKEY is the returned ASCII code for the pressed key. The cursor keys can also be
used where the following values are returned: 1 for cursor left, 2 for cursor up,
3 for cursor right, 4 for cursor down. The value 5 is returned if the left mouse
button is clicked, and the value 6 for the right mouse button. The value -1 is
returned if an error occured and the value 0 if no key is pressed.

Additional note: The behavior of CSRPOS can be modified with the routine CSRMOD.

C S R K E Y
The routine CSRKEY returns a character key. If no character key is pressed, the value 0 is returned.

The call is: CALL CSRKEY (IKEY) level 1, 2, 3

or: int csrkey (void);

IKEY is the returned ASCII code for the pressed key. The cursor keys can also be
used where the following values are returned: 1 for cursor left, 2 for cursor
up, 3 for cursor right, 4 for cursor down. The value 0 is returned if no key is
pressed.

115

C S R P T 1
The routine CSRPT1 returns the position of the mouse pointer if the mouse button 1 is pressed. The
mouse pointer is changed to a cross hair pointer in the graphics window if CSRPT1 is active.

The call is: CALL CSRPT1 (NX, NY) level 1, 2, 3

or: void csrpt1 (int *nx, int *ny);

NX, NY are the returned coordinates of the pressed mouse pointer.

C S R P T S
The routine CSRPTS returns an array of mouse positions. The routine is waiting for mouse button 1
clicks and terminates if mouse button 2 is pressed. The mouse pointer is changed to a cross hair pointer
in the graphics window.

The call is: CALL CSRPTS (NXRAY, NYRAY, NMAX, N, IRET) level 1, 2, 3

or: void csrpts (int *nxray, int *nyray, int nmax, int *n, int *iret);

NXRAY, NYRAY are the returned coordinates of the collected mouse positions.

NMAX is the dimension of NXRAY and NYRAY and defines the maximal number of
points that will be stored in NXRAY and NYRAY.

N is the number of points that are returned in NXRAY and NYRAY.

IRET is a returned status. IRET not equal 0 means that not all mouse movements
could be stored in NXRAY and NYRAY.

C S R M O V
The routine CSRMOV returns an array of mouse movements. The routine collects the mouse movements
of mouse button 1 and terminates if mouse button 1 is released. The mouse pointer is changed to a cross
hair pointer in the graphics window.

The call is: CALL CSRMOV (NXRAY, NYRAY, NMAX, N, IRET) level 1, 2, 3

or: void csrmov (int *nxray, int *nyray, int nmax, int *n, int *iret);

NXRAY, NYRAY are the returned coordinates of the collected mouse movements.

NMAX is the dimension of NXRAY and NYRAY and defines the maximal number of
points that will be stored in NXRAY and NYRAY.

N is the number of points that are returned in NXRAY and NYRAY.

IRET is a returned status. IRET not equal 0 means that not all mouse positions could
be stored in NXRAY and NYRAY.

C S R R E C
The routine CSRREC returns two opposite corners of a rectangle created with mouse button 1. A rub-
berband is plotted around the rectangle.

The call is: CALL CSRREC (NX1, NY1, NX2, NY2) level 1, 2, 3

or: void csrrec (int *nx1, int *ny1, int *nx2, int *ny2);

NX1, NY1, NX2, NY2 are the returned coordinates of two opposide rectangle corners.

C S R M O D
The routine CSRMOD modifies the behavior of CSRPOS.

116

The call is: CALL CSRMOD (CMOD, CKEY) level 1, 2, 3

or: void csrmod (char *cmod, char *ckey);

CMOD is a character string that can have the values ’STANDARD’, ’SET’, ’GET’
and ’READ’. With the keywords ’SET’ and ’GET’ the cursor position can be
defined or requested without waiting for an user event. The value ’READ’
means that the cursor position is not set at the entry of CSRPOS. The value
’STANDARD’ means the default behavior of CSRPOS.

CKEY is a character string that can have the value ’POS’.
Default: (’STANDARD’, ’POS’).

C S R U N I
The routine CSRUNI defines if pixels or plot coordinates are returned by the cursor routines.

The call is: CALL CSRUNI (COPT) level 1, 2, 3

or: void csruni (char *copt);

COPT is a character string that can have the values ’PIXEL’ and ’PLOT’.
Default: COPT = ’PLOT’.

Additional note: Plot coordinates can be converted to user coordinates with the routines XIN-
VRS and YINVRS.

C S R T Y P
The routine CSRTYP defines the cursor used by the cursor routine.

The call is: CALL CSRTYP (COPT) level 1, 2, 3

or: void csrtyp (char *copt);

COPT is a character string that can have the values ’NONE’, ’CROSS’, ’ARROW’
and ’VARROW’. ’NONE’ means that the current cursor is not changed.

Default: COPT = ’CROSS’.

S E T C S R
The routine SETCSR defines the cursor that is used by the DISLIN graphics window.

The call is: CALL SETCSR (COPT) level 1, 2, 3

or: void setcsr (char *copt);

COPT is a character string that can have the values ’ARROW’, ’CROSS’ and ’VAR-
ROW’.

Default: COPT = ’ARROW’.

9.9 Elementary Image Routines

The following routines allow transfering of image data between windows, files and arrays. The output
format must be an image format such as CONS, TIFF, PNG, BMP and PPM, but the writing of image
data to PostScript and PDF files is also supported. If the output format is PostScript or PDF, the size of
images and the position of an image on the output page can be defined with the routines IMGSIZ and
IMGBOX.

I M G I N I
The routine IMGINI initializes transfering of image data with the routines RPIXEL, RPIXLS, RPXROW,
WPIXEL, WPIXLS and WPXROW. If the output format is PostScript or PDF, IMGINI creates a virtual
image where image data can be written to.

117

The call is: CALL IMGINI level 1, 2, 3

or: void imgini ();

I M G F I N
The routine IMGFIN terminates transfering of image data with the routines RPIXEL, RPIXLS,
RPXROW, WPIXEL, WPIXLS and WPXROW. If the output format is PostScript or PDF, the virtual
image created in IMGINI is copied to the PostScript or PDF file.

The call is: CALL IMGFIN level 1, 2, 3

or: void imgfin ();

R P I X E L
The routine RPIXEL reads one pixel from memory.

The call is: CALL RPIXEL (IX, IY, ICLR) level 1, 2, 3

or: void rpixel (int ix, int iy, int *iclr);

IX, IY is the position of the pixel in screen coordinates.

ICLR is the returned colour value of the pixel. If the parameter ’RGB’ is used in the
routine IMGMOD before, RPIXEL returns an explicit RGB value, otherwise
an entry of the colour table.

W P I X E L
The routine WPIXEL writes one pixel into memory.

The call is: CALL WPIXEL (IX, IY, ICLR) level 1, 2, 3

or: void wpixel (int ix, int iy, int iclr);

IX, IY is the position of the pixel in screen coordinates.

ICLR is the new colour value of the pixel.

R P I X L S
The routine RPIXLS copies colour values from a rectangle in memory to an array.

The call is: CALL RPIXLS (IRAY, IX, IY, NW, NH) level 1, 2, 3

or: void rpixls (unsigned char *iray, int ix, int iy, int nw, int nh);

IRAY is a byte array containing the returned colour values.

IX, IY contain the starting point in screen coordinates.

NW, NH are the width and height of the rectangle in screen coordinates.

W P I X L S
The routine WPIXLS copies colour values from an array to a rectangle in memory.

The call is: CALL WPIXLS (IRAY, IX, IY, NW, NH) level 1, 2, 3

or: void wpixls (unsigned char *iray, int ix, int iy, int nw, int nh);

IRAY is a byte array containing the colour values.

IX, IY contain the starting point in screen coordinates.

NW, NH are the width and height of the rectangle in screen coordinates.

118

R P X R O W
The routine RPXROW copies one line of colour values from memory to an array.

The call is: CALL RPXROW (IRAY, IX, IY, N) level 1, 2, 3

or: void rpxrow (unsigned char *iray, int ix, int iy, int n);

IRAY is a byte array containing the returned colour values.

IX, IY contain the starting point in screen coordinates.

N is the number of pixels.

W P X R O W
The routine WPXROW copies colour values from an array to a line in memory.

The call is: CALL WPXROW (IRAY, IX, IY, N) level 1, 2, 3

or: void wpxrow (unsigned char *iray, int ix, int iy, int n);

IRAY is a byte array containing the colour values.

IX, IY contain the starting point in screen coordinates.

N is the number of pixels.

Additional note: IMGINI and IMGFIN must be used with the routines RPIXEL, WPIXEL,
RPIXLS, WPIXLS, RPXROW and WPXROW.

I M G M O D
The routine IMGMOD defines palette or truecolour mode for the routines RPIXLS, WPIXLS, RPXROW
and WPXROW. For palette mode, the byte arrays in the routines above must contain colour indices
between 0 and 255. For truecolour mode, the byte arrays must contain RGB values (8 bit for each value).

The call is: CALL IMGMOD (CMOD) level 1, 2, 3

or: void imgmod (char *cmod);

CMOD is a character string that can contain the values ’INDEX’ and ’RGB’.
Default: CMOD = ’INDEX’.

I M G S I Z
If the output format is PostScript or PDF, the size of images can be defined with the routine IMGSIZ.
The routine must be called before IMGINI.

The call is: CALL IMGSIZ (NW, NH) level 1, 2, 3

or: void imgsiz (int nw, int nh);

NW, NH are the image width and height in pixels.
Default: (853, 603).

I M G B O X
If the output format is PostScript or PDF, a rectangle on the output page can be specified where the image
is copied to. The routine IMGBOX must be called before IMGINI.

The call is: CALL IMGBOX (NX, NY, NW, NH) level 1, 2, 3

or: void imgbox (int nx, int ny, int nw, int nh);

NX, NY is the upper left corner of the rectangle on the page in plot coordinates.

119

NW, NH are the width and height of the rectangle in plot coordinates. NW and NH
should have the same ratio as the image that is copied to the rectangle. The
default rectangle is the full page.

R I M A G E
The routine RIMAGE copies an image from memory to a file.

The call is: CALL RIMAGE (CFIL) level 1, 2, 3

or: void rimage (char *cfil);

CFIL is the name of the output file. A new file version will be created for existing
files (see FILMOD).

Additional notes: - Images are stored with an ASCII header of 80 bytes length followed by the
binary image data. The format of the image data depends on the video mode
and is therefore system-dependent.

- A single image file can be displayed with the routine WIMAGE or with the
utility program DISIMG. A sequence of image files can be displayed with the
utility program DISMOV.

W I M A G E
The routine WIMAGE copies an image from a file to memory.

The call is: CALL WIMAGE (CFIL) level 1, 2, 3

or: void wimage (char *cfil);

CFIL is the name of the input file.

R T I F F
The routine RTIFF copies an image from memory to a file. The image is stored in the device-independent
TIFF format.

The call is: CALL RTIFF (CFIL) level 1, 2, 3

or: void rtiff (char *cfil);

CFIL is the name of the output file. A new file version will be created for existing
files (see FILMOD).

Additional notes: - This image format can be used to export images created with DISLIN into
other software packages or to transfer them to other computer systems.

- A TIFF file created by DISLIN can be displayed with the routine WTIFF or
with the utility program DISTIF.

W T I F F
The routine WTIFF copies a TIFF file created by DISLIN from a file to memory.

The call is: CALL WTIFF (CFIL) level 1, 2, 3

or: void wtiff (char *cfil);

CFIL is the name of the input file.

Note: The position of the TIFF file and a clipping window can be defined with the
routines TIFORG and TIFWIN.

120

T I F O R G
The routine TIFORG defines the upper left corner of the screen where the TIFF file is copied to.

The call is: CALL TIFORG (NX, NY) level 1, 2, 3

or: void tiforg (int nx, int ny);

NX, NY is the upper left corner in screen coordinates.

T I F W I N
The routine TIFWIN defines a clipping window of the TIFF file that can be copied with the routine
WTIFF to the screen.

The call is: CALL TIFWIN (NX, NY, NW, NH) level 1, 2, 3

or: void tifwin (int nx, int ny, int nw, int nh);

NX, NY is the upper left corner of the clipping window in pixels.

NW, NH are the width and height of the clipping window in pixels.

R G I F
The routine RGIF copies an image from memory to a GIF file.

The call is: CALL RGIF (CFIL) level 1, 2, 3

or: void rgif (char *cfil);

CFIL is the name of the output file. A new file version will be created for existing
files (see FILMOD).

R P N G
The routine RPNG copies an image from memory to a PNG file.

The call is: CALL RPNG (CFIL) level 1, 2, 3

or: void rpng (char *cfil);

CFIL is the name of the output file. A new file version will be created for existing
files (see FILMOD).

R B F P N G
The routine RBFPNG copies an image from memory as a PNG file to a buffer.

The call is: CALL RBFPNG (CBUF, NMAX, N) level 1, 2, 3

or: int rbfpng (char *cbuf, int nmax);

CBUF is a character buffer where the image is copied to in PNG format.

NMAX defines how many bytes can be copied to CBUF. If NMAX = 0, the size of the
PNG file is returned in N without copying the PNG file to CBUF.

N is the returned length of the buffer. N≤ 0, if an error occurs.

R P P M
The routine RPPM copies an image from memory to a PPM file.

The call is: CALL RPPM (CFIL) level 1, 2, 3

or: void rppm (char *cfil);

121

CFIL is the name of the output file. A new file version will be created for existing
files (see FILMOD).

R B M P
The routine RBMP copies an image from memory to a BMP file.

The call is: CALL RBMP (CFIL) level 1, 2, 3

or: void rbmp (char *cfil);

CFIL is the name of the output file. A new file version will be created for existing
files (see FILMOD).

I M G C L P
The routine IMGCLP defines a clipping region for the routines RTIFF, RGIF, RPNG, RPPM and RBMP
for copying the graphics window to an output file.

The call is: CALL IMGCLP (NX, NY, NW, NH) level 1, 2, 3

or: void imgclp (int nx, int ny, int nw, int nh);

NX, NY is the upper left corner of the rectangle in pixels.

NW, NH are the width and height of the rectangle in pixels.

P D F B U F
The routine PDFBUF copies a PDF file from memory to an user buffer. The routine must be called after
DISFIN and PDF buffer output must be enabled with the statment CALL PDFMOD (’ON’, ’BUFFER’)
before DISINI.

The call is: CALL PDFBUF (CBUF, NMAX, N) level 0

or: int pdfbuf (char *cbuf, int nmax);

CBUF is a character buffer where the PDF format is copied to.

NMAX defines how many bytes can be copied to CBUF. If NMAX = 0, the size of the
PDF file is returned in N without copying the PDF file to CBUF.

N is the returned length of the buffer. N≤ 0, if an error occurs.

Additional note: The PDF file is deleted in memory after it is copied to the buffer.

9.10 Transparency

The following routines allow transparency effects in DISLIN by using alpha blending. Alpha blending
is only possible if the output format is a raster format such as screen output or plotting to an image file
like PNG and TIFF. A second restriction is that the outout device must support the full range of RGB
colours. This means that you have to enable the option IMGFMT (’RGB’) for image files.

T P R I N I
The routine TPRINI initializes transparency. All following plotting output until TPRFIN is going to a
separate frame buffer.

The call is: CALL TPRINI level 1, 2, 3

or: void tprini ();

122

T P R F I N
The routine TPRFIN terminates transparency. The separate frame buffer is mixed with the real frame
buffer by using alpha blending.

The call is: CALL TPRFIN level 1, 2, 3

or: void tprfin ();

T P R V A L
The routine TPRVAL defines the alpha value.

The call is: CALL TPRVAL (X) level 1, 2, 3

or: void tprval (float x);

X is a floatingpoint value in the range from 0.0 to 1.0, where 0.0 means a fully
transparent colour and 1.0 means a fully opaque colour.

Default: 1.0

The following program code plots three circles with alpha blending:

CALL TPRVAL(0.5)
CALL COLOR(’RED’)
CALL TPRINI
CALL CIRCLE(500,500,500)
CALL TPRFIN

CALL COLOR(’GREEN’)
CALL TPRINI
CALL CIRCLE(750,750,500)
CALL TPRFIN

CALL COLOR(’BLUE’)
CALL TPRINI
CALL CIRCLE(1000,500,500)
CALL TPRFIN

T P R M O D
The routine TPRMOD defines additional options for transparency.

The call is: CALL TPRMOD (CMOD, CKEY) level 1, 2, 3

or: void tprmod (char *cmod, char *ckey);

CMOD is a character string defining an option.

CKEY is a character string that can have the values ’BACK’ and ’FIGURE’. For
CKEY = ’BACK’, the parameter CMOD can have the values ’OPAQUE’ and
’NOOPAQUE’. ’OPAQUE’ means that a transparent figure maybe mixed with
the background colour black or white. ’NOOPAQUE’ means that the back-
ground colour is defined as fully transparent.
The elementary figures in DISLIN such as circles, rectangles and polygons
contain already a TPRINI/TPRFIN environment that can be enabled with the
key ’FIGURES’ and the mode ’AUTO’.

Default: (’OPAQUE’, ’BACK’), (’NOAUTO’, ’FIGURES’).

The example above can also be written as:

123

CALL TPRVAL(0.5)
CALL TPRMOD(’AUTO’,’FIGURES’)
CALL COLOR(’RED’)
CALL CIRCLE(500,500,500)

CALL COLOR(’GREEN’)
CALL CIRCLE(750,750,500)

CALL COLOR(’BLUE’)
CALL CIRCLE(1000,500,500)

9.11 Using Threads

T H R I N I
The routine THRINI initializes threads. THRINI must be called before any other DISLIN routine.

The call is: CALL THRINI (N)

or: void thrini (int n);

N is the number of threads that are used by the program.

T H R F I N
The routine THRFIN terminates threads. THRFIN should be called after any other DISLIN routine.

The call is: CALL THRFIN

or: void thrfin ();

Additional note: The thread routines above are only available for the DISLIN C libraries.

9.12 Plotting the MPS Logo

Since the Max Planck Institute for Aeronomie was renamed to Max Planck Institute for Solar System
Research in July 2004, DISLIN contains a routine for plotting the new MPS logo.

M P S L O G O
The routine MPSLOGO plots the new MPS logo.

The call is: CALL MPSLOGO (NX, NY, NSIZE, COPT)

or: void mpslogo (int nx, int ny, int nsize, char *copt);

NX, NY defines the position of the MPSLOGO (upper left corner, plot coordinates).

NSIZE defines the size of the MPSLOGO. NSIZE cam have the pixel values 100, 125,
150, 175, 200 and 300.

COPT is a character option that can have the values ’NOTEXT’ and ’TEXT’.

Additional note: The MPS logo is included as a bitmap file into a DISLIN graphics where the
corresponding bitmap files are not included in a DISLIN distribution. They
must be copied separately to the subdirectory mps in the DISLIN directory.

124

Chapter 10

Business Graphics

This chapter presents business graphic routines to create bar graphs and pie charts.

10.1 Bar Graphs

B A R S
BARS plots bar graphs.

The call is: CALL BARS (XRAY, Y1RAY, Y2RAY, N) level 2, 3

or: void bars (float *xray, float *y1ray, float *y2ray, int n);

XRAY is an array of user coordinates defining the position of the bars on the X-axis.

Y1RAY is an array of user coordinates containing the start points of the bars on the
Y-axis.

Y2RAY is an array of user coordinates containing the end points of the bars on the
Y-axis.

N is the number of bars.

Additional notes: - Shading patterns of bars can be selected with SHDPAT or MYPAT. Shading
numbers will be incremented by 1 after every call to BARS.

- Legends can be plotted for bar graphs.

The following routines modify the appearance of bar graphs.

B A R T Y P
The routine BARTYP defines vertical or horizontal bars.

The call is: CALL BARTYP (CTYP) level 1, 2, 3

or: void bartyp (char *ctyp);

CTYP is a character string defining the bar type.

= ’VERT’ means that vertical bars will be plotted.

= ’HORI’ means that horizontal bars will be plotted. If this parameter is used, XRAY
defines the position of the bars on the Y-axis while Y1RAY and Y2RAY define
the position of the bars on the X-axis.

= ’3DVERT’ defines vertical 3-D bars.

= ’3DHORI’ defines horizontal 3-D bars.
Default: CTYP = ’VERT’.

125

C H N B A R

CHNBAR modifies colours and shading patterns for single bars.

The call is: CALL CHNBAR (CATT) level 1, 2, 3

or: void chnbar (char *catt);

CATT is a character string defining bar attributes.

= ’NONE’ means that all bars will be plotted with the current colour and shading pattern.

= ’COLOR’ means that the colour is changed for each bar.

= ’PATTERN’ means that the shading pattern is changed for each bar.

= ’BOTH’ means that the colour and shading pattern is changed for each bar.
Default: CATT = ’NONE’.

Additional notes: - The sequence of colours is: WHITE/BLACK, RED, GREEN, YELLOW,
BLUE, ORANGE, CYAN, MAGENTA.
The sequence of shading patterns is 0 - 17.
Colour and pattern cycles can be changed with CLRCYC and PATCYC.

- If the routine BARCLR is used, the changing of colours will be ignored.

B A R W T H
BARWTH defines the width of the bars.

The call is: CALL BARWTH (XWTH) level 1, 2, 3

or: void barwth (float xwth);

XWTH is a real number defining the width. If XWTH is positive, the bar width is
the absolute value of XWTH * (XRAY(1)-XRAY(2)). If XWTH is negative,
the absolute value of XWTH is used where XWTH must be specified in plot
coordinates.

Default: XWTH = 0.75

B A R M O D
BARMOD modifies the width of bars.

The call is: CALL BARMOD (CMOD, COPT) level 1, 2, 3

or: void barmod (char *cmod, char *copt);

CMOD is a character string that can have the values ’FIXED’ and ’VARIABLE’. If
CMOD = ’VARIABLE’, the width of bars plotted by the routine BARS will be
variable. In that case, XWTH should have a positive value in BARWTH since
the width of bars is calculated in a similar way as described in BARWTH.

COPT is a character string that must contain the value ’WIDTH’. Default:
(’FIXED’, ’WIDTH’).

B A R P O S

The position of the bars is determined by the parameters XRAY, Y1RAY and Y2RAY. The routine BAR-
POS can be used to select predefined positions. The parameters XRAY, Y1RAY and Y2RAY will contain
the calculated positions.

The call is: CALL BARPOS (COPT) level 1, 2, 3

126

or: void barpos (char *copt);

COPT is a character string that defines the position of the bars.

= ’NONE’ means that the positions are defined only by the parameters in BARS.

= ’TICKS’ means that the bars will be centred at major ticks. XRAY must be a dummy
vector.

= ’AXIS’ means that vertical bars start at the X-axis and horizontal bars at the Y-axis.
Y1RAY must be a dummy vector.

= ’BOTH’ activates the options ’TICKS’ and ’AXIS’. XRAY and Y1RAY must be
dummy arrays.

Default: COPT = ’NONE’.

Bars can be plotted on top of one another if the routine BARS is called several times. To plot bars side
by side in groups, the routine BARGRP can be used.

B A R G R P

The routine BARGRP puts bars with the same axis position into groups. The number of group elements
should be the same as the number of calls to the routine BARS.

The call is: CALL BARGRP (NGRP, GAP) level 1, 2, 3

or: void bargrp (int ngrp, float gap);

NGRP is the number of bars defining one group.

GAP defines the spacing between group bars. If GAP is positive, the value GAP *
W is used where W is the width of a single bar. If GAP is negative, the positive
value of GAP is used where GAP must be specified in plot coordinates.

B A R C L R

The routine BARCLR defines the colours of bars. Different colours can be defined for the sides of 3-D
bars.

The call is: CALL BARCLR (IC1, IC2, IC3) level 1, 2, 3

or: void barclr (int ic1, int ic2, int ic3);

IC1, IC2, IC3 are colour values for the front, side and top planes of 3-D bars. The value -1
means that the corresponding plane is plotted with the current colour.

Default: (-1, -1, -1).

B A R B O R

The routine BARBOR defines the colour of borders plotted around the bars. By default, a border in the
current colour is plotted around 2-D bars, and borders in the foreground colour are plotted around 3-D
bars.

The call is: CALL BARBOR (IC) level 1, 2, 3

or: void barbor (int ic);

IC is a colour value. If IC = -1, the bar borders will be plotted with the current
colour.

Default: IC = -1

127

B A R O P T

The routine BAROPT modifies the appearance of 3-D bars.

The call is: CALL BAROPT (XF, ANG) level 1, 2, 3

or: void baropt (float xf, float ang);

XF is a floatingpoint number that defines the depth of bars. IF XF = -1., the bar
width is used for the bar depth. IF XF> 0., XF is interpreted as the bar depth
specified in plot coordinates.

ANG defines an angle measured in degrees between the front and side planes of 3-D
bars.

Default: (-1., 45.).

L A B E L S
The routine LABELS defines labels for bar graphs.

The call is: CALL LABELS (CLAB, ’BARS’) level 1, 2, 3

or: void labels (char *clab, ”BARS”);

CLAB is a character defining the labels.

= ’NONE’ means that no labels will be plotted.

= ’SECOND’ means that Y2RAY is used for labels.

= ’FIRST’ means that Y1RAY is used for labels.

= ’DELTA’ means that the difference vector (Y2RAY - Y1RAY) is used for labels.
Default: CLAB = ’NONE’.

L A B P O S
The routine LABPOS defines the position of the labels.

The call is: CALL LABPOS (CPOS, ’BARS’) level 1, 2, 3

or: void labpos (char *cpos, ”BARS”);

CPOS is a character string that defines the position of the labels.

= ’INSIDE’ means inside at the end of a bar.

= ’OUTSIDE’ means outside at the end of a bar.

= ’LEFT’ defines the upper left side.

= ’RIGHT’ defines the upper right side.

= ’CENTER’ selects the centre of a bar.

= ’AUTO’ means ’INSIDE’ if labels are smaller than the bar width, otherwise ’OUT-
SIDE’.

Default: CPOS = ’AUTO’.

L A B D I G
The routine LABDIG defines the number of decimal places in the labels.

The call is: CALL LABDIG (NDIG, ’BARS’) level 1, 2, 3

or: void labdig (int ndig, ”BARS”);

128

NDIG is the number of decimal places (≥ -2).
Default: NDIG = 1

L A B C L R
The routine LABCLR defines the colour of labels.

The call is: CALL LABCLR (NCLR, ’BARS’) level 1, 2, 3

or: void labclr (int nclr, ”BARS”);

NCLR is a colour value. If NCLR = -1, the bar labels will be plotted with the current
colour.

Default: NCLR = -1

10.2 Pie Charts

P I E G R F

PIEGRF plots pie charts.

The call is: CALL PIEGRF (CBUF, NLIN, XRAY, NSEG) level 1

or: void piegrf (char *cbuf, int nlin, float *xray, int nseg);

CBUF is a character string containing text lines for segment labels. More than one line
can be defined for labels. CBUF must be created with LEGLIN after calling
LEGINI. If NLIN is 0 in the parameter list, CBUF can be a dummy variable.

NLIN is the number of text lines used for one segment label.

XRAY is an array of user coordinates.

NSEG is the dimension of XRAY.

Additional notes: - The centre and the size of pies is defined by a region that can be changed with
the routines AXSPOS and AXSLEN.

- PIEGRF sets the level to 2. Titles and legends can be plotted after PIEGRF is
called.

- Segment labels can contain several lines of text and the data values specified
in PIEGRF. Data values can also be converted to percent values.

- Segment labels are contained within a box where the thickness of the border
can be changed with FRAME.

The following routines modify the appearance of pie charts.

P I E T Y P
The routine PIETYP defines 2-D or 3-D pie charts.

The call is: CALL PIETYP (CTYP) level 1, 2, 3

or: void pietyp (char *ctyp);

CTYP is a character string defining the pie type.

= ’2D’ defines a 2-D pie chart.

= ’3D’ defines a 3-D pie chart.
Default: CTYP = ’2D’.

129

C H N P I E

CHNPIE defines colours and shading patterns for pie graphs.

The call is: CALL CHNPIE (CATT) level 1, 2, 3

or: void chnpie (char *catt);

CATT is a character string defining segment attributes.

= ’NONE’ means that all pie segments will be plotted with the current colour and shading
pattern.

= ’COLOR’ means that every segment will have a different colour.

= ’PATTERN’ means that every segment will have a different shading pattern.

= ’BOTH’ means that every segment will have both a different colour and shading pattern.
Default: CATT = ’PATTERN’.

Additional note: The sequence of colours is: WHITE/BLACK, RED, GREEN, YELLOW,
BLUE, ORANGE, CYAN, MAGENTA.
The sequence of shading patterns is 0 - 17.
Colour and pattern cycles can be changed with CLRCYC and PATCYC.

L A B E L S
LABELS selects data or percent values used for segment labels.

The call is: CALL LABELS (CLAB, ’PIE’) level 1, 2, 3

or: void labels (char *clab, ”PIE”);

CLAB is a character string that defines the values used for segment labels.

= ’NONE’ means that data values will not be displayed.

= ’PERCENT’ means that values will be plotted as percentages.

= ’DATA’ means that the data values specified in PIEGRF will be plotted.

= ’BOTH’ means both ’PERCENT’ and ’DATA’.
Default: CDOC = ’PERCENT’.

L A B P O S
LABPOS determines the position of segment labels.

The call is: CALL LABPOS (CPOS, ’PIE’) level 1, 2, 3

or: void labpos (char *cpos, ”PIE”);

CPOS is a character string defining the position of labels.

= ’INTERNAL’ means that labels will be plotted inside pie segments. If labels are too big, they
will be plotted outside.

= ’EXTERNAL’ means that segment labels will be plotted outside pie segments.

= ’ALIGNED’ means that segment labels will be plotted outside pie segments and aligned.
Default: CPOS = ’INTERNAL’.

L A B T Y P
LABTYP defines the position of text lines in segment labels.

The call is: CALL LABTYP (CTYP, ’PIE’) level 1, 2, 3

130

or: void labtyp (char *ctyp, ”PIE”);

CTYP is a character string that defines how text lines are justified.

= ’CENTER’ centres text lines.

= ’LEFT’ left-justifies text lines.

= ’RIGHT’ right-justifies text lines.

= ’OUTWARDS’ left-justifies text lines on the left side of pies and right-justifies text lines on
the right side of pies.

= ’INWARDS’ right-justifies text lines on the left side of pies and left-justifies text lines on
the right side of pies.

Default: CTYP = ’CENTER’.

L A B D I G
The routine LABDIG defines the number of decimal places used in segment labels.

The call is: CALL LABDIG (NDIG, CDIG) level 1, 2, 3

or: void labdig (int ndig, char *cdig);

NDIG is the number of decimal places (≥ -2).

CDIG is a character string selecting the data values.

= ’PIE’ defines the number of decimal places used for percent and data values.

= ’PERCENT’ defines the number of decimal places used for percent values.

= ’DATA’ defines the number of decimal places used for data values.
Default: (1, ’PIE’).

L A B C L R
The routine LABCLR defines the colour of labels.

The call is: CALL LABCLR (NCLR, ’PIE’) level 1, 2, 3

or: void labclr (int nclr, ”PIE”);

NCLR is a colour value. If NCLR = -1, the pie labels will be plotted with the current
colour.

Default: NCLR = -1

P I E C L R

The routine PIECLR defines colours for single pies. Different colours can be defined for the top and front
sides of 3-D pies. PIECLR has no effect if the routine CHNPIE is called with the parameters ’COLOR’
or ’BOTH’.

The call is: CALL PIECLR (NC1RAY, NC2RAY, N) level 1, 2, 3

or: void pieclr (int *nc1ray, int *nc2ray, int n);

NC1RAY, NC2RAY are integer arrays containing colour values for the top and front sides of pies.
The value -1 means that the current colour is used.

N is the dimension of NC1RAY and NC2RAY.

P I E B O R

The routine PIEBOR defines the colour of borders plotted around the pies. By default, a border in the
current colour is plotted around 2-D pies, and borders in the foreground colour are plotted around 3-D
pies.

131

The call is: CALL PIEBOR (IC) level 1, 2, 3

or: void piebor (int ic);

IC is a colour value. If IC = -1, the pie borders will be plotted with the current
colour.

Default: IC = -1

P I E O P T

The routine PIEOPT modifies the appearance of 3-D pies.

The call is: CALL PIEOPT (XF, ANG) level 1, 2, 3

or: void pieopt (float xf, float ang);

XF is a scaling number that defines the thickness of pies. The thickness is set to
XF * radius.

ANG defines an view angle measured in degrees.
Default: (0.2, 45.).

P I E L A B
The routine PIELAB defines character strings that can be plotted on the left or right side of data values
within segment labels.

The call is: CALL PIELAB (CLAB, CPOS) level 1, 2, 3

or: void pielab (char *clab, char *cpos);

CLAB is a character string displayed in segment labels.

CPOS is a character string that defines the position of CLAB.

= ’LEFT’ means that CLAB will be plotted on the left side of data values.

= ’RIGHT’ means that CLAB will be plotted on the right side of data values.

Additional note: If percent and data values are plotted in segment labels, PIELAB is only used
for data values.

P I E E X P
Pie segments will be offset by 8% of the radius if PIEEXP is called.

The call is: CALL PIEEXP level 1, 2, 3

or: void pieexp ();

Additional note: Single segments will be offset if the corresponding values in PIEGRF are neg-
ative.

P I E V E C
PIEVEC modifies the arrows plotted between segments and labels that lie outside of segments.

The call is: CALL PIEVEC (IVEC, COPT) level 1, 2, 3

or: void pievec (int ivec, char *copt);

IVEC defines the arrow head (see VECTOR).

COPT is a character string that defines the vector plotted between segments and la-
bels.

= ’NONE’ suppresses vectors.

= ’STRAIGHT’ means that straight vectors will be plotted.

= ’BROKEN’ means that broken vectors will be plotted.
Default: (2301, ’BROKEN’).

132

U S R P I E
USRPIE is a user-defined subroutine that can modify pie charts such as suppressing certain labels. US-
RPIE is called by PIEGRF for each segment.

The call is: CALL USRPIE (ISEG, XDAT, XPER, NRAD, NOFF, ANGLE,
NVY, IDRW, IANN) level 1, 2, 3

or: void usrpie(int iseg, float xdat, float xper, int *nrad, int *noff, float *angle,
int *nvy, int *idrw, int *iann);

ISEG is the segment index (starting with 1).

XDAT is the data value of the segment as specified in PIEGRF.

XPER is the percent value of XDAT.

NRAD is the segment radius in plot coordinates.

NOFF is the segment offset in plot coordinates (default: 0).

ANGLE is the offset angle measured in degrees in a counter-clockwise direction. The
default value is the angle which bisects the segment.

NVY shifts the segment label in the Y-direction by NVY plot coordinates.

IDRW defines the plotting of segments. If IDRW = 0, plotting will be suppressed
(default: 1).

IANN defines the plotting of labels. If IANN = 0, labels will be suppressed (default:
1).

Additional note: The first 3 parameters of USRPIE are only given for information and cannot
be changed by the user.

10.3 Examples

PROGRAM EX10_1
DIMENSION X(9),Y(9),Y1(9),Y2(9),Y3(9)
CHARACTER*60 CTIT,CBUF*24

DATA X/1.,2.,3.,4.,5.,6.,7.,8.,9./ Y/9*0./
* Y1/1.,1.5,2.5,1.3,2.0,1.2,0.7,1.4,1.1/
* Y2/2.,2.7,3.5,2.1,3.2,1.9,2.0,2.3,1.8/
* Y3/4.,3.5,4.5,3.7,4.,2.9,3.0,3.2,2.6/

NYA=2700
CTIT=’Bar Graphs (BARS)’

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX
CALL TICKS(1,’X’)
CALL INTAX
CALL AXSLEN(1600,700)
CALL TITLIN(CTIT,3)

133

CALL LEGINI(CBUF,3,8)
CALL LEGLIN(CBUF,’FIRST’,1)
CALL LEGLIN(CBUF,’SECOND’,2)
CALL LEGLIN(CBUF,’THIRD’,3)
CALL LEGTIT(’ ’)

CALL SHDPAT(5)
DO I=1,3

IF(I.GT.1) CALL LABELS(’NONE’,’X’)
CALL AXSPOS(300,NYA-(I-1)*800)

CALL GRAF(0.,10.,0.,1.,0.,5.,0.,1.)

IF(I.EQ.1) THEN
CALL BARGRP(3,0.15)
CALL BARS(X,Y,Y1,9)
CALL BARS(X,Y,Y2,9)
CALL BARS(X,Y,Y3,9)
CALL RESET(’BARGRP’)

ELSE IF(I.EQ.2) THEN
CALL HEIGHT(30)
CALL LABELS(’DELTA’,’BARS’)
CALL LABPOS(’CENTER’,’BARS’)
CALL BARS(X,Y,Y1,9)
CALL BARS(X,Y1,Y2,9)
CALL BARS(X,Y2,Y3,9)
CALL HEIGHT(36)

ELSE IF(I.EQ.3) THEN
CALL LABELS(’SECOND’,’BARS’)
CALL LABPOS(’OUTSIDE’,’BARS’)
CALL BARS(X,Y,Y1,9)

END IF

IF(I.NE.3) CALL LEGEND(CBUF,7)

IF(I.EQ.3) THEN
CALL HEIGHT(50)
CALL TITLE

END IF

CALL ENDGRF
END DO

CALL DISFIN
END

134

Figure 10.1: Bar Graphs

135

PROGRAM EX10_2
DIMENSION XRAY(5)
CHARACTER*60 CTIT,CBUF*40
DATA XRAY/1.,2.5,2.,2.7,1.8/

CTIT=’Pie Charts (PIEGRF)’
NYA=2800

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX
CALL AXSLEN(1600,1000)
CALL TITLIN(CTIT,2)

CALL LEGINI(CBUF,5,8)
CALL LEGLIN(CBUF,’FIRST’,1)
CALL LEGLIN(CBUF,’SECOND’,2)
CALL LEGLIN(CBUF,’THIRD’,3)
CALL LEGLIN(CBUF,’FOURTH’,4)
CALL LEGLIN(CBUF,’FIFTH’,5)

C Selecting shading patterns
CALL PATCYC(1,7)
CALL PATCYC(2,4)
CALL PATCYC(3,13)
CALL PATCYC(4,3)
CALL PATCYC(5,5)

DO I=1,2
CALL AXSPOS(250,NYA-(I-1)*1200)
IF(I.EQ.2) THEN

CALL LABELS(’DATA’,’PIE’)
CALL LABPOS(’EXTERNAL’,’PIE’)

END IF

CALL PIEGRF(CBUF,1,XRAY,5)

IF(I.EQ.2) THEN
CALL HEIGHT(50)
CALL TITLE

END IF
CALL ENDGRF

END DO
CALL DISFIN
END

136

Figure 10.2: Pie Charts

137

138

Chapter 11

3-D Colour Graphics

11.1 Introduction

This chapter presents subroutines that plot coloured surfaces in three dimensions. Coloured surfaces are
easy to interpret and show the full range of data points. A data point is plotted as a coloured rectangle
where the X- and Y-coordinates determine the position of the rectangle and the Z-coordinate defines the
colour. Colours are calculated from a scaled colour bar which is, by default, arranged as a rainbow.

11.2 Plotting Coloured Axis Systems

G R A F 3
The routine GRAF3 plots a 3-D axis system where the Z-axis is plotted as a colour bar.

The call is: CALL GRAF3 (XA, XE, XOR, XSTEP, YA, YE, YOR, YSTEP,
ZA, ZE, ZOR, ZSTEP) level 1

or: void graf3 (float xa, float xe, float xor, float xstep,
float ya, float ye, float yor, float ystep,
float za, float ze, float zor, float zstep);

XA, XE are the lower and upper limits of the X-axis.

XOR, XSTEP are the first X-axis label and the step between labels.

YA, YE are the lower and upper limits of the Y-axis.

YOR, YSTEP are the first Y-axis label and the step between labels.

ZA, ZE are the lower and upper limits of the Z-axis.

ZOR, ZSTEP are the first Z-axis label and the step between labels.

Additional note: GRAF3 must be called from level 1 and sets the level to 3. For additional
notes, the user is referred to the routine GRAF in chapter 4.

11.3 Secondary Colour Bars

GRAF3 plots a vertical colour bar on the right side of a 3-D axis system which can be shifted with the
routines VKXBAR and VKYBAR or suppressed with the routine NOBAR. To plot horizontal colour bars
at global positions, the routines ZAXIS and ZAXLG can be used. ZAXIS plots a linearly and ZAXLG a
logarithmically scaled colour bar.

The call is: CALL ZAXIS (A, B, OR, STEP, NL, CSTR, IT, NDIR, NX, NY)
level 1, 2, 3

139

or: void zaxis (float a, float b, float or, float step, int nl, char *cstr, int nx, int ny);

A, B are the lower and upper limits of the colour bar.

OR, STEP are the first label and the step between labels.

NL is the length of the colour bar in plot coordinates.

CSTR is a character string containing the axis name.

IT indicates how ticks, labels and the axis name are plotted. If IT = 0, they
are plotted in a clockwise direction. If IT = 1, they are plotted in a counter-
clockwise direction.

NDIR defines the direction of the colour bar. If NDIR = 0, a vertical colour bar will
be plotted; if NDIR = 1, a horizontal colour bar will be plotted.

NX, NY are the plot coordinates of the lower left corner.

Analog: ZAXLG plots a logarithmically scaled colour bar.

Additional note: The user is referred to the notes on secondary axes in chapter 4.

11.4 Plotting Data Points

The routines CURVE3, CURVX3, CURVY3, CRVMAT and CRVTRI plot three-dimensional data points.
CURVE3 plots random points from X-, Y- and Z-arrays, CURVY3 plots points as columns, CURVX3
plots data points as rows, CRVMAT plots a coloured surface according to a matrix while CRVTRI plots
the surface of the Delaunay triangulation of the points.

The calls are: CALL CURVE3 (XRAY, YRAY, ZRAY, N) level 3

CALL CURVX3 (XRAY, Y, ZRAY, N) level 3

CALL CURVY3 (X, YRAY, ZRAY, N) level 3

CALL CRVMAT (ZMAT, IXDIM, IYDIM, IXPTS, IYPTS) level 3

CALL CRVTRI (XRAY, YRAY, ZRAY, N, level 3
I1RAY, I2RAY,I3RAY, NTRI)

or: void curve3 (float *xray, float *yray, float *zray, int n);

void curvx3 (float *xray, float y, float *zray, int n);

void curvy3 (float x, float *yray, float *zray, int n);

void crvmat (float *zmat, int ixdim, int iydim, int ixpts, int iypts);

void crvtri (float *xray, float *yray, float *zray, int n,
int *i1ray, int *i2ray, int *i3ray, int ntri);

XRAY is an array containing the X-coordinates of data points.

YRAY is an array containing the Y-coordinates of data points.

ZRAY is an array containing the Z-coordinates of data points.

N is the number of data points.

X is the X-position of a column of data points.

Y is the Y-position of a row of data points.

ZMAT is a matrix of the dimension (IXDIM, IYDIM) containing Z-coordinates. The
coordinates correspond to a linear grid that overlays the axis system. If XA,
XE, YA and YE are the axis limits in GRAF3 or values defined with the routine

140

SURSZE, the relationship between the grid points and the matrix elements can
be described by the formula:

ZMAT(I,J) = F(X,Y) where

X = XA + (I - 1) * (XE - XA) / (IXDIM - 1) I = 1,..,IXDIM and

Y = YA + (J - 1) * (YE - YA) / (IYDIM - 1) J = 1,..,IYDIM.

IXDIM, IYDIM define the dimension of ZMAT (≥ 2).

IXPTS, IYPTS are the number of interpolation steps between grid lines (≥ 1). CRVMAT can
interpolate points linearly.

I1RAY, I2RAY, I3RAY is the Delaunay triangulation of the points (XRAY, YRAY) calculated by the
routine TRIANG.

NTRI is the number of triangles in I1RAY, I2RAY and I3RAY.

Additional notes: - CURVE3, CURVY3 and CRVMAT must be called after GRAF3 from level 3.

- The size of coloured rectangles can be defined with the routine SETRES or
calculated automatically by DISLIN using the routine AUTRES.

- Z-coordinates that lie outside of the axis scaling will be plotted with the colour
0 if they are smaller than the lower limit, or with the colour 255 if they are
greater than the upper limit. To reduce computing time and the size of plotfiles,
the plotting of points with the colour 0 can be suppressed with the routine
NOBGD.

- The routines CONMAT and SURMAT are analogs to CRVMAT and plot con-
tours and surfaces of space.

- If SHDMOD (’SMOOTH’, ’SURFACE’) is called before CRVTRI, the trian-
gles will be plotted with interpolated colours. For that case, a raster format is
needed as output format.

11.5 Parameter Setting Routines

S E T R E S
SETRES defines the size of rectangles plotted by CURVE3, CURVY3 and CRVMAT.

The call is: CALL SETRES (NPB, NPH) level 1, 2, 3

or: void setres (int npb, int nph);

NPB, NPH are the width and height of rectangles in plot coordinates (> 0).
Default: (1,1).

A U T R E S
With a call to AUTRES, the size of coloured rectangles will be automatically calculated by GRAF3 or
CRVMAT.

The call is: CALL AUTRES (IXDIM, IYDIM) level 1

or: void autres (int ixdim, int iydim);

IXDIM, IYDIM are the number of data points in the X- and Y-direction.

S H D M O D
Normally, the routines CURVE3, CURVX3, CURVY3 and CRVMAT plot coloured rectangles, but a
symbol mode can be enabled with the routine SHDMOD. The symbols used by the routines above and
the size of the symbols can be set with the routines MARKER and HSYMBL.

141

The call is: CALL SHDMOD (COPT, ’CURVE’) level 1, 2, 3

or: void shdmod (char *copt, ”CURVE”);

COPT is a character string that can have the values ’RECT’ and ’SYMB’.
Default: COPT = ’RECT’.

A X 3 L E N
The routine AX3LEN defines the axis lengths of a coloured axis system.

The call is: CALL AX3LEN (NXL, NYL, NZL) level 1, 2, 3

or: void ax3len (int nxl, int nyl, int nzl);

NXL, NYL, NZL are the axis lengths in plot coordinates.

W I D B A R
The routine WIDBAR defines the width of a colour bar.

The call is: CALL WIDBAR (NZB) level 1, 2, 3

or: void widbar (int nzb);

NZB is the width in plot coordinates. Default NZB = 85

V K X B A R
The routine VKXBAR defines horizontal shifting of colour bars. The distance between the colour bar
and the axis system is, by default, 85 plot coordinates.

The call is: CALL VKXBAR (NVFX) level 1, 2, 3

or: void vkxbar (int nvfx);

NVFX is an integer that defines the shifting. If NVFX is positive, the colour bar will
be shifted right; if NVFX is negative the colour bar will be shifted left.

Default: NVFX = 0

V K Y B A R
The routine VKYBAR defines a vertical shifting of colour bars.

The call is: CALL VKYBAR (NVFY) level 1, 2, 3

or: void vkybar (int nvfy);

NVFY is an integer that defines the shifting. If NVFY is positive, the colour bar will
be shifted up; if NVFY is negative, the colour bar will be shifted down.

Default: NVFY = 0

N O B A R
The routine NOBAR instructs DISLIN to suppress the plotting of colour bars.

The call is: CALL NOBAR level 1, 2, 3

or: void nobar ();

C O L R A N
This routine defines the range of colours used for colour bars. By default, the range is 1 to 254.

The call is: CALL COLRAN (NCA, NCE) level 1, 2, 3

142

or: void colran (int nca, int nce);

NCA, NCE are colour numbers in the range 1 to 254. Default: (1, 254).

N O B G D
With a call to the routine NOBGD, the plotting of points with the colour 0 will be suppressed. This
reduces plotting time and the size of plotfiles.

The call is: CALL NOBGD level 1, 2, 3

or: void nobgd ();

E X P Z L B
The routine EXPZLB expands the numbering of a logarithmically scaled Z-axis to the next order of
magnitude that lies up or down the axis limits. The scaling of the colour bar will not be changed. This
routine is useful if the range of the Z-axis scaling is smaller than 1 order of magnitude.

The call is: CALL EXPZLB (CSTR) level 1, 2, 3

or: void expzlb (char *cstr);

CSTR is a character string defining the expansion of the Z-axis numbering.

= ’NONE’ means that the numbering will not be expanded.

= ’FIRST’ means that the numbering will be expanded downwards.

= ’BOTH’ means that the numbering will be expanded down- and upwards.
Default: CSTR = ’NONE’.

11.6 Elementary Plot Routines

The following routines plot coloured rectangles and pie sectors. They use the hardware features of a
colour graphics system or PostScript printer.

R E C F L L
The routine RECFLL plots a coloured rectangle where the position is determined by the upper left corner.

The call is: CALL RECFLL (NX, NY, NW, NH, NCOL) level 1, 2, 3

or: void recfll (int nx, int ny, int nw, int nh, int ncol);

NX, NY are the plot coordinates of the upper left corner.

NW, NH are the width and height in plot coordinates.

NCOL is a colour value.

P O I N T
The routine POINT plots a coloured rectangle where the position is determined by the centre.

The call is: CALL POINT (NX, NY, NW, NH, NCOL) level 1, 2, 3

or: void point (int nx, int ny, int nw, int nh, int ncol);

NX, NY are the plot coordinates of the centre point.

NW, NH are the width and height in plot coordinates.

NCOL is a colour value.

143

R L P O I N
The routine RLPOIN plots a coloured rectangle where the position is specified in user coordinates.

The call is: CALL RLPOIN (X, Y, NW, NH, NCOL) level 2, 3

or: void rlpoin (float x, float y, int nw, int nh, int ncol);

Additional note: RLPOIN clips rectangles at the borders of an axis system.

S E C T O R
The routine SECTOR plots coloured pie sectors.

The call is: CALL SECTOR (NX, NY, NR1, NR2, ALPHA, BETA, NCOL)
level 1, 2, 3

or: void sector (int nx, int ny, int nr1, int nr2, float alpha, float beta, int ncol);

NX, NY are the plot coordinates of the centre point.

NR1 is the interior radius.

NR2 is the exterior radius.

ALPHA, BETA are the start and end angles measured in degrees in a counter-clockwise direc-
tion.

NCOL is a colour value.

Example: CALL SECTOR (100, 100, 0, 50, 0., 360., NCOL) plots a circle around the
centre (100,100) with the radius 50 and the colour NCOL.

R L S E C
The routine RLSEC plots coloured pie sectors where the centre and the radii are specified in user coor-
dinates.

The call is: CALL RLSEC (X, Y, R1, R2, ALPHA, BETA, NCOL)
level 2, 3

or: void rlsec (float x, float y, float r1, float r2, float alpha, float beta, int ncol);

Additional Notes: - For the conversion of the radii to plot coordinates, the scaling of the X-axis is
used.

- Sectors plotted by RLSEC will not be cut off at the borders of an axis system.

11.7 Conversion of Coordinates

The function NZPOSN and the subroutine COLRAY convert user coordinates to colour values.

N Z P O S N
The function NZPOSN converts a Z-coordinate to a colour number.

The call is: ICLR = NZPOSN (Z) level 3

or: int nzposn (float z);

Additional note: If Z lies outside of the axis limits and Z is smaller than the lower limit, NZ-
POSN returns the value 0 and the routine returns the value 255 if Z is greater
than the upper limit.

144

C O L R A Y
The routine COLRAY converts an array of Z-coordinates to colour values.

The call is: CALL COLRAY (ZRAY, NRAY, N) level 3

or: void colray (float *zray, int *nray, int n);

ZRAY is an array of Z-coordinates.

NRAY is an array of colour numbers calculated by COLRAY.

N is the number of coordinates.

11.8 Example

PROGRAM EX11_1
PARAMETER (N=100)
DIMENSION ZMAT(N,N)

FPI=3.1415927/180.
STEP=360./(N-1)
DO I=1,N

X=(I-1.)*STEP
DO J=1,N

Y=(J-1.)*STEP
ZMAT(I,J)=2*SIN(X*FPI)*SIN(Y*FPI)

END DO
END DO

CALL METAFL(’POST’)
CALL DISINI
CALL PAGERA
CALL PSFONT(’Times-Roman’)

CALL TITLIN(’3-D Colour Plot of the Function’,1)
CALL TITLIN(’F(X,Y) = 2 * SIN(X) * SIN(Y)’,3)
CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)
CALL NAME(’Z-axis’,’Z’)

CALL INTAX
CALL AUTRES(N,N)
CALL AXSPOS(300,1850)
CALL AX3LEN(2200,1400,1400)

CALL GRAF3(0.,360.,0.,90.,0.,360.,0.,90.,
* -2.,2.,-2.,1.)

CALL CRVMAT(ZMAT,N,N,1,1)
CALL HEIGHT(50)
CALL PSFONT(’Palatino-BoldItalic’)
CALL TITLE
CALL DISFIN
END

145

0
90

18
0

27
0

36
0

X
-a

xi
s

09018
0

27
0

36
0

Y-axis

-2-1012

Z-axis
3-

D
 C

ol
ou

r
P

lo
t

of
 t

he
 F

un
ct

io
n

F(
X

,Y
)

=
 2

 *
 S

IN
(X

)
*

SI
N

(Y
)

Figure 11.1: 3-D Colour Plot

146

Chapter 12

3-D Graphics

This chapter describes routines for 3-D coordinate systems. Axis systems, curves and surfaces can be
drawn from various angular perspectives. All 2-D plotting routines can be used in a 3-D axis system.

12.1 Introduction

Three-dimensional objects must be plotted in a 3-D box which is projected onto a two-dimensional region
on the page. The 3-D box contains an X-, Y- and Z-axis with the Z-axis lying in the vertical direction.
The units of the axes are called absolute 3-D coordinates. They are abstract and have no relation to any
physical units. An axis system is used to scale the 3-D box with user coordinates and to plot axis ticks,
labels and names.

The position and size of a projected 3-D box depends upon the position and size of the region onto
which the box is projected, and the point from which the box is viewed. The region is determined by the
routines AXSPOS and AXSLEN where the centre of the 3-D box will be projected onto the centre of the
region.

A X I S 3 D

The routine AXIS3D defines the lengths of the 3-D box. For the lengths, any positive values can be
specified; DISLIN uses only the ratio of the values to calculate the axis lengths.

The call is: CALL AXIS3D (X3AXIS, Y3AXIS, Z3AXIS) level 1, 2, 3

or: void axis3d (float x3axis, float y3axis, float z3axis);

X3AXIS is the length of the X-axis in absolute 3-D coordinates (> 0).

Y3AXIS is the length of the Y-axis in absolute 3-D coordinates (> 0).

Z3AXIS is the length of the Z-axis in absolute 3-D coordinates (> 0).
Default: (2., 2., 2.)

Additional note: The lower left corner of the 3-D box is the point (-X3AXIS/2, -Y3AXIS/2,
-Z3AXIS/2); the upper right corner is the point (X3AXIS/2, Y3AXIS/2,
Z3AXIS/2). The centre point is (0., 0., 0.).

147

The following figure shows the default 3-D box:

(-1/-1/-1)

(-1/-1/1)

(-1/1/1)

(1/-1/-1)

(1/1/-1)

(1/1/1)

(-1/1/-1) (1/-1/1)

Figure 12.1: Default 3-D Box

12.2 Defining View Properties

The following routines define view properties such as viewpoint, target point, view angle and view
orientation.

V I E W 3 D
The routine VIEW3D defines the viewpoint. The viewpoint is a point in space from which the 3-D box
is observed and determines how objects are projected onto a 2-D plane. Objects will appear small if the
viewpoint is far away. As the viewpoint is moved closer to the 3-D box, the objects will appear larger.

The call is: CALL VIEW3D (XVU, YVU, ZVU, CVU) level 1, 2, 3

or: void view3d (float xvu, float yvu, float zvu, char *cvu);

XVU, YVU, ZVU define the position of the viewpoint. If CVU = ’ABS’, the parameters must
contain absolute 3-D coordinates, if CVU = ’USER’, they must contain user
coordinates and if CVU = ’ANGLE’, the viewpoint must be specified by two
angles and a radius. In the latter case, XVU is a rotation angle, YVU is the
angle between the line from the viewpoint to the centre of the 3-D box and the
horizontal direction and ZVU is the distance of the viewpoint from the centre
of the 3-D box. XVU and YVU must be specified in degrees and ZVU in
absolute 3-D coordinates.

CVU is a character string defining the meaning of XVU, YVU and ZVU.
Default: (2*X3AXIS, -2.5*Y3AXIS, 2*Z3AXIS, ’ABS’).

Additional note: The viewpoint must be placed outside the 3-D box. If the point lies inside,
DISLIN will print a warning and use the default viewpoint.

148

V F O C 3 D
The routine VFOC3D defines the focus point. It specifies the location in the 3-D box that the camera
points to.

The call is: CALL VFOC3D (XFOC, YFOC, ZFOC, CVU) level 1, 2, 3

or: void vfoc3d (float xfoc, float yfoc, float zfoc, char *cvu);

XFOC, YFOC, ZFOC define the position of the focus point. If CVU = ’ABS’, the parameters must
contain absolute 3-D coordinates, if CVU = ’USER’, they must contain user
coordinates.

CVU is a character string defining the meaning of XFOC, YFOC and ZFOC.
Default: (0., 0., 0., ’ABS’).

V U P 3 D
The rotation of the camera around the viewing axis is defined by an angle.

The call is: CALL VUP3D (ANG) level 1, 2, 3

or: void vup3d (float ang);

ANG defines the rotation angle in degrees. The camera is rotated in a clockwise
direction.

Default: ANG = 0.

V A N G 3 D
VANG3D defines the view angle. It specifies the field of view of the lens.

The call is: CALL VANG3D (ANG) level 1, 2, 3

or: void vang3d (float ang);

ANG defines the view angle in degrees.
Default: ANG = 28.

12.3 Plotting Axis Systems

G R A F 3 D
The routine GRAF3D plots a three-dimensional axis system. This routine must be called before any
objects can be plotted in the 3-D box.

The call is: CALL GRAF3D (XA, XE, XOR, XSTEP, YA, YE, YOR, YSTEP,
ZA, ZE, ZOR, ZSTEP) level 1

or: void graf3d (float xa, float xe, float xor, float xstep,
float ya, float ye, float yor, float ystep,
float za, float ze, float zor, float zstep);

XA, XE are the lower and upper limits of the X-axis.

XOR, XSTEP are the first X-axis label and the step between labels.

YA, YE are the lower and upper limits of the Y-axis.

YOR, YSTEP are the first Z-axis label and the step between labels.

ZA, ZE are the lower and upper limits of the Z-axis.

ZOR, ZSTEP are the first Z-axis label and the step between labels.

Additional notes: - GRAF3D must be called from level 1 and sets the level to 3.

149

- By default, the labels and axis titles on the 3-D box are also plotted with a
perspective projection. This default mode does not allow the plotting of hard-
ware fonts and switches automatically to the DISLIN vector font COMPLX if
a hardware font is enabled. Other modes for plotting labels and axis titles that
allow using of hardware fonts can be defined with the routine LABL3D.

- In default mode, GRAF3D suppresses the plotting of certain start labels to
avoid overplotting of labels. This option can be disabled with the statement
CALL FLAB3D.

- The user is referred to the notes on GRAF in chapter 4.

12.4 Plotting a Border around the 3-D Box

B O X 3 D
The routine BOX3D plots a border around the 3-D box.

The call is: CALL BOX3D level 3

or: void box3d ();

12.5 Plotting Grids

G R I D 3 D
The routine GRID3D plots a grid in the 3-D box.

The call is: CALL GRID3D (IGRID, JGRID, COPT) level 3

or: void grid3d (int igrid, int jgrid, char *copt);

IGRID is the number of grid lines between labels in the X-direction (or Y-direction
for the YZ-plane).

JGRID is the number of grid lines between labels in the Z-direction (or Y-direction for
the XY-plane).

COPT is a character string which defines where the grid will be plotted.

= ’ALL’ will plot a grid in the XY-, XZ- and YZ-plane.

= ’BACK’ will plot a grid in the XZ- and YZ-plane.

= ’BOTTOM’ will plot a grid in the XY-plane.

12.6 Plotting Curves

C U R V 3 D
The routine CURV3D is similar to CURVE and connects data points with lines or marks them with
symbols.

The call is: CALL CURV3D (XRAY, YRAY, ZRAY, N) level 3

or: void curv3d (float *xray, float *yray, float *zray, int n);

XRAY is an array containing the X-coordinates of data points.

YRAY is an array containing the Y-coordinates of data points.

ZRAY is an array containing the Z-coordinates of data points.

N is the number of data points.

150

Additional notes: - Data points will be interpolated linearly. The user is referred to the notes on
CURVE in chapter 5.

- CURV3D can plot 2-D or 3-D symbols. By default, CURV3D plots 2-D sym-
bols. 3-D symbols are plotted after CALL SHDMOD (’3D’, ’SYMBOL’) or if
the Z-buffer is enabled before.

12.7 Plotting Vector Fields

F I E L D 3 D
The routine FIELD3D plots a vector field where the start and end points of the vectors are already
calculated. The vectors are displayed as arrows.

The call is: CALL FIELD3D (X1RAY, Y1RAY, Z1RAY, X2RAY, Y2RAY, Z2RAY, N,
IVEC) level 3

or: void field3d (float *x1ray, float *y1ray, float *z1ray, float *x2ray, float *y2ray,
float *z2ray, int n, int ivec);

X1RAY, Y1RAY, are arrays that contain the X-, Y- and Z-coordinates of the start points.

Z1RAY

X2RAY, Y2RAY, are arrays that contain the X-, Y- and Z-coordinates of the end points.

Z2RAY

N is the number of vectors.

IVEC is an integer that specifies the form of the arrows (see VECTR3).

V E C F 3 D
The routine VECF3D plots a vector field of given vectors and positions. The vectors are displayed as
arrows.

The call is: CALL VECF3D (XVRAY, YVRAY, ZVRAY, XPRAY, YPRAY, ZPRAY, N,
IVEC) level 3

or: void vecf3d (float *xvray, float *yvray, float *zvray, float *xpray, float *ypray,
float * zpray, int n, int ivec);

XVRAY, YVRAY, are arrays that contain the X-, Y- and Z-coordinates of the vectors.

ZVRAY

XPRAY, YPRAY, are arrays that contain the X-, Y- and Z-coordinates of the start points.

ZPRAY

N is the number of vectors.

IVEC is an integer that specifies the form of the arrows (see VECTR3).

Additional notes: - The length of the arrows is atomatically scaled by DISLIN in the routine
VECF3D. This behavour can be changed with the routine VECOPT, that may
also modify the apperance of arrows.

- The vectors can be scaled with different colours if the routine VECCLR is
called before with the parameter -2. Colour values are scaled between the
minimum and maximum of the vector lengths, or scaled between the values
specified with the routine ZSCALE.

151

12.8 Plotting a Surface Grid from a Function

S U R F U N
The routine SURFUN plots a surface grid of the three-dimensional function Z = F(X,Y).

The call is: CALL SURFUN (ZFUN, IXP, XDEL, IYP, YDEL) level 3

or: void surfun ((float) (*zfun()), int ixp, float xdel, int iyp, float ydel);

ZFUN is the name of a FUNCTION subroutine that returns the function value for a
given X- and Y-coordinate. ZFUN must be declared EXTERNAL in the calling
program.

XDEL, YDEL are the distances between grid lines in user coordinates. XDEL and YDEL
determine the density of the surface plotted by SURFUN.

IXP, IYP are the number of points between grid lines interpolated by SURFUN (≥ 0). If
IXP = 0, surface lines in the X-direction will be suppressed; if IYP = 0, surface
lines in the Y-direction will be suppressed.

12.9 Plotting a Surface Grid from a Matrix

The routines SURMAT and SURFCE plot surface grids of the three-dimensional function Z = F(X,Y)
where the function values are given in the form of a matrix. SURMAT assumes that the function values
correspond to a linear grid in the XY-plane while SURFCE can be used with non linear grids.

The calls are: CALL SURMAT (ZMAT, IXDIM, IYDIM, IXPTS, IYPTS) level 3

CALL SURFCE (XRAY, IXDIM, YRAY, IYDIM, ZMAT) level 3

or: void surmat (float *zmat, int ixdim, int iydim, int ixpts, int iypts);

void surfce (float *xray, int ixdim, float *yray, int iydim, float *zmat);

XRAY, YRAY are arrays containing the X- and Y-user coordinates.

ZMAT is a matrix with the dimension (IXDIM, IYDIM) containing the function val-
ues.

IXDIM, IYDIM are the dimensions of ZMAT, XRAY and YRAY (≥ 2).

IXPTS, IYPTS are the number of points interpolated between grid lines in the X- and Y-
direction. These parameters determine the density of surfaces plotted by SUR-
MAT. For positive values, the surface will be interpolated linearly. For a nega-
tive value, the absolute value will be used as a step for plotted surface lines. If
IXPTS = 0, surface lines in the Y-direction will be suppressed; if IYPTS = 0,
surface lines in the X-direction will be suppressed.

Additional notes: - The routines SURMAT and SURFCE suppress automatically hidden lines. The
suppression can be disabled with the statement CALL NOHIDE.

- SURMAT and SURFCE use a horizon line algorithm for suppressing hidden
lines. This algorithm is efficient but may fail for some complex data structures.
An alternate method for suppressing hidden lines can be used with the routine
SURSHD if only mesh lines are enabled with the statement CALL SURMSH
(’ONLY’).

- Surfaces can be protected from overwriting with CALL SHLSUR if the
hidden-line algorithm is not disabled.

152

- The limits of the base grid are determined by the parameters in GRAF3D or
can be altered with SURSZE (XA, XE, YA, YE). If XA, XE, YA and YE are
the axis limits in GRAF3D or defined with SURSZE, the connection of grid
points and matrix elements can be described by the formula:

ZMAT(I,J) = F(X,Y) where

X = XA + (I - 1) * (XE - XA) / (IXDIM - 1) I = 1,..,IXDIM and

Y = YA + (J - 1) * (YE - YA) / (IYDIM - 1) J = 1,..,IYDIM.

- SURVIS (CVIS) determines the visible part of a surface where CVIS can have
the values ’TOP’, ’BOTTOM’ and ’BOTH’. The default value is ’BOTH’.

- The statement CALL SURCLR (ICTOP, ICBOT) defines the colours of the
upper and lower side of a surface where ICTOP and ICBOT contain colour
values.

12.10 Plotting a Shaded Surface from a Matrix

S U R S H D
The routine SURSHD plots a shaded surface from a matrix where colour values are calculated from the
Z-scaling in the routine GRAF3D or from the parameters of the routine ZSCALE.

The call is: CALL SURSHD (XRAY, IXDIM, YRAY, IYDIM, ZMAT) level 3

or: void surshd (float *xray, int ixdim, float *yray, int iydim, float *zmat);

XRAY, YRAY are arrays containing the X- and Y-user coordinates.

ZMAT is a matrix with the dimension (IXDIM, IYDIM) containing the function val-
ues.

IXDIM, IYDIM are the dimensions of ZMAT, XRAY and YRAY (≥ 2).

Additional notes: - The statement CALL ZSCALE (ZMIN, ZMAX) defines an alternate Z-scaling
that will be used to calculate colour values in SURSHD. Normally, the Z-
scaling in GRAF3D is used. For logarithmic scaling of the Z-axis, ZMIN
and ZMAX must be exponents of base 10. If SHDMOD (’OFF’, ’ZSCALE’)
is used before SURSHD, the calculating of colour values is disabled and the
current colour and material settings are used for the surface.

- A flat shading or a smooth shading can be selected with the routine SHDMOD.
The default is flat shading. SURSHD uses automatically a depth sort for flat
shading and a Z-buffer for smooth shading to eliminate hidden surfaces if these
algorithms are not already enabled with the routines DBFINI and ZBFINI. If
smooth shading is selected, a raster format is needed for the graphics output
format (for example METAFL (’XWIN’) or METAFL (’TIFF’)).

- By default, SURSHD plots first the bottom and then the top of the surface
where backface culling is enabled. Backface culling means that single poly-
gons that are not facing the viewpoint are removed. This is done by comparing
the polygons surface normal with the position of the viewpoint. This behaviour
can be modified with the routines SURVIS and SHDMOD.

- Additional grid lines can be enabled with the routine SURMSH. SURSHD can
generate only mesh lines if the keyword ’ONLY’ is used in SURMSH.

- Lighting can be enabled for SURSHD with the routine LIGHT. If lighting is
enabled, the function values are used for setting diffuse material parameters of
the surface.

153

12.11 Plotting a Shaded Surface from a Parametric Function

S U R F C P
A three-dimensional parametric function is a function of the form (x(t,u), y(t,u), z(t,u)) where tmin
≤ t ≤ tmax and umin≤ u ≤ umax. The routine SURFCP plots a shaded surface from a parametric
function. The colours of the surface are calculated from the Z-scaling in the routine GRAF3D or from
the parameters of the routine ZSCALE.

The call is: CALL SURFCP (ZFUN, TMIN, TMAX, TSTEP, UMIN, UMAX, USTEP)
level 3

or: void surfcp ((float) (*zfun()), float tmin, float tmax, float tstep, float umin,
float umax, float ustep);

ZFUN is the name of a FUNCTION subroutine with the formal parameters X, Y and
IOPT. If IOPT = 1, ZFUN should return the X-coordinate of the parametric
function, if IOPT = 2, ZFUN should return the Y-coordinate and if IOPT = 3,
ZFUN should return the Z-coordinate.

TMIN, TMAX, TSTEP define the range and step size of the first parameter.

UMIN, UMAX, USTEP define the range and step size of the second parameter.

Additional note: The user is referred to the notes on SURSHD.

12.12 Plotting a Shaded Surface from Triangulated Data

S U R T R I
The routine SURTRI plots a shaded surface from triangulated data that can be calculated by the routine
TRIANG from a set of irregularily distributed data points.

The call is: CALL SURTRI (XRAY, YRAY, ZRAY, N, I1RAY, I2RAY, I3RAY, NTRI)
level 3

or: void surtri (float *xray, float *yray, float *zray, int n,
int *i1ray, int *i2ray, int *i3ray, int ntri);

XRAY is an array containing the X-coordinates of data points.

YRAY is an array containing the Y-coordinates of data points.

ZRAY is an array containing the Z-coordinates of data points.

N is the number of data points.

I1RAY, I2RAY, I3RAY is the Delaunay triangulation of the points (XRAY, YRAY) calculated by the
routine TRIANG.

NTRI is the number of triangles in I1RAY, I2RAY and I3RAY.

Additional note: The user is referred to the notes on SURSHD.

12.13 Plotting Isosurfaces

S U R I S O
The routine SURISO plots isosurfaces of the form f(x,y,z) = constant.

The call is: CALL SURISO (XRAY, NX, YRAY, NY, ZRAY, NZ, WMAT, WLEV)
level 3

154

or: void suriso (float *xray, int nx, float *yray, int ny,
float *zray, int nz, float *wmat, float wlev);

XRAY, YRAY, ZRAY are arrays containing the X-, Y- and Z-user coordinates.

WMAT is a matrix with the dimension (NX, NY, NZ) containing the function values.

NX, NY, NZ are the dimensions of WMAT, XRAY, YRAY, and ZRAY (≥ 2).

WLEV defines the level of the isosurface.

Additional notes: - The algorithm used in SURISO is based on the Marching Cubes method.
Reference: Lorensen, W.E. and Cline, H.E., Marching Cubes: a high resolu-
tion 3D surface reconstruction algorithm, Computer Graphics, Vol. 21, No. 4,
pp 163-169 (Proc. of SIGGRAPH), 1987.

- The user is referred to the notes on SURSHD.

I S O P T S
The routine ISOPTS calculates an isosurface of the form f(x,y,z) = constant. A triangulation of the
calculated isosurface is returned.

The call is: CALL ISOPTS (XRAY, NX, YRAY, NY, ZRAY, NZ, WMAT, WLEV,
XTRI, YTRI, ZTRI, NMAX, NTRI) level 3

or: void isopts (float *xray, int nx, float *yray, int ny, float *zray, int nz,
float *wmat, float wlev, float *xtri, float *ytri, float *ztri, int nmax, int *ntri);

XRAY, YRAY, ZRAY are arrays containing the X-, Y- and Z-user coordinates.

WMAT is a matrix with the dimension (NX, NY, NZ) containing the function values.

NX, NY, NZ are the dimensions of WMAT, XRAY, YRAY, and ZRAY (≥ 2).

WLEV defines the level of the isosurface.

XTRI, YTRI, ZTRI are arrays containing the calculated triangles. The first three coordinates con-
tain the first triangle, the next three coordinates the second triangle and so on.
The triangles are returned in anti-clockwise orientation.

NMAX is the maximal number of elements for the arrays XTRI, YTRI and ZTRI.

NTRI is the returned number of calculated triangles.

12.14 Plotting 3-D Bars

B A R S 3 D
BARS3D plots three-dimensional bars.

The call is: CALL BARS3D (XRAY, YRAY, Z1RAY, Z2RAY, XWRAY, YWRAY,
ICRAY, N) level 3

or: void bars3d (float *xray, float *yray, float *z1ray, float *z2ray, float *xwray,
float *ywray, int *icray, int n);

XRAY is an array of user coordinates defining the position of the bars on the X-axis.

YRAY is an array of user coordinates defining the position of the bars on the Y-axis.

Z1RAY is an array of user coordinates containing the start points of the bars on the
Z-axis.

Z2RAY is an array of user coordinates containing the end points of the bars on the
Z-axis.

155

XWRAY is an array of user coordinates defining the width of the bars in X-direction.

YWRAY is an array of user coordinates defining the width of the bars in Y-direction.

ICRAY is an array of colour values used for the bars. The foreground colour is used
for the colour value -1.

N is the number of bars.

Additional note: Legends are supported for 3-D bar graphs. Legend entries are done for each
new colour in ICRAY.

12.15 Additional Parameter Setting Routines

L A B L 3 D
The routine LABL3D modifies the appearance of labels and axis titles plotted on the 3-D box.

The call is: CALL LABL3D (COPT) level 1, 2, 3

or: void labl3d (char *copt);

COPT is a character string that can have the values ’STANDARD’, ’HORIZONTAL’,
’PARALLEL’ and ’OTHER’. For the default mode ’STANDARD’, hardware
fonts cannot be used for plotting labels and axis titles. For that case, DISLIN
will switch to the vector font COMPLX.

Default: COPT = ’STANDARD’.

N O H I D E
The suppression of hidden lines in the routines SURFUN, SURMAT and SURFCE can be disabled with
a call to NOHIDE.

The call is: CALL NOHIDE level 1, 2, 3

or: void nohide ();

S H L S U R
The surfaces plotted by the routines SURFUN, SURMAT and SURFCE can be protected from overwrit-
ing with the routine SHLSUR.

The call is: CALL SHLSUR level 1, 2, 3

or: void shlsur ();

S U R O P T
Surface lines plotted with the routine SURFCE can be suppressed for the X- and Y-directions.

The call is: CALL SUROPT (COPT) level 1, 2, 3

or: void suropt (char *copt);

COPT is a character string that can have the values ’XISO’, ’YISO’ and ’BOTH’. If
COPT = ’XISO’, surface lines in the Y-direction will be suppressed by SUR-
FCE. If COPT = ’YISO’, surface lines in the X-direction will be suppressed.

Default: COPT = ’BOTH’.

S U R V I S
The routine SURVIS determines which part of a surface is plotted.

156

The call is: CALL SURVIS (CVIS) level 1, 2, 3

or: void survis (char *cvis);

CVIS is a character string that can have the values ’AUTO’, ’TOP’, ’BOTTOM’ and
’BOTH’. ’AUTO’ means that the value ’TOP’ is used for closed surfaces such
as a sphere and that ’BOTH’ is used for non closed surfaces such as surfaces
plotted by SURSHD, SURFCP and SURTRI.

Default: CVIS = ’AUTO’.

S U R C L R
The routine SURCLR defines the colours of the upper and lower side of surfaces.

The call is: CALL SURCLR (ICTOP, ICBOT) level 1, 2, 3

or: void surclr (int ictop, int icbot);

ICTOP, ICBOT are colour values. The values -1 means that the current colour is used.
Default: (-1, -1).

S H D M O D
The routine SHDMOD defines some shading parameters such as flat or smooth shading.

The call is: CALL SHDMOD (COPT, CKEY) level 1, 2, 3

or: void shdmod (char *copt, char *ckey);

COPT is a character string containing an option.

CKEY is a character string containing a keyword:

= ’SURFACE’ If CKEY = ’SURFACE’, COPT can have the values ’FLAT’ and ’SMOOTH’.
If COPT = ’SMOOTH’, a raster format is needed for the output graphics for-
mat (for example METAFL (’XWIN’) or METAFL (’TIFF’)). The default
value is COPT = ’FLAT’.

= ’CULLING’ If CKEY = ’CULLING’, COPT can have the values ’ON’, ’OFF’ and
’FRONT’. COPT = ’ON’ enables backface culling, ’COPT’ = ’FRONT’ en-
ables front face culling and COPT = ’OFF’ disables face culling. By default,
backface culling is enabled. This means that faces with a clockwise orientation
of vertices will not be plotted.

= ’SYMBOLS’ This option defines 2-D or 3-D symbols for the routine CURV3D. COPT can
have the values ’2D’ and ’3D’. The default value is COPT = ’2D’.

= ’ZSCALE’ This option enables or disables the calculating of colour values from the Z-
coordinates in the routines SURSHD, SURFCP and SURTRI. COPT can have
the values ’ON’ and ’OFF’. The default value is COPT = ’ON’.

S U R M S H
The routine SURMSH can enable additional grid lines for surfaces, or disable the shading of a surface.

The call is: CALL SURMSH (COPT) level 1, 2, 3

or: void surmsh (char *copt);

COPT is a character string that can have the values ’ON’, ’OFF’, ’ONLY’, ’LINES’
and ’POINTS’. For COPT = ’ONLY’, the shading of the surface is done in
background colour to allow hidden line removal for the mesh lines.

Default: COPT = ’OFF’.

157

M S H C L R
The routine MSHCLR sets the colour for grid lines. Different colours can be selected for the upper and
lower side of surfaces if the routine SETFCE is used before.

The call is: CALL MSHCLR (ICLR) level 1, 2, 3

or: void mshclr (int iclr);

ICLR is a colour value where the value -1 means that the current colour is used.
Default: ICLR = -1.

S E T F C E
The routine SETFCE selects the surface side for which mesh colours or material parameters are applied
by the routines MSHCLR and MATOP3.

The call is: CALL SETFCE (COPT) level 1, 2, 3

or: void setfce (char *copt);

COPT is a character string that can have the values ’TOP’, ’BOTTOM’ and ’BOTH’.
Default: COPT = ’TOP’.

Z S C A L E
The routine ZSCALE defines an alternate Z-scaling that will be used to calculate colour values in the
routines SURTRI, SURSHD, SURFCP, CONSHD and CONTRI.

The call is: CALL ZSCALE (ZMIN, ZMAX) level 1, 2, 3

or: void zscale (float zmin, float zmax);

ZMIN,ZMAX define the range of the Z-scaling. For logarithmic scaling of the Z-axis, ZMIN
and ZMAX must be exponents of base 10.

C L I P 3 D
The routine CLIP3D defines 3-D clipping in the world coordinate system or in the eye coordinate system,
or disables clipping.

The call is: CALL CLIP3D (COPT) level 1, 2, 3

or: void clip3d (char *copt);

COPT is a character string that can have the values ’WORLD’, ’EYE’ and ’NONE’.
Default: COPT = ’WORLD’.

V C L P 3 D
If 3-D clipping is done in the eye coordinate system, front and back clipping planes can be defined with
the routine VCLP3D.

The call is: CALL VCLP3D (XFRONT, XBACK) level 1, 2, 3

or: void vclp3d (float xfront, float xback);

XFRONT, XBACK are the distances from the viewpoint in absolute 3-D coordinates. A negative
value means infinity.

Default: (1., -1.).

H S Y M 3 D
The routine HSYM3D sets the symbol size for 3-D symbols plotted by SYMB3D and CURV3D.

158

The call is: CALL HSYM3D (H) level 1, 2, 3

or: void hsym3d (float h);

H is the symbol height in absolute 3-D coordinates. Default: H = 0.08

R O T 3 D
The routine ROT3D sets rotation angles for 3-D symbols and solids.

The call is: CALL ROT3D (AX, AY, AZ) level 1, 2, 3

or: void rot3d (float ax, float ay, float az);

AX, AY, AZ are rotation angles in degrees for rotations about the X-, Y-, and Z-axes. Rota-
tion is done around the center point of symbols in a counter-clockwise direc-
tion when looking from a positive axis toward the origin of the axis.

Default: (0., 0., 0.)

12.16 Lighting

Lighting can be enabled for some shading routines such as SURSHD, SURFCP, SURTRI and SURISO
where up to 8 light sources can be defined. General lighting can be turned off or on in DISLIN with the
routine LIGHT while single light sources can be turned off or on with the routine LITMOD. The routine
LITPOS defines the position of light sources and the routines LITOP3 and MATOP3 modify lighting and
material parameters. Finally, the routine GETLIT calculates the colour value for a specified point and
normal.

L I G H T
The routine LIGHT enables lighting for shading routines such as SURSHD, SURFCP and SURISO.

The call is: CALL LIGHT (CMODE) level 1, 2, 3

or: void light (char *cmode);

CMODE is a character string that can have the values ’ON’ and ’OFF’.
Default: CMODE = ’OFF’.

L I T M O D
Up to 8 light sources can be defined in DISLIN. The routine LITMOD enables or disables single light
sources.

The call is: CALL LITMOD (ID, CMODE) level 1, 2, 3

or: void litmod (int id, char *cmode);

ID is the ID of the light source in the range 1 to 8.

CMODE is a character string that can have the values ’ON’ and ’OFF’. The default
values are CMODE = ’ON’ for light source 1 and CMODE = ’OFF’ for the
other light sources.

L I T P O S
The routine LITPOS defines the position of light sources.

The call is: CALL LITPOS (ID, XP, YP, ZP, COPT) level 1, 2, 3

or: void litpos (int id, float xp, float yp, float zp, char *copt);

ID is the ID of the light source in the range 1 to 8.

159

XP, YP, ZP define the position of the light source. If COPT = ’ABS’, the parameters must
contain absolute 3-D coordinates, if COPT = ’USER’, they must contain user
coordinates and if COPT = ’ANGLE’, the position must be specified by two
angles and a radius (see VIEW3D).

COPT is a character string defining the meaning of XP, YP and ZP.
Default: (2*X3AXIS, -2.5*Y3AXIS, 2*Z3AXIS, ’ABS’).

L I T O P T
The routine LITOPT modifies the constant, linear and quadratic attentuation factors of light sources.

The call is: CALL LITOPT (ID, XVAL, COPT) level 1, 2, 3

or: void litopt (int id, float xval, char *copt);

ID is the ID of the light source in the range 1 to 8.

XVAL is a floatingpoint number containing the new lighting parameter.

COPT is a character string that can have the values ’CONSTANT’, ’LINEAR’ and
’QUADRATIC’.

Defaults: (1., ’CONSTANT’), (0., ’LINEAR’), (0., ’QUADRATIC’).

L I T O P 3
The routine LITOP3 modifies the ambient, diffuse and specular intensities of light sources.

The call is: CALL LITOP3 (ID, XR, XG, XB, COPT) level 1, 2, 3

or: void litop3 (int id, float xr, float xg, float xb, char *copt);

ID is the ID of the light source in the range 1 to 8.

XR, XG, XB are floatingpoint numbers in the range 0 to 1 for R, G and B.

COPT is a character string that can have the values ’AMBIENT’, ’DIFFUSE’ and
’SPECULAR’.

Defaults: (0., 0., 0., ’AMBIENT’), (1., 1., 1., ’DIFFUSE’),
(1., 1., 1., ’SPECULAR’).

M A T O P T
The routine MATOPT modifies material parameters.

The call is: CALL MATOPT (XVAL, COPT) level 1, 2, 3

or: void matopt (float xval, char *copt);

XVAL is a floatingpoint number containing the new material parameter.

COPT is a character string that can have the value ’EXPONENT’.
Default: (0., ’EXPONENT’).

M A T O P 3
The routine MATOP3 modifies material parameters such as ambient, diffuse and specular colour. Mate-
rial parameters can be defined for different sides of a surface if the routine SETFCE is used before.

The call is: CALL MATOP3 (XR, XG, XB, COPT) level 1, 2, 3

or: void matop3 (float xr, float xg, float xb, char *copt);

XR, XG, XB are floatingpoint numbers in the range 0 to 1 containing the new material pa-
rameters for R, G and B.

160

COPT is a character string that can have the values ’AMBIENT’, ’DIFFUSE’ and
’SPECULAR’.

Defaults: (0.2, 0.2, 0.2, ’AMBIENT’), (0.8, 0.8, 0.8, ’DIFFUSE’),
(0., 0., 0., ’SPECULAR’).

G E T L I T
The routine GETLIT calculates colour values for given points and their normals specified in absolute
coordinates.

The call is: CALL GETLIT (XP, YP, ZP, XN, YN, ZN, ICLR) level 1, 2, 3

or: int getlit (float xp, float yp, float zp, float xn, float yn, float zn);

XP, YP, ZP are the X-, Y-and Z-coordinates of the point.

XN, YN, ZN are the X-, Y- and Z-coordinates of the point normal.

ICLR is the returned colour value. ICLR contains an explicit RGB value.

12.17 Surfaces from Randomly Distributed Points

The routine SURMAT assumes that function values are in the form of a matrix and correspond to a linear
grid in the XY-plane. If three-dimensional data points are given as randomly distributed points of the
form X(N), Y(N) and Z(N), the routine GETMAT can be used to calculate a function matrix.

G E T M A T
The routine GETMAT calculates a function matrix for randomly distributed data points.

The call is: CALL GETMAT (XRAY, YRAY, ZRAY, N, ZMAT, NX, NY, ZVAL,
IMAT, WMAT) level 2,3

or: void getmat (float *xray, float *yray, float *zray, int n, float *zmat, int nx,
int ny, float zval, int *imat, float *wmat);

XRAY, YRAY, are arrays containing the randomly distributed data points.

ZRAY

N is the number of points.

ZMAT is the function matrix of the dimension (NX, NY) calculated by GETMAT. The
matrix elements correspond to a linear grid in the XY-plane whose limits are
determined by the scaling values in GRAF3D or SURSZE.

NX, NY are the dimensions of ZMAT, IMAT and WMAT.

ZVAL will be used as a value for matrix elements when no data points can be found
in an area around the corresponding grid points. In general, the start scaling of
the Z-axis will be used for ZVAL.

IMAT is a working matrix of the dimension (NX, NY). After a call to GETMAT,
IMAT(I, J) contains the number of random data points found in an area around
the grid points. The value -1 means that a random data value lies at a grid
point.

WMAT is a working matrix of the dimension (NX, NY).

The value ZMAT(J, K) of the corresponding grid point (J, K) is calculated by the formula:

ZMATj,k =

n∑
i=1

1
Dw

i
Zi

n∑
i=1

1
Dw

i

161

where: j, k are indices from 1 to NX and 1 to NY, respectively.

Di is the distance of the grid point (i, k) from the pointPi.

w is a weighting number (Default: 2.0).

n is the number of data points lying in the area around the grid point (j, k).

If Pi is a data point, the routine GETMAT finds the grid rectangle in the XY-plane in which the point
lies. By default,Pi affects all grid points which lie up to 2 grid lines fromPi. A problem can arise when
creating a large matrix from sparse data points because certain grid points may not lie near the actual
random data points. Figure 12.2 shows the results of GETMAT using different values of IX and IY.

0 20 40 60 80 100
0

20

40

60

80

100

0 20 40 60 80 100
0

20

40

60

80

100

Figure 12.2: Results of GETMAT

An simple method to smooth surfaces from sparse data points is to enlarge the region around the ran-
domly distributed data points where grid points are searched. This can be done using the routine MDF-
MAT.

M D F M A T
The routine MDFMAT modifies the algorithm in GETMAT.

The call is: CALL MDFMAT (IX, IY, W) level 1, 2, 3

or: void mdfmat (int ix, int iy, float w);

IX, IY are the number of grid lines in the X- and Y-direction which determine the size
of the region around data points.

162

W is a weighting number.
Default: (2, 2, 2.0).

The following figure shows modifications of the above example:

MDFMAT (5, 5, 0.1) MDFMAT (5, 5, 1.0)

MDFMAT (5, 5, 2.0) MDFMAT (5, 5, 15.0)

Figure 12.3: Modification of GETMAT

163

12.18 Projection of 2-D-Graphics into 3-D Space

Two-dimensional graphics in the XY-plane can be projected onto a plane in 3-D space. Therefore, all
2-D plot routines can be used in 3-D space.

G R F I N I
The routine GRFINI defines a plane in the 3-D box onto which all plot vectors will be projected. The
plane in the 3-D box corresponds to a region in the XY-plane which is determined by AXSPOS and
AXSLEN. GRFINI sets the level to 1.

The call is: CALL GRFINI (X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3) level 3

or: void grfini (float x1, float y1, float z1, float x2, float y2, float z2,
float x3, float y3, float z3);

X1, Y1, Z1 are the absolute 3-D coordinates of the lower left corner of the 3-D plane.

X2, Y2, Z2 are the absolute 3-D coordinates of the lower right corner of the 3-D plane.

X3, Y3, Z3 are the absolute 3-D coordinates of the upper right corner of the 3-D plane.

Additional note: If (NXA,NYA) is the lower left corner, NXL the width and NYL the height
of the region determined by the routines AXSPOS and AXSLEN, the point
(X1,Y1,Z1) corresponds to (NXA,NYA), (X2,Y2,Z2) to (NXA+NXL-1,NYA)
and (X3,Y3,Z3) to (NXA+NXL-1,NYA-NYL+1), respectively.

G R F F I N
The routine GRFFIN terminates a projection into 3-D space. The level will be set back to 3.

The call is: CALL GRFFIN level 1, 2, 3

or: void grffin ();

12.19 Using the Z-Buffer and Depth Sort

The DISLIN routines SURSHD, SURFCP, SURTRI, SURISO, CURV3D, FIELD3D and VECF3D use
automatically a 32-bit floating point Z-buffer for hidden-surface elimination or a depth sort depending
on smooth or flat shading. The Z-buffer or depth sort can also be enabled directly for hidden-surface
elimination in elementary plotting routines such as SPHE3D and CONE3D.

Z B F I N I
The routine ZBFINI creates a Z-buffer. The graphics output format must be set to a raster format, or
to PDF. For PDF output, an internal image is created for raster operations, where the resolution of the
internal image can be modified with the routine ZBFSCL.

The call is: CALL ZBFINI (IRET) level 1,2,3

or: int zbfini ();

IRET is the returned status (0: no errors).

Z B F F I N
The routine ZBFFIN terminates writing to a Z-buffer. For screen output, the internal frame buffer is
copied back to the graphics window.

The call is: CALL ZBFFIN level 1,2,3

or: void zbffin ();

164

Z B F R E S
The routine ZBFRES resets the Z-buffer to it’s initial values without changing a corresponding frame
buffer.

The call is: CALL ZBFRES level 1,2,3

or: void zbfres ();

Z B F E R S
The routine ZBFERS erases the frame buffer connected with a Z-buffer.

The call is: CALL ZBFERS level 1,2,3

or: void zbfers ();

The following both elementary routines can be used to plot triangles and lines directly to the Z-buffer.

Z B F T R I
The routine ZBFTRI plots a smooth triangle where hidden-surface elimination is done with the Z-buffer.

The call is: CALL ZBFTRI (XRAY, YRAY, ZRAY, IRAY) level 3

or: void zbftri (float *xray, float *yray, float *zray, int *iray);

XRAY,YRAY,ZRAY are the X-, Y-, and Z-coordinates of the three corners of the triangle in user
coordinates.

IRAY is an integer array containing the three colour values of the triangle corners.

Z B F L I N
The routine ZBFLIN plots a line in the current colour where the Z-buffer is used for hiddenline elimina-
tion.

The call is: CALL ZBFLIN (X1, Y1, Z1, X2, Y2, Z2) level 3

or: void zbflin (float x1, float y1, float z1, float x2, float y2, float z2);

X1, Y1, Z1 are the user coordinates of the start point.

X2, Y2, Z2 are the user coordinates of the end point.

Z B F S C L
The routine ZBFSCL changes the resolution of an internal image which is used for raster operations
for PDF output. The resolution of the internal image corresponds to the DISLIN plot page converted to
points, where 1 point = 1 / 72 inch. This resolution is multiplied with the value in ZBFSCL. For example:
the internal image corresponding to the default page ’DA4L’ has the resolution 1263 x 892 points.

The call is: CALL ZBFSCL (X) level 1, 2, 3

or: void zbfscl (float x);

X is a scaling factor for the resolution (1.0≤ X ≤ 10.0).

D B F I N I
The routine DBFINI initializes a depth sort for polygon faces. A depth sort is useful for hidden-surface
elimination if the output format is no raster format so that the Z-buffer cannot be used.

The call is: CALL DBFINI (IRET) level 1,2,3

or: int dbfini ();

165

IRET is the returned status (0: no errors).

D B F F I N
The routine DBFFIN terminates the depth sort. All polygon faces are sorted and plotted. The polygon
faces with the greatest distance from the viewpoint are plotted first.

The call is: CALL DBFFIN level 1,2,3

or: void dbffin ();

12.20 Elementary Plot Routines

S T R T 3 D
The routine STRT3D moves the pen to a three-dimensional point.

The call is: CALL STRT3D (X, Y, Z) level 3

or: void strt3d (float x, float y, float z);

X, Y, Z are the absolute 3-D coordinates of the point.

C O N N 3 D
The routine CONN3D plots a line from the current pen position to a three-dimensional point. The line
will be cut off at the sides of the 3-D box. Different line styles can be used.

The call is: CALL CONN3D (X, Y, Z) level 3

or: void conn3d (float x, float y, float z);

X, Y, Z are the absolute 3-D coordinates of the point.

V E C T R 3
The routine VECTR3 plots a vector in the 3-D box.

The call is: CALL VECTR3 (X1, Y1, Z1, X2, Y2, Z2, IVEC) level 3

or: void vectr3 (float x1, float y1, float z1, float x2, float y2, float z2, int ivec);

X1, Y1, Z1 are the absolute 3-D coordinates of the start point.

X2, Y2, Z2 are the absolute 3-D coordinates of the end point.

IVEC defines the arrow head. If IVEC = -2, a 3-D cone is used for the arrow head.
Otherwise, IVEC has the same meaning as in VECTOR.

T R I A 3 D
The routine TRIA3D plots a triangle.

The call is: CALL TRIA3D (XRAY, YRAY, ZRAY) level 3

or: void tria3d (float *xray, float *yray, float *zray);

XRAY,YRAY,ZRAY are the X-, Y-, and Z-coordinates of the three vertices of the triangle in user co-
ordinates. The vertices should be specified in a counter-clockwise orientation
from the viewpoint since backface culling is enabled in DISLIN by default.

Additional note: If lighting is enabled, a normal vector of the triangle is automatically generated
by DISLIN for calculating colours.

166

The next three routines VTX3D, VTXC3D and VTXN3D define vertices for plotting lines, points,
curves, triangles, quadrilaterals and polygons. Note that backface culling is enabled by default in
DISLIN. Therefore, vertices for shaded triangles, quadrilaterals and polygons should be specified in
a counter-clockwise orientation, or they will not be plotted if backface culling is on.

V T X 3 D
The routine VTX3D plots lines, points, curves, triangles, quadrilaterals or polygons from a set of vertices.

The call is: CALL VTX3D (XRAY, YRAY, ZRAY, N, COPT) level 3

or: void vtx3d (float *xray, float *yray, float *zray, int n, char *copt);

XRAY, YRAY, ZRAY define vertices in user coordinates.

N is the number of vertices.

COPT is a character string that defines how vertices are plotted:

= ’POINTS’ The vertices are plotted with a small ’+’ sign, where the size of the symbol can
be modified with HSYMBL.

= ’LINES’ Separated lines are plotted, each specified by a pair of vertices.

= ’CURVE’ A series of connected lines is plotted.

= ’PLINE’ The same as ’CURVE’ except that the last vertex is connected with the first
vertex.

= ’TRIANG’ Separate shaded triangles are plotted for each set of three vertices.

= ’TSTRIPS’ A series of triangles is plotted connected along shared edges. The triangles are
(1, 2, 3), (3, 2, 4), (3, 4, 5), (5, 4, 6),, where the vertices are numbered by 1,
2, 3, ..., n.

= ’QUADS’ Separate shaded quads are plotted for each set of four vertices.

= ’QSTRIPS’ A series of quads is plotted connected along shared edges. The quads are (1,
2, 4, 3), (3, 4, 6, 5), (5, 6, 8, 7),, where the vertices are numbered by 1, 2, 3,
..., n.

= ’POLYGON’ A shaded polygon is plotted where the polygon should be convex. The polygon
is rendered by a series of triangles.

Additional note: If lighting is enabled, normal vectors for calculating colour values are auto-
matically generated by DISLIN.

V T X C 3 D
The routine VTXC3D is a similar routine to VTX3D except that an user can specify additional colour
values for the vertices.

The call is: CALL VTXC3D (XRAY, YRAY, ZRAY, ICRAY, N, COPT) level 3

or: void vtxc3d (float *xray, float *yray, float *zray, int *icray, int n, char *copt);

XRAY, YRAY, ZRAY define vertices in user coordinates.

ICRAY contains the colour values of vertices.

N is the number of vertices.

COPT is a character string that defines how vertices are plotted (see VTX3D).

V T X N 3 D
The routine VTXN3D is a similar routine to VTX3D except that a normal vector can be specified for
each vertex.

167

The call is: CALL VTXN3D (XRAY, YRAY, ZRAY, XNRAY, YNRAY, ZNRAY, N,
COPT) level 3

or: void vtxn3d (float *xray, float *yray, float *zray,
float *xnray, float *ynray, float *znray, int n, char *copt);

XRAY, YRAY, ZRAY define vertices in user coordinates.

XNRAY, YNRAY, contain the normal vectors for each vertex.

ZNRAY

N is the number of vertices.

COPT is a character string that defines how vertices are plotted (see VTX3D).

The following routines plot elementary solids such as spheres, cones and quads. All solids can be rotated
around the center point if rotation angles are defined with the routine ROT3D. Three-dimensional trans-
formations such as shifting, scaling and rotation about an axis can be defined with the routines TR3SHF,
TR3SCL and TR3ROT. Smooth or flat shading can be used and hidden-surface elimination can be en-
abled with the routines ZBFINI and DBFINI. For closed solids such as spheres and quads, only the top
faces are plotted while for non closed solids such as cones and tubes, the top and bottom faces are plot-
ted. This behaviour can be modified with the routine SURVIS. By default, backface culling is enabled
for all solids which can be disabled with the routine SHDMOD. Lighting can be enabled with the routine
LIGHT and additional grid lines will be plotted after a call to SURMSH with the parameter ’ON’.

S P H E 3 D
The routine SPHE3D plots a sphere.

The call is: CALL SPHE3D (XM, YM, ZM, R, N, M) level 3

or: void sphe3d (float xm, float ym, float zm, float r, int n, int m);

XM, YM, ZM are the user coordinates of the center point.

R is the radius of the sphere in user coordinates.

N, M defines the horizontal and vertical resolution of the sphere.

C O N E 3 D
The routine CONE3D plots a cone or a truncated cone.

The call is: CALL CONE3D (XM, YM, ZM, R, H1, H2, N, M) level 3

or: void cone3d (float xm, float ym, float zm, float r, float h1, float h2,
int n, int m);

XM, YM, ZM are the user coordinates of the lower center point.

R is the radius of the cone in user coordinates.

H1, H2 are the heights of the truncated cone. If H1 = H2, the cone is not truncated.

N, M defines the horizontal and vertical resolution of the cone.

P I K E 3 D
The routine PIKE3D plots a cone specified by two points.

The call is: CALL PIKE3D (X1, Y1, Z1, X2, Y2, Z2, R, N, M) level 3

or: void pike3d (float x1, float y1, float z1, float x2, float y2, float z2, float r,
int n, int m);

X1, Y1, Z1 are the user coordinates of the starting center point.

168

X2, Y2, Z2 are the user coordinates of the ending point.

R is the radius of the cone in user coordinates.

N, M define the horizontal and vertical resolution of the cone.

C Y L I 3 D
The routine CYLI3D plots a cylinder.

The call is: CALL CYLI3D (XM, YM, ZM, H, R, N, M) level 3

or: void cyli3d (float xm, float ym, float zm, float r, float h, int n, int m);

XM, YM, ZM are the user coordinates of the lower center point.

R is the radius of the cylinder in user coordinates.

H is the height of the cylinder in user coordinates.

N, M defines the horizontal and vertical resolution of the cylinder.

T U B E 3 D
The routine TUBE3D plots a tube.

The call is: CALL TUBE3D (X1, Y1, Z1, X2, Y2, Z2, R, N, M) level 3

or: void tube3d (float x1, float y1, float z1, float x2, float y2, float z2, float r,
int n, int m);

X1, Y1, Z1 are the user coordinates of the starting center point.

X2, Y2, Z2 are the user coordinates of the ending center point.

R is the radius of the tube in user coordinates.

N, M defines the horizontal and vertical resolution of the tube.

D I S K 3 D
The routine DISK3D plots a disk.

The call is: CALL DISK3D (XM, YM, ZM, R1, R2, N, M) level 3

or: void disk3d (float xm, float ym, float zm, float r1, float r2, int n, int m);

XM, YM, ZM are the user coordinates of the center point.

R1, R2 are the inner and outer radii in user coordinates.

N, M defines the horizontal and vertical resolution of the disks.

Q U A D 3 D
The routine QUAD3D plots a quad.

The call is: CALL QUAD3D (XM, YM, ZM, XL, YL, ZL) level 3

or: void quad3d (float xm, float ym, float zm, float xl, float yl, float zl);

XM, YM, ZM are the user coordinates of the center point.

XL, YL, ZL are the length of the edges in X-, Y- and Z-direction in user coordinates.

P Y R A 3 D
The routine PYRA3D plots a pyramid or a truncated pyramid.

The call is: CALL PYRA3D (XM, YM, ZM, XL, H1, H2, N) level 3

169

or: void pyra3d (float xm, float ym, float zm, float xl, float h1, float h2, int n);

XM, YM, ZM are the user coordinates of the lower center point.

XL is the length of the pyramid in user coordinates.

H1, H2 are the heights of the truncated pyramid in user coordinates. If H1 = H2, the
pyramid is not truncated.

N can have the values 3 and 4 and defines the number of sides.

P L A T 3 D
The routine PLAT3D plots a Platonic solid. The 5 Platonic solids are tetrahedron, cube, octahedron,
dodecahedron and icosahedron.

The call is: CALL PLAT3D (XM, YM, ZM, XL, COPT) level 3

or: void plat3d (float xm, float ym, float zm, float xl, char *copt);

XM, YM, ZM are the user coordinates of the center point.

XL is the length of an edge in user coordinates.

COPT is a character string that can have the values ’TETR’, ’CUBE’, ’OCTA”,
’DODE’ and ’ICOS’.

S Y M B 3 D
The routine SYMB3D plots a 3-D symbol.

The call is: CALL SYMB3D (N, XM, YM, ZM) level 3

or: void symb3d (int n, float xm, float ym, float zm);

N is the symbol number between 0 and 5. The symbols are cube, tetrahedron,
octahedron, dodecahedron, icosahedron and sphere.

XM, YM, ZM are the user coordinates of the center point.

Additional note: The size of 3-D symbols can be defined with the routine HSYM3D.

T O R U S 3 D
The routine TORUS3D plots a torus.

The call is: CALL TORUS3D (XM, YM, ZM, R1, R2, H, A1, A2, N, M) level 3

or: void torus3d (float xm, float ym, float zm, float r1, float r2, float h,
float a1, float a2, int n, int m);

XM, YM, ZM are the user coordinates of the center point.

R1, R2 are the inner and outer radii in user coordinates.

H is the height of the torus in user coordinates.

A1, A2 are the starting and end angles in degrees.

N, M defines the horizontal and vertical resolution of the torus.

170

12.21 Transformation of Coordinates

P O S 3 P T
The routine POS3PT converts three-dimensional user coordinates to absolute 3-D coordinates.

The call is: CALL POS3PT (X, Y, Z, XP, YP, ZP) level 3

or: void pos3pt (float x, float y, float z, float *xp, float *yp, float *zp);

X, Y, Z are the user coordinates.

XP, YP, ZP are the absolute 3-D coordinates calculated by POS3PT.

The absolute 3-D coordinates can also be calculated with the following functions:

XP = X3DPOS (X, Y, Z)

YP = Y3DPOS (X, Y, Z)

ZP = Z3DPOS (X, Y, Z)

R E L 3 P T
The routine REL3PT converts user coordinates to plot coordinates.

The call is: CALL REL3PT (X, Y, Z, XP, YP) level 3

or: void rel3pt (float x, float y, float z, float *xp, float *yp);

X, Y, Z are the user coordinates.

XP, YP are the plot coordinates calculated by REL3PT.

The corresponding functions are:

XP = X3DREL (X, Y, Z)

YP = Y3DREL (X, Y, Z)

A B S 3 P T
The routine ABS3PT converts absolute 3-D coordinates to plot coordinates.

The call is: CALL ABS3PT (X, Y, Z, XP, YP) level 3

or: void abs3pt (float x, float y, float z, float *xp, float *yp);

X, Y, Z are the absolute 3-D coordinates.

XP, YP are the plot coordinates calculated by ABS3PT.

The corresponding functions are:

XP = X3DABS (X, Y, Z)

YP = Y3DABS (X, Y, Z)

The next routines define 3-D base transformations which are applied to 3-D plot routines. The trans-
formations can be combined in any order, but note that matrix multiplications are not commutative.
Different orders may give different results.

T R 3 S H F
The routine TR3SHF defines a shifting of user 3-D coordinates.

The call is: CALL TR3SHF (XSHF, YSHF, ZSHF) level 3

171

or: void tr3shf (float xshf, float yshf, float zshf);

XSHF, YSHF, ZSHF are user coordinates that define the magnitude of shifting in X-, Y- and Z-
direction

T R 3 S C L
The routine TR3SCL defines a scaling of user 3-D coordinates.

The call is: CALL TR3SCL (XSCL, YSCL, ZSCL) level 3

or: void tr3shf (float xscl, float yscl, float zscl);

XSCL, YSCL, ZSCL are scaling factors for the X-, Y- and Z-direction

T R 3 R O T
The routine TR3ROT defines a rotation about an axis. The axes of the 3-D box are used as rotation axes
where the origin of the axis system is located in the centre of the 3-D box (see Figure 12.1).

The call is: CALL TR3ROT (XROT, YROT, ZROT) level 3

or: void tr3rot (float xrot, float yrot, float zrot);

XROT, YROT, ZROT are rotation angles in degrees for rotations about the X-, Y-, and Z-axes. Ro-
tation is done in a counter-clockwise direction when looking from a positive
axis toward the origin of the axis.

Additional note: The order of rotations is X-axis, Y-axis and then Z-axis. This means that
TR3ROT (A, B, C) has the same affect as TR3ROT (A, 0., 0.), TR3ROT (0.,
B, 0.) and TR3ROT (0., 0., C).

T R 3 R E S
The routine TR3RES resets 3-D transformations.

The call is: CALL TR3RES level 3

or: void tr3res (void);

172

12.22 Examples

PROGRAM EXA12_1
DIMENSION IXP(4),IYP(4)
DATA IXP/200,1999,1999,200/ IYP/2600,2600,801,801/
EXTERNAL ZFUN

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX

CALL AXSPOS(200,2600)
CALL AXSLEN(1800,1800)
CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)
CALL NAME(’Z-axis’,’Z’)
CALL TITLIN(’Surface Plot (SURFUN)’,2)
CALL TITLIN(’F(X,Y) = 2*SIN(X)*SIN(Y)’,4)

CALL GRAF3D(0.,360.,0.,90.,0.,360.,0.,90.,
* -3.,3.,-3.,1.)

CALL HEIGHT(50)
CALL TITLE
CALL SHLSUR
CALL SURFUN(ZFUN,1,10.,1,10.)

C Grid in the XY plane
CALL GRFINI(-1.,-1.,-1.,1.,-1.,-1.,1.,1.,-1.)
CALL NOGRAF
CALL GRAF(0.,360.,0.,90.,0.,360.,0.,90.)
CALL DASHL
CALL GRID(1,1)
CALL GRFFIN

C Grid in the YZ plane
CALL GRFINI(-1.,-1.,-1.,-1.,1.,-1.,-1.,1.,1.)
CALL GRAF(0.,360.,0.,90.,-3.,3.,-3.,1.)
CALL GRID(1,1)
CALL GRFFIN

C Shading in the XZ plane
CALL GRFINI(-1.,1.,-1.,1.,1.,-1.,1.,1.,1.)
CALL SHDPAT(7)
CALL SOLID
CALL AREAF(IXP,IYP,4)
CALL GRFFIN
CALL DISFIN
END

FUNCTION ZFUN(X,Y)
FPI=3.14159/180.
ZFUN=2*SIN(X*FPI)*SIN(Y*FPI)
END

173

Figure 12.1: Surface Plot

174

PROGRAM EXA12_2
CHARACTER*60 CTIT1,CTIT2
EXTERNAL ZFUN

CTIT1=’Surface Plot of the Parametric Function’
CTIT2=’[COS(t)*(3+COS(u)), SIN(t)*(3+COS(u)), SIN(u)]’
PI=3.14159

CALL SETPAG(’DA4P’)
CALL METAFL(’POST’)
CALL DISINI
CALL HWFONT
CALL PAGERA
CALL AXSPOS(200,2400)
CALL AXSLEN(1800,1800)
CALL INTAX

CALL TITLIN(CTIT1,2)
CALL TITLIN(CTIT2,4)

CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)
CALL NAME(’Z-axis’,’Z’)

CALL VKYTIT(-300)
CALL GRAF3D(-4.,4.,-4.,1.,-4.,4.,-4.,1.,-3.,3.,-3.,1.)

CALL HEIGHT(40)
CALL TITLE

CALL SURMSH(’ON’)
STEP=2*PI/30.
CALL SURFCP(ZFUN,0.,2*PI,STEP,0.,2*PI,STEP)
CALL DISFIN
END

FUNCTION ZFUN(X,Y,IOPT)

IF(IOPT.EQ.1) THEN
ZFUN=COS(X)*(3+COS(Y))

ELSE IF(IOPT.EQ.2) THEN
ZFUN=SIN(X)*(3+COS(Y))

ELSE
ZFUN=SIN(Y)

END IF
END

175

Surface Plot of the Parametric Function

[COS(t)*(3+COS(u)), SIN(t)*(3+COS(u)), SIN(u)]

Figure 12.2: Surface Plot of a Parametric Function

176

PROGRAM EXA12_3
PARAMETER (N=18)
DIMENSION XRAY(N),YRAY(N),Z1RAY(N),Z2RAY(N),XWRAY(N),

* YWRAY(N),ICRAY(N)
CHARACTER*80 CBUF

DATA XRAY/1., 3., 8., 1.5, 9., 6.3, 5.8, 2.3, 8.1, 3.5,
* 2.2, 8.7, 9.2, 4.8, 3.4, 6.9, 7.5, 3.8/

DATA YRAY/5., 8., 3.5, 2., 7., 1.,4.3, 7.2, 6.0, 8.5,
* 4.1, 5.0, 7.3, 2.8, 1.6, 8.9, 9.5, 3.2/

DATA Z1RAY/0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
* 0., 0., 0., 0., 0., 0., 0., 0./

DATA Z2RAY/4.,5.,3.,2.,3.5,4.5,2.,1.6,3.8,4.7,
* 2.1, 3.5, 1.9, 4.2, 4.9, 2.8

DATA ICRAY/30, 30, 30, 30, 30, 30, 100, 100, 100, 100,
* 100, 100, 170, 170, 170, 170, 170, 170/

DO I=1,N
XWRAY(I)=0.5
YWRAY(I)=0.5

END DO

CALL SETPAG(’DA4P’)
CALL METAFL(’PS’)
CALL DISINI
CALL PAGERA
CALL HWFONT
CALL AXSPOS(200,2600)
CALL AXSLEN(1800,1800)

CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)
CALL NAME(’Z-axis’,’Z’)
CALL TITLIN(’3-D Bars / BARS3D’,3)

CALL LABL3D(’HORI’)
CALL GRAF3D(0.,10.,0.,2.,0.,10.,0.,2.,0.,5.,0.,1.)
CALL GRID3D(1,1,’BOTTOM’)
CALL BARS3D(XRAY,YRAY,Z1RAY,Z2RAY,XWRAY,YWRAY,ICRAY,N)

CALL LEGINI(CBUF,3,20)
CALL LEGTIT(’ ’)
CALL LEGPOS(1300,1100)
CALL LEGLIN(CBUF,’First’,1)
CALL LEGLIN(CBUF,’Second’,2)
CALL LEGLIN(CBUF,’Third’,3)
CALL LEGEND(CBUF,3)

CALL HEIGHT(50)
CALL TITLE
CALL DISFIN
END

177

0.0
2.0

4.0
6.0

8.0

10.0

X-axis

0.0

2.0

4.0

6.0

8.0

10.0

Y-ax
is

0.0

1.0

2.0

3.0

4.0

5.0

Z
-a

xi
s

First
Second
Third

3-D Bars / BARS3D

Figure 12.3: 3-D Bars / BARS3D

178

Chapter 13

Geographical Projections and Plotting
Maps

This chapter presents different methods to project geographical coordinates onto a plane surface. Several
base maps are stored in DISLIN for plotting maps.

13.1 Axis Systems and Secondary Axes

G R A F M P
The routine GRAFMP plots a geographical axis system.

The call is: CALL GRAFMP (XA, XE, XOR, XSTP, YA, YE, YOR, YSTP)

or: void grafmp (float xa, float xe, float xor, float xstp,
float ya, float ye, float yor, float ystp);

XA, XE are the lower and upper limits of the X-axis.

XOR, XSTP are the first X-axis label and the step between labels.

YA, YE are the lower and upper limits of the Y-axis.

YOR, YSTP are the first Y-axis label and the step between labels.

Additional notes: - GRAFMP must be called from level 1 and sets the level to 2.

- The axes must be linear and scaled in ascending order. In general, X-axes
must be scaled between -180 and 180 degrees and Y-axes between -90 and 90
degrees.

- For elliptical projections, the plotting of an axis system will be suppressed.
This will also be done for azimuthal projections with YE - YA> 90.

- The statement CALL GRIDMP (I, J) overlays an axis system with a longitude
and latitude grid where I and J are the number of grid lines between labels in
the X- and Y-direction.

X A X M A P
The routine XAXMAP plots a secondary X-axis.

The call is: CALL XAXMAP (A, B, OR, STEP, CSTR, NT, NY) level 2

or: void xaxmap (float a, float b, float or, float step, char *cstr, int nt, int ny);

A, B are the lower and upper limits of the X-axis.

OR, STEP are the first label and the step between labels.

179

CSTR is a character string containing the axis name.

NT indicates how ticks, labels and the axis name are plotted. If NT = 0, they
are plotted in a clockwise direction. If NT = 1, they are plotted in a counter-
clockwise direction.

NY defines the horizontal position of the X-axis. A secondary axis must be located
inside the axis system.

Y A X M A P
The routine YAXMAP plots a secondary Y-axis.

The call is: CALL YAXMAP (A, B, OR, STEP, CSTR, NT, NX) level 2

or: void yaxmap (float a, float b, float or, float step, char *cstr, int nt, int nx);

A, B are the lower and upper limits of the Y-axis.

OR, STEP are the first label and the step between labels.

CSTR is a character string containing the axis name.

NT indicates how ticks, labels and the axis name are plotted. If NT = 0, they
are plotted in a clockwise direction. If NT = 1, they are plotted in a counter-
clockwise direction.

NX defines the vertical position of the Y-axis. A secondary axis must be located
inside the axis system.

13.2 Defining the Projection

Since a globe cannot be unfolded into a plane surface, many different methods have been developed to
represent a globe on a plane surface. In cartography, there are 4 basic methods differentiated by attributes
such as equal distance, area and angle.
The 4 basic methods are:

a) Cylindrical Projections

The surface of the globe is projected onto a cylinder which can be unfolded into a plane
surface and touches the globe at the equator. The latitudes and longitudes of the globe are
projected as straight lines.

b) Conical Projections

The surface of the globe is projected onto a cone which can also be unfolded into a plane
surface. The cone touches or intersects the globe at two latitudes. The longitudes are
projected as straight lines intersecting at the top of the cone and the latitudes are projected
as concentric circles around the top of the cone.

c) Azimuthal Projections

For azimuthal projections, a hemisphere is projected onto a plane which touches the hemi-
sphere at a point called the map pole. The longitudes and latitudes are projected as circles.

d) Elliptical Projections

Elliptical projections project the entire surface of the globe onto an elliptical region.

180

P R O J C T
The routine PROJCT selects the geographical projection.

The call is: CALL PROJCT (CTYPE) level 1

or: void projct (char *ctype);

CTYPE is a character string defining the projection.

= ’CYLI’ defines a cylindrical equidistant projection.

= ’MERC’ selects the Mercator projection.

= ’EQUA’ defines a cylindrical equal-area projection.

= ’HAMM’ defines the elliptical projection of Hammer.

= ’AITO’ defines the elliptical projection of Aitoff.

= ’WINK’ defines the elliptical projection of Winkel.

= ’SANS’ defines the elliptical Mercator-Sanson projection.

= ’CONI’ defines a conical equidistant projection.

= ’ALBE’ defines a conical equal-area projection (Albers).

= ’CONF’ defines a conical conformal projection.

= ’AZIM’ defines an azimuthal equidistant projection.

= ’LAMB’ defines an azimuthal equal-area projection.

= ’STER’ defines an azimuthal stereographic projection.

= ’ORTH’ defines an azimuthal orthographic projection.

= ’MYPR’ defines an user-defined projection.
Default: CTYPE = ’CYLI’.

Additional notes: - For cylindrical equidistant projections, the scaling parameters in GRAFMP
must be in the range:

-540≤ XA ≤ XE ≤ 540
-180≤ YA ≤ YE ≤ 180

For Mercator projections:

-540≤ XA ≤ XE ≤ 540
- 85≤ YA ≤ YE ≤ 85

For cylindrical equal-area projections:

-540≤ XA ≤ XE ≤ 540
- 90≤ YA ≤ YE ≤ 90

For elliptical projections:

-180≤ XA ≤ XE ≤ 180
- 90≤ YA ≤ YE ≤ 90

For conical projections:

-180≤ XA ≤ XE ≤ 180
0≤ YA ≤ YE ≤ 90 or

- 90≤ YA ≤ YE ≤ 0

For azimuthal projections with YE - YA> 90, the hemisphere around the map
pole is projected onto a circle. Therefore, the hemisphere can be selected with
the map pole. The plotting of the axis system is by default suppressed.

181

If YE - YA ≤ 90, the part of the globe defined by the axis scaling is pro-
jected onto a rectangle. The map pole will be set by GRAFMP to ((XA+XE)/2,
(YE+YA)/2). The scaling parameters must be in the range:

-180≤ XA ≤ XE ≤ 180 and
XE - XA ≤ 180

- 90≤ YA ≤ YE ≤ 90

- For all projections except the default projection, longitude and latitude coordi-
nates will be projected with the same scaling factor for the X- and Y-axis. The
scaling factor is determined by the scaling of the Y-axis while the scaling of
the X-axis is used to centre the map. The longitude (XA+XE)/2 always lies in
the centre of the axis system.

- Geographical projections can only be used for routines described in this chap-
ter or routines that plot contours.

13.3 Plotting Maps

W O R L D
The routine WORLD plots coastlines and lakes or political borders. Coastlines and lakes are plotted by
default, political borders can be enabled with the routine MAPOPT.

The call is: CALL WORLD level 2

or: void world ();

Additional note: The routine WORLD supports also some external map coordinates (see MAP-
BAS).

S H D M A P
The routine SHDMAP plots shaded continents.

The call is: CALL SHDMAP (CMAP) level 2

or: void shdmap (char *cmap);

CMAP is a character string defining the continent.

= ’AFRI’ means Africa.

= ’ANTA’ means the Antarctic.

= ’AUST’ means Australia.

= ’EURA’ means Europe and Asia.

= ’NORT’ means North America.

= ’SOUT’ means South America.

= ’LAKE’ means lakes.

= ’ALL’ means all continents and lakes.

Additional note: Shading patterns can be selected with SHDPAT and MYPAT. Colours can be
defined with COLOR and SETCLR.

S H D A F R

The routine SHDAFR plots shaded African countries.

182

The call is: CALL SHDAFR (INRAY, IPRAY, ICRAY, N) level 2

or: void shdafr (int *inray, long *ipray, int *icray, int n);

INRAY is an integer array containing the countries to be shaded. INRAY can have the
following values:

1: Algeria 19: Gabon 37:Nigeria
2: Angola 20: Gambia 38: Rwanda
3: Benin 21: Ghana 39: Senegal
4: Botswana 22: Guinea 40: Seychelles
5: Burkina Faso 23: Guinea Bissau 41: Sierra Leone
6: Burundi 24: Kenya 42: Somalia
7: Cameroon 25: Lesotho 43: South Africa
8: Central African Rep. 26: Liberia 44: Sudan
9: Chad 27: Libya 45: Swaziland
10: Comoros 28: Madagascar 46: Tanzania
11: Congo, Dem. Rep. 29: Malawi 47: Togo
12: Congo, Rep. 30: Mali 48: Tunesia
13: Cote d’Ivoire 31: Mauritania 49: Uganda
14: Djibouti 32: Mauritius 50: West Sahara
15: Egypt 33: Morocco 51: Zambia
16: Equatorial Guinea 34: Mozambique 52: Zimbawe
17: Eritrea 35: Namibia
18: Ethiopia 36: Niger 0: All

IPRAY is an integer array containing shading patterns.

ICRAY is an integer array containing colour numbers.

N is the number of countries to be shaded.

Additional note: The plotting of outlines can be suppressed with CALL NOARLN.

S H D A S I

The routine SHDASI plots shaded Asiatic countries.

The call is: CALL SHDASI (INRAY, IPRAY, ICRAY, N) level 2

or: void shdasi (int *inray, long *ipray, int *icray, int n);

INRAY is an integer array containing the countries to be shaded. INRAY can have the
following values:

1: Afghanistan 19: Jordan 37: Saudiarab
2: Armenia 20: Kazakhstan 38: Scrilanka
3: Azerbaijan 21: Korea (North) 39: Singapore
4: Bangladesh 22: Korea (South) 40: Spratly
5: Bhutan 23: Kuwait 41: Syria
6: Brunei 24: Kyrgyzstan 42: Taiwan
7: Burma 25: Laos 43: Tajikistan
8: Cambodia 26: Lebanon 44: Thailand
9: China 27: Malaysia 45: Turkey
10: Emirates 28: Maledives 46: Turkmenistan
11: Gaza 29: Mongolia 47: Uzbekistan
12: Georgia 30: Nepal 48: Vietnam

183

13: India 31: Oman 49: Westbank
14: Indonesia 32: Pakistan 50: Yemen
15: Iran 33: Paracel
16: Iraq 34: Philippines
17: Israel 35: Quatar
18: Japan 36: Russia 0: All

IPRAY is an integer array containing shading patterns.

ICRAY is an integer array containing colour numbers.

N is the number of countries to be shaded.

Additional note: The plotting of outlines can be suppressed with CALL NOARLN.

S H D A U S

The routine SHDAUS plots shaded countries of Australia and Oceania.

The call is: CALL SHDAUS (INRAY, IPRAY, ICRAY, N) level 2

or: void shdaus (int *inray, long *ipray, int *icray, int n);

INRAY is an integer array containing the countries to be shaded. INRAY can have the
following values:

1: Australia 6: Nauru 11: Solomon
2: Fiji 7: Newcaledonia 12: Tonga
3: Kiribati 8: Newsealand 13: Tuvalu
4: Marshall 9: Papanewguinea 14: Vanuata
5: Micronesia 10: Samoa 0: All

IPRAY is an integer array containing shading patterns.

ICRAY is an integer array containing colour numbers.

N is the number of countries to be shaded.

Additional note: The plotting of outlines can be suppressed with CALL NOARLN.

S H D E U R

The routine SHDEUR plots shaded European countries.

The call is: CALL SHDEUR (INRAY, IPRAY, ICRAY, N) level 2

or: void shdeur (int *inray, long *ipray, int *icray, int n);

INRAY is an integer array containing the countries to be shaded. INRAY can have the
following values:

1: Albania 17: Luxembourg 33: Belarus
2: Andorra 18: Malta 34: Bosnia
3: Belgium 19: Netherlands 35: Croatia
4: Bulgaria 20: North Ireland 36: Czech Republic
5: Germany 21: Norway 37: Estonia
6: Denmark 22: Austria 38: Latvia
7: Cyprus 23: Poland 39: Lithuania
8: United Kingdom 24: Portugal 40: Macedonia
9: Finland 25: Romania 41: Moldava

184

10: France 26: Sweden 42: Russia
11: Greece 27: Switzerland 43: Serbia
12: Ireland 28: Spain 44: Slovakia
13: Iceland 29: CSFR 45: Slowenia
14: Italy 30: Turkey 46: Ukraine
15: Yugoslavia 31: USSR
16: Liechtenstein 32: Hungary 0: All

IPRAY is an integer array containing shading patterns.

ICRAY is an integer array containing colour numbers.

N is the number of countries to be shaded.

Additional notes: - The plotting of outlines can be suppressed with CALL NOARLN.

- To stay compatible with older programs, the number 15 (Yugoslavia) plots
Bosnia, Croatia, Macedonia, Serbia and Slowenia, the number 29 (CSFR) plots
Czech Republic and Slovakia and the number 31 (USSR) plots Belarus, Esto-
nia, Latvia, Lithuania, Moldava, Russia and Ukraine.

S H D N O R

The routine SHDNOR plots shaded countries of North and Central Amerika.

The call is: CALL SHDNOR (INRAY, IPRAY, ICRAY, N) level 2

or: void shdnor (int *inray, long *ipray, int *icray, int n);

INRAY is an integer array containing the states to be shaded. INRAY can have the
following values:

1: Alaska 13: El Salvador 25: Nicaragua
2: Antigua, Barbuda 14: Greenland 26: Panama
3: Bahamas 15: Grenada 27: Puerto Rico
4: Barbados 16: Guadeloupe 28: St. Kitts, Nevis
5: Belize 17: Guatemala 29: St. Lucia
6: British Virgin 18: Haiti 30: St. Vincent
7: Caiman Islands 19: Honduras 31: Trinidad
8: Canada 20: Jamaica 32: USA
9: Costa Rica 21: Martinique
10: Cuba 22: Mexico
11: Dominica 23: Montserrat
12: Domincan 24: Neth. Antilles 0: All

IPRAY is an integer array containing shading patterns.

ICRAY is an integer array containing colour numbers.

N is the number of states to be shaded.

S H D S O U

The routine SHDSOU plots shaded states of South Amerika.

The call is: CALL SHDSOU (INRAY, IPRAY, ICRAY, N) level 2

or: void shdsou (int *inray, long *ipray, int *icray, int n);

185

INRAY is an integer array containing the states to be shaded. INRAY can have the
following values:

1: Argentinia 6: Ecuador 11: Suriname
2: Bolovia 7: French Guyana 12: Uruguay
3: Brazil 8: Guyana 13: Venezuela
4: Chile 9: Paraguay
5: Colombia 10: Peru 0: All

IPRAY is an integer array containing shading patterns.

ICRAY is an integer array containing colour numbers.

N is the number of states to be shaded.

S H D U S A

The routine SHDUSA plots shaded USA states.

The call is: CALL SHDUSA (INRAY, IPRAY, ICRAY, N) level 2

or: void shdeur (int *inray, long *ipray, int *icray, int n);

INRAY is an integer array containing the states to be shaded. INRAY can have the
following values:

1: Alabama 19: Maine 37: Oregon
2: Alaska 20: Maryland 38: Pennsylvania
3: Arizona 21: Massachusetts 39: Rhode Island
4: Arkansas 22: Michigan 40: South Carolina
5: California 23: Minnesota 41: South Dakota
6: Colorado 24: Mississippi 42: Tennessee
7: Connecticut 25: Missouri 43: Texas
8: Delaware 26: Montana 44: Utah
9: Floria 27: Nbraska 45: Vermont
10: Georgia 28: Nevada 46: Virginia
11: Hawaii 29: New Hampshire 47: Washington
12: Idaho 30: New Jersey 48: West Virginia
13: Ilinois 31: New Mexico 49: Wisconsin
14: Indiana 32: New York 50: Wyoming
15: Iowa 33: North Carolina 51: Washington DC
16: Kansas 34: North Dakota
17: Kentucky 35: Ohio
18: Louisiana 36: Oklahoma 0: All

IPRAY is an integer array containing shading patterns.

ICRAY is an integer array containing colour numbers.

N is the number of states to be shaded.

13.4 Plotting Data Points

C U R V M P
The routine CURVMP plots curves through data points or marks them with symbols.

186

The call is: CALL CURVMP (XRAY, YRAY, N) level 2

or: void curvmp (float *xray, float *yray, int n);

XRAY, YRAY are real arrays containing the data points.

N is the number of data points.

Additional notes: - CURVMP is similar to CURVE except that only a linear interpolation can be
used.

- In general, a line between two points on the globe will not be projected as a
straight line. Therefore, CURVMP interpolates lines linearly by small steps.
Alternate plotting modes can be set with MAPMOD.

13.5 Parameter Setting Routines

M A P B A S
The routine MAPBAS defines the map data file used in the routine WORLD. An internal DISLIN map
file, some external map files compiled by Paul Wessel and map files in Mapgen format can be used. The
map files compiled by Paul Wessel can be copied via FTP anonymous from the servers

ftp://ftp.ngdc.noaa.gov/MGG/shorelines/
ftp://gmt.soest.hawaii.edu/pub/wessel/gshhs/.

The external map files ’gshhsl.b’, ’gshhs i.b’, ’gshhsh.b’ and ’gshhsf.b’ must be copied to the map
subdirectory of the DISLIN directory, or the name of the map file must be specified with the routine
MAPFIL.

Map files in Mapgen format are available from the Coastline Extractor:

http://rimmer.ngdc.noaa.gov/

The call is: CALL MAPBAS (CBAS) level 1, 2

or: void mapbas (char *cbas);

CBAS is a character string defining the map data file.

= ’DISLIN’ defines the DISLIN base map.

= ’GSHL’ defines ’gshhsl.b’ as base map.

= ’GSHI’ defines ’gshhsi.b’ as base map.

= ’GSHH’ defines ’gshhsh.b’ as base map.

= ’GSHF’ defines ’gshhsf.b’ as base map.

= ’MAPFIL’ defines an external map file as base map that is specified with the routine MAP-
FIL.

Default: CBAS = ’DISLIN’.

M A P F I L
The routine MAPFIL defines an external map file. The map file can be used as base map if the routine
MAPBAS is called with the parameter ’MAPFIL’.

The call is: CALL MAPFIL (CFIL, COPT) level 1, 2

or: void mapfil (char *cfil, char *copt);

CFIL is a character string containing the filename of the external map file.

187

COPT is a character string describing the format of the map coordinates. COPT can
have the values ’GSHHS’ and ’MAPGEN’.

M A P L E V
The routine MAPLEV defines land or lake coordinates for WORLD if the external map files from Paul
Wessel are used.

The call is: CALL MAPLEV (COPT) level 1, 2

or: void maplev (char *copt);

COPT is a character string that can have the values ’ALL’, ’LAND’ and ’LAKE’.
Default: COPT = ’ALL’.

M A P P O L
MAPPOL defines the map pole used for azimuthal projections.

The call is: CALL MAPPOL (XPOL, YPOL) level 1

or: void mappol (float xpol, float ypol);

XPOL, YPOL are the longitude and latitude coordinates in degrees where:

-180≤ XPOL≤ 180 and -90≤ YPOL≤ 90.
Default: (0., 0.)

Additional note: For an azimuthal projection with YE - YA≤ 90, the map pole will be set by
GRAFMP to ((XA+XE)/2, (YA+YE)/2).

M A P S P H
For an azimuthal projection with YE - YA> 90, DISLIN automatically projects a hemisphere around
the map pole onto a circle. The hemisphere can be reduced using MAPSPH.

The call is: CALL MAPSPH (XRAD) level 1

or: void mapsph (float xrad);

XRAD defines the region around the map pole that will be projected onto a circle (0
< XRAD ≤ 90).

Default: XRAD = 90.

M A P R E F

The routine MAPREF defines, for conical projections, two latitudes where the cone intersects or touches
the globe.

The call is: CALL MAPREF (YLW, YUP) level 1

or: void mapref (float ylw, float yup);

YLW, YUP are the lower and upper latitudes where:

0≤ YLW ≤ YUP≤ 90 or - 90≤ YLW ≤ YUP≤ 0

Default: YLW = YA + 0.25 * (YE - YA)
YUP = YA + 0.75 * (YE - YA)

Additional note: YLW and YUP can have identical values and lie outside of the axis scaling.

M A P L A B
The routine MAPLAB enables axis system labels for azimuthal and elliptical projections.

188

The call is: CALL MAPLAB (COPT, CKEY) level 1, 2

or: void maplab (char *copt, char *ckey);

COPT is a character string that can contain the options ’NONE’, ’LEFT’, ’RIGHT’
and ’BOTH’.

CKEY is a character string containing the keyword ’LATITUDE’.
Default: (’NONE’, ’LATITUDE’).

M A P M O D
The routine MAPMOD determines how data points will be connected by CURVMP.

The call is: CALL MAPMOD (CMODE) level 1, 2

or: void mapmod (char *cmode);

CMODE is a character string defining the connection mode.

= ’STRAIGHT’ defines straight lines.

= ’INTER’ means that lines will be interpolated linearly.

= ’GREAT’ means Great Circle interpolation.
Default: CMODE = ’INTER’.

M A P O P T
The routine MAPOPT enables political borders plotted by the routine WORLD, or sets an option to
adjust the length of the X-axis to the scaling.

The call is: CALL MAPOPT (COPT, CKEY) level 1, 2

or: void mapopt (char *copt, char *ckey);

COPT is a character string containing an option.

CKEY is a character string containing a keyword:

= ’WORLD’ If CKEY = ’WORLD’, COPT can have the values ’COAST’, ’BORDERS’
and ’BOTH’. The default value is COPT = ’COAST’.

= ’XAXIS’ If CKEY = ’XAXIS’, COPT can have the values ’STANDARD’ and ’AUTO’.
Normally, longitude and latitude coordinates will be projected with the same
scaling factor where the scaling factor is determined by the scaling of the Y-
axis while the scaling of the X-axis is used to centre the map. For COPT =
’AUTO’, DISLIN tries the change the length of the X-axis, so that the axis
length corresponds to the scaling parameters in GRAFMP for the X-axis. The
default value is COPT = ’STANDARD’.

13.6 Conversion of Coordinates

P O S 2 P T
The routine POS2PT converts map coordinates to plot coordinates.

The call is: CALL POS2PT (XLONG, YLAT, XP, YP) level 2

or: void pos2pt (float xlong, float ylat, float *xp, float *yp);

XLONG, YLAT are the map coordinates in degrees.

XP, YP are the plot coordinates calculated by POS2PT.

The corresponding functions are:

XP = X2DPOS (XLONG, YLAT)

YP = Y2DPOS (XLONG, YLAT)

189

13.7 User-defined Projections

An user-defined projection can be enabled with the keyword ’MYPR’ in the routine PROJCT. For a
user-defined projection, the user must write a routine that converts longitude and latitude coordinates to
axis coordinates (plot coordinates relative to the origin of the axis system). The name of the user written
routine must then passed to DISLIN with the routine SETCBK.

S E T C B K
The routine SETCBK defines a user written callback routine.

The call is: CALL SETCBK (ROUTINE, ’MYPR’) level 0, 1, 2, 3

or: void setcbk (void (*routine)(float *xp, float *yp), ”MYPR”);

ROUTINE is the name of a routine defined by the user. In Fortran, the routine must be
declared as EXTERNAL.

In the following example, a cylindrical projection is implemented as an user-defined projection:

PROGRAM MYPR
EXTERNAL MYFUNC
COMMON /MYCOMM/ XA,XE,YA,YE,NXL,NYL

XA = -180.
XE = 180.
YA = -90.
YE = 90.

NXL = 2400
NYL = 1200

CALL METAFL (’cons’)
CALL DISINI
CALL PAGERA
CALL COMPLX
CALL AXSLEN (NXL, NYL)

CALL PROJCT (’MYPR’)
CALL SETCBK (MYFUNC, ’MYPR’)

CALL GRAFMP (XA, XE, XA, 90., YA, YE, YA, 30.)
CALL GRIDMP (1,1)
CALL WORLD
CALL DISFIN
END

SUBROUTINE MYFUNC (XP, YP)
COMMON /MYCOMM/ XA,XE,YA,YE,NXL,NYL
XP = (XP - XA)/(XE - XA) * (NXL - 1)
YP = (YP - YA)/(YE - YA) * (NYL - 1)
END

190

13.8 Examples

PROGRAM EX13_1

CALL SETPAG(’DA4L’)
CALL DISINI
CALL PAGERA
CALL COMPLX

CALL FRAME(3)
CALL AXSPOS(400,1850)
CALL AXSLEN(2400,1400)

CALL NAME(’Longitude’,’X’)
CALL NAME(’Latitude’,’Y’)
CALL TITLIN(’World Coastlines and Lakes’,3)

CALL LABELS(’MAP’,’XY’)
CALL GRAFMP(-180.,180.,-180.,90.,-90.,90.,-90.,30.)

CALL GRIDMP(1,1)
CALL WORLD

CALL HEIGHT(50)
CALL TITLE
CALL DISFIN
END

191

Figure 13.1: World Coastlines and Lakes

192

PROGRAM EX13_2
CHARACTER*6 CPROJ(3),CTIT*60
DATA CPROJ/’Sanson’,’Winkel’,’Hammer’/

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX

CALL HEIGHT(40)
CALL AXSLEN(1600,750)

NYA=3850
DO I=1,3

NYA=NYA-950
CALL AXSPOS(250,NYA)

CALL PROJCT(CPROJ(I))
CALL NOCLIP
CALL GRAFMP(-180.,180.,-180.,30.,-90.,90.,-90.,15.)

WRITE(CTIT,’(2A)’) ’Elliptical Projection of ’,
* CPROJ(I)

CALL TITLIN(CTIT,4)
CALL TITLE

CALL WORLD
CALL GRIDMP(1,1)
CALL ENDGRF

END DO

CALL DISFIN
END

193

Figure 13.2: Elliptical Projections

194

PROGRAM EX13_3
DIMENSION NXA(4),NYA(4),XPOL(4),YPOL(4)
CHARACTER*60 CTIT
DATA NXA/200,1150,200,1150/NYA/1600,1600,2700,2700/
DATA XPOL/0.,0.,0.,0./YPOL/0.,45.,90.,-45./

CTIT=’Azimuthal Lambert Projections’

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX

CALL HEIGHT(50)
NL=NLMESS(CTIT)
NX=(2250-NL)/2.
CALL MESSAG(CTIT,NX,300)

CALL AXSLEN(900,900)
CALL PROJCT(’LAMBERT’)

DO I=1,4
CALL AXSPOS(NXA(I),NYA(I))
CALL MAPPOL(XPOL(I),YPOL(I))
CALL GRAFMP(-180.,180.,-180.,30.,-90.,90.,-90.,30.)

CALL WORLD
CALL GRIDMP(1,1)
CALL ENDGRF

END DO

CALL DISFIN
END

195

Figure 13.3: Azimuthal Lambert Projections

196

PROGRAM EX13_4
PARAMETER (N = 32)
DIMENSION INRAY(1),IPRAY(1),ICRAY(1)

INRAY(1)=0
IPRAY(I)=0
ICRAY(I)=255

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX

CALL INTAX
CALL TICKS(1,’XY’)
CALL FRAME(3)
CALL AXSLEN(1600,2200)
CALL AXSPOS(400,2700)

CALL NAME(’Longitude’,’X’)
CALL NAME(’Latitude’,’Y’)
CALL TITLIN(’Conformal Conic Projection’,3)

CALL LABELS(’MAP’,’XY’)
CALL PROJCT(’CONF’)
CALL GRAFMP(-10.,30.,-10.,5.,35.,70.,35.,5.)

CALL GRIDMP(1,1)
CALL SHDEUR(INRAY,IPRAY,ICRAY,N)

CALL HEIGHT(50)
CALL TITLE
CALL DISFIN
END

197

0o 5o E 10o E 15o E 20o E
Longitude

35o N

40o N

45o N

50o N

55o N

60o N

65o N

L
at

it
ud

e

Conformal Conic Projection

Figure 13.4: Conformal Conic Projection

198

Chapter 14

Contouring

This chapter describes routines for contouring three-dimensional functions of the form Z = F(X,Y).
Contours can be generated with the routine CONPTS or with other software packages and plotted with
the routine CONCRV or can be calculated and plotted by DISLIN with the routines CONMAT, CONTUR
and CONSHD.

14.1 Plotting Contours

C O N C R V
CONCRV plots contours generated by other software packages.

The call is: CALL CONCRV (XRAY, YRAY, N, ZLEV) level 2, 3

or: void concrv (float *xray, float *yray, int n, float zlev);

XRAY, YRAY are arrays containing the X- and Y-coordinates of a contour line.

N is the number of points.

ZLEV is a function value used for labels.

C O N T U R
The routine CONTUR calculates and plots contours of the function Z = F(X,Y).

The call is: CALL CONTUR (XRAY, N, YRAY, M, ZMAT, ZLEV)
level 2, 3

or: void contur (float *xray, int n, float *yray, int m, float *zmat, float zlev);

XRAY is an array containing X-coordinates.

N is the dimension of XRAY.

YRAY is an array containing Y-coordinates.

M is the dimension of YRAY.

ZMAT is a matrix of the dimension (N, M) containing function values.

ZLEV is a function value that defines the contour line to be calculated. ZLEV can be
used for labels.

199

C O N M A T
The routine CONMAT plots contours of the function Z = F(X,Y). The function values correspond to a
linear grid in the XY-plane.

The call is: CALL CONMAT (ZMAT, N, M, ZLEV) level 2, 3

or: void conmat (float *zmat, int n, int m, float zlev);

ZMAT is a matrix of the dimension (N, M) containing the function values. If XA,
XE, YA and YE are the axis limits in GRAF or values defined with the routine
SURSZE, the connection of grid points and matrix elements can be described
by the formula:

ZMAT(I,J) = F(X,Y) where

X = XA + (I - 1) * (XE - XA) / (N - 1) , I = 1,..,N and

Y = YA + (J - 1) * (YE - YA) / (M - 1) , J = 1,..,M.

N, M define the dimension of ZMAT.

ZLEV is a function value that defines the contour line to be calculated. The value can
be used for labels.

Additional notes: - CONCRV, CONTUR and CONMAT use linear interpolation to connect con-
tour points. The routine TRFMAT can be used to pass a matrix with a better
resolution to CONTUR and CONMAT.

- Geographical projections can be defined for contouring.

- The thickness of contours can be set with THKCRV. Line styles and colours
can also be defined. Legends are supported for filled and non-filled contours.

- The number of matrix points in CONTUR and CONMAT is limited to N * M
≤ 256000 in Fortran 77. There is no limit for the C and Fortran 90 libraries of
DISLIN.

- To plot contours for randomly distributed points of the form X(N), Y(N) and
Z(N), the routine GETMAT can be used to calculate a function matrix, or the
data can be triangulated with the routine TRIANG and contours can be plotted
from the triangulation with the routine CONTRI.

C O N T R I
The routine CONTRI plots contours from triangulated data that can be calculated by the routine TRIANG
from a set of irregularily distributed data points.

The call is: CALL CONTRI (XRAY, YRAY, ZRAY, N, I1RAY, I2RAY, I3RAY, NTRI,
ZLEV) level 2, 3

or: void contri (float *xray, float *yray, float *zray, int n,
int *i1ray, int *i2ray, int *i3ray, int ntri, float zlev);

XRAY is an array containing the X-coordinates of data points.

YRAY is an array containing the Y-coordinates of data points.

ZRAY is an array containing the Z-coordinates of data points.

N is the number of data points.

I1RAY, I2RAY, I3RAY is the Delaunay triangulation of the points (XRAY, YRAY) calculated by the
routine TRIANG.

NTRI is the number of triangles in I1RAY, I2RAY and I3RAY.

ZLEV is a function value that defines the contour line to be calculated.

200

14.2 Plotting Filled Contours

C O N S H D
The routine CONSHD plots filled contours of the function Z = F(X,Y). Two algorithms can be selected
for contour filling: a cell filling algorithm and a polygon filling algorithm. For a polygon filling, only
closed contours can be filled. The algorithm can be defined with the routine SHDMOD.

The call is: CALL CONSHD (XRAY, N, YRAY, M, ZMAT, ZLVRAY, NLV)
level 2, 3

or: void conshd (float *xray, int n, float *yray, int m, float *zmat, float *zlvray,
int nlv);

XRAY is an array containing X-coordinates.

N is the dimension of XRAY.

YRAY is an array containing Y-coordinates.

M is the dimension of YRAY.

ZMAT is a matrix of the dimension (N, M) containing function values.

ZLVRAY is an array containing the levels. For polygon filling, the levels should be sorted
in such a way that inner contours are plotted last.

NLV is the number of levels.

Additional notes: - CONSHD may give better results for a higher resolution of ZMAT. A matrix
with a higher resolution can be calculated with the routine TRFMAT.

- The colours of the filled contours are calculated from a fictive colour bar where
the minimum and maximum of the contour levels are used for the lower and
upper limits of the colour bar. The scaling of the colour bar can be modified
with the routine ZSCALE while a colour bar can be displayed with the routine
ZAXIS. If the colours of the filled contours should not be calculated from a
colour bar, they can be defined directly with the routine CONCLR.

- For a cell filling, the calculation of contour colours are described in the fol-
lowing. The levels are sorted first in ascending order. By default, the colour of
the region between two neighbouring levels is calculated from the lower value
of the two levels. If you want to use the upper value, you can define it with
the routine SHDMOD (’UPPER’, ’COLOUR’). In default mode (SHDMOD
(’LOWER’, ’COLOUR’), the cells below the mimimum of the levels are filled
with the lowermost colour of the colour bar, the cells above the maximum of
the levels are filled with the uppermost colour of the colour bar. The plotting of
this regions can be suppressed with the statement CALL SHDMOD (’NONE’,
’CELL’).

C O N F L L
The routine CONFLL plots filled contours from triangulated data that can be calculated by the routine
TRIANG from a set of irregularily distributed data points.

The call is: CALL CONFLL (XRAY, YRAY, ZRAY, N, I1RAY, I2RAY, I3RAY, NTRI,
ZLVRAY, NLV) level 2, 3

or: void confll (float *xray, float *yray, float *zray, int n,
int *i1ray, int *i2ray, int *i3ray, int ntri, float *zlvray, int nlv);

XRAY is an array containing the X-coordinates of data points.

YRAY is an array containing the Y-coordinates of data points.

201

ZRAY is an array containing the Z-coordinates of data points.

N is the number of data points.

I1RAY, I2RAY, I3RAY is the Delaunay triangulation of the points (XRAY, YRAY) calculated by the
routine TRIANG.

NTRI is the number of triangles in I1RAY, I2RAY and I3RAY.

ZLVRAY is an array containing the levels.

NLV is the number of levels.

Additional note: See the notes for CONSHD.

14.3 Generating Contours

C O N P T S
The routine CONPTS generates contours without plotting. Multiple curves can be returned for one
contour level.

The call is: CALL CONPTS (XRAY, N, YRAY, M, ZMAT, ZLEV, XPTRAY, YPTRAY,
MAXPTS, IRAY, MAXCRV, NCURVS) level 0, 1, 2, 3

or: void conpts (float *xray, int n, float *yray, int m, float *zmat, float zlev,
float *xptray, float *yptray, int maxpts, int *iray, int maxray, int *ncurvs);

XRAY is an array containing X-coordinates.

N is the dimension of XRAY.

YRAY is an array containing Y-coordinates.

M is the dimension of YRAY.

ZMAT is a matrix of the dimension (N, M) containing function values.

ZLEV is a function value that defines the contour line to be calculated.

XPTRAY, YPTRAY are returned arrays containing the calculated contour. The arrays can contain
several curves.

MAXPTS is the maximal number of points that can be passed to XPTRAY and YPTRAY.

IRAY is a returned integer array that contains the number of points for each generated
contour curve.

MAXCRV is the maximal number of entries that can be passed to IRAY.

NCURVS is the returned number of generated curves.

Example:

The following statements generate from some arrays XRAY, YRAY and ZMAT contours and plot them
with the routine CURVE.

PARAMETER (N=100, MAXPTS=1000,MAXCRV=10)
REAL ZMAT(N,N),XRAY(N),YRAY(N),XPTS(MAXPTS),YPTS(MAXPTS)
INTEGER IRAY(MAXCRV)
.....
DO I=1,12

ZLEV=0.1+(I-1)*0.1
CALL CONPTS(XRAY,N,YRAY,N,ZMAT,ZLEV,XPTS,YPTS,MAXPTS,

* IRAY,MAXCRV,NCURVS)
K=1

202

DO J=1,NCURVS
CALL CURVE(XPTS(K),YPTS(K),IRAY(J))
K=K+IRAY(J)

END do
END DO

T R I P T S
The routine TRIPTS generates contours from triangulated data without plotting. Multiple curves can be
returned for one contour level.

The call is: CALL TRIPTS (XRAY, YRAY, ZRAY, N, I1RAY, I2RAY, I3RAY, NTRI,
ZLEV, XPTRAY, YPTRAY, MAXPTS, IRAY, MAXCRV, NCURVS)

level 0, 1, 2, 3

or: void tripts (float *xray, float *yray, float *zray, int n, int *i1ray, int *i2ray,
int *i3ray, int ntri, float zlev, float *xptray, float *yptray, int maxpts,
int *iray, int maxray, int *ncurvs);

XRAY is an array containing the X-coordinates of data points.

YRAY is an array containing the Y-coordinates of data points.

ZRAY is an array containing the Z-coordinates of data points.

N is the number of data points.

I1RAY, I2RAY, I3RAY is the Delaunay triangulation of the points (XRAY, YRAY) calculated by the
routine TRIANG.

NTRI is the number of triangles in I1RAY, I2RAY and I3RAY.

ZLEV is a function value that defines the contour line to be calculated.

XPTRAY, YPTRAY are returned arrays containing the calculated contour. The arrays can contain
several curves.

MAXPTS is the maximal number of points that can be passed to XPTRAY and YPTRAY.

IRAY is a returned integer array that contains the number of points for each generated
contour curve.

MAXCRV is the maximal number of entries that can be passed to IRAY.

NCURVS is the returned number of generated curves.

14.4 Parameter Setting Routines

L A B E L S
The routine LABELS defines contour labels.

The call is: CALL LABELS (COPT, ’CONTUR’) level 1, 2, 3

or: void labels (char *copt, ”CONTUR”);

COPT is a character string defining the labels.

= ’NONE’ means that no labels will be plotted.

= ’FLOAT’ means that the level value will be used for labels.

= ’CONLAB’ means that labels defined with the routine CONLAB will be plotted.
Default: COPT = ’NONE’.

203

Additional note: The number of decimal places in contour labels can be defined with CALL
LABDIG (NDIG, ’CONTUR’). The default value for NDIG is 1.

L A B D I S
The routine LABDIS defines the distance between contour labels.

The call is: CALL LABDIS (NDIS, ’CONTUR’) level 1, 2, 3

or: void labdis (int ndis, ”CONTUR”);

NDIS is the distance between labels in plot coordinates.
Default: NDIS = 500

L A B C L R
The routine LABCLR defines the colour of contour labels.

The call is: CALL LABCLR (NCLR, ’CONTUR’) level 1, 2, 3

or: void labclr (int nclr, ”CONTUR”);

NCLR is a colour value. If NCLR = -1, the contour labels will be plotted with the
current colour.

Default: NCLR = -1

C O N L A B
The routine CONLAB defines a character string which will be used for labels if the routine LABELS is
called with the parameter ’CONLAB’.

The call is: CALL CONLAB (CLAB) level 1, 2, 3

or: void conlab (char *clab);

CLAB is a character string containing the label.
Default: CLAB = ’ ’.

C O N M O D
The routine CONMOD modifies the appearance of contour labels. By default, DISLIN suppresses the
plotting of labels at a position where the contour is very curved. To measure the curvature of a contour
for an interval, DISLIN calculates the ratio between the arc length and the length of the straight line
between the interval limits. If the quotient is much greater than 1, the contour line is very curved in that
interval.

The call is: CALL CONMOD (XFAC, XQUOT) level 1, 2, 3

or: void conmod (float xfac, float xquot);

XFAC defines the length of intervals (≥ 0). The curvature of contours will be tested
in intervals of the length (1 + XFAC) * W where W is the label length.

XQUOT defines an upper limit for the quotient of arc length and length of the straight
line (> 1). If the quotient is greater than XQUOT, the plotting of labels will be
suppressed in the tested interval.

Default: (0.5, 1.5).

C O N G A P
The routine CONGAP defines the distance between contour lines and labels.

The call is: CALL CONGAP (XFAC) level 1, 2, 3

204

or: void congap (float xfac);

XFAC is a real number used as a scaling factor. The distance between contour lines
and labels is set to XFAC * NH where NH is the current character height.

Default: XFAC = 0.5.

S H D M O D
The routine SHDMOD selects the algorithm used for contour filling, or modifies options for cell filling.

The call is: CALL SHDMOD (COPT, CKEY) level 1, 2, 3

or: void shdmod (char *copt, char *ckey);

CKEY is a character string containing one of the following keywords:

= ’CONTUR’ defines the algorithm used for contour filling. COPT can have the values
’CELL’ and ’POLY’. The default value is COPT = ’CELL’.

= ’CELL’ modifies the cell filling algorithm. COPT can have the values ’BOTH’, ’UP-
PER’, ’LOWER’ and ’NONE’. If COPT = ’NONE’, the filling of the regions
below and above the level limits are suppressed. If COPT = ’UPPER’, the fill-
ing of the region below the lowermost level is suppressed. COPT = ’LOWER’
means that the filling of the region above the uppermost level is suppressed.
By default, both regions described above are filled.

= ’COLOR’ modifies the calculation of colours for cell filling. COPT can have the val-
ues ’LOWER’, ’MIDDLE’ and ’UPPER’. For COPT = ’LOWER’, the lower
value of two neighbouring levels is used for colour calculation, for COPT =
’UPPER’, the upper value of two neighbouring levels is used, and for COPT
= ’MIDDLE’, the mean value of the two levels is used for colour calculation.
The default value is COPT = ’LOWER’.

C O N C L R
The routine CONCLR defines colours for filled contour lines.

The call is: CALL CONCLR (NCRAY, N) level 1, 2, 3

or: void conclr (int *ncray, int n);

NCRAY is an integer array containing colour numbers.

N is the number of entries in NCRAY.

205

14.5 Examples

PROGRAM EX14_1
PARAMETER (N=100)
DIMENSION X(N),Y(N),Z(N,N)

FPI=3.14159/180.
STEP=360./(N-1)
DO I=1,N

X(I)=(I-1.)*STEP
Y(I)=(I-1.)*STEP

END DO

DO I=1,N
DO J=1,N

Z(I,J)=2*SIN(X(I)*FPI)*SIN(Y(J)*FPI)
END DO

END DO

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX

CALL TITLIN(’Contour Plot’,1)
CALL TITLIN(’F(X,Y) = 2 * SIN(X) * SIN(Y)’,3)
CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)

CALL INTAX
CALL AXSPOS(450,2670)
CALL GRAF(0.,360.,0.,90.,0.,360.,0.,90.)

CALL HEIGHT(30)
DO I=1,9

ZLEV=-2.+(I-1)*0.5
IF(I.EQ.5) THEN

CALL LABELS(’NONE’,’CONTUR’)
ELSE

CALL LABELS(’FLOAT’,’CONTUR’)
END IF

CALL CONTUR(X,N,Y,N,Z,ZLEV)
END DO
CALL HEIGHT(50)
CALL TITLE
CALL DISFIN
END

206

Figure 14.1: Contour Plot

207

PROGRAM EX14_2
PARAMETER (N=100)
DIMENSION ZMAT(N,N)

STEP=1.2/(N-1)
DO I=1,N

X=0.4+(I-1)*STEP
DO J=1,N

Y=0.4+(J-1)*STEP
ZMAT(I,J)=(X**2.-1.)**2. + (Y**2.-1.)**2.

END DO
END DO

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX

CALL MIXALF
CALL TITLIN(’Contour Plot’,1)
CALL TITLIN(’F(X,Y) = (X[2$ - 1)[2$ + (Y[2$ - 1)[2$’,3)
CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)

CALL AXSPOS(450,2670)
CALL GRAF(0.4,1.6,0.4,0.2,0.4,1.6,0.4,0.2)

DO I=1,12
ZLEV=0.1+(I-1)*0.1
IF(MOD(I,3).EQ.1) THEN

CALL SOLID
CALL THKCRV(3)

ELSE IF(MOD(I,3).EQ.2) THEN
CALL DASH
CALL THKCRV(1)

ELSE
CALL DOT
CALL THKCRV(1)

END IF

CALL CONMAT(ZMAT,N,N,ZLEV)
END DO

CALL HEIGHT(50)
CALL TITLE
CALL DISFIN
END

208

Figure 14.2: Contour Plot

209

PROGRAM EX14_3
PARAMETER (N=100)
DIMENSION ZMAT(N,N),XRAY(N),YRAY(N),ZLEV(12)

STEP=1.6/(N-1)
DO I=1,N

XRAY(I)=0.0+(I-1)*STEP
DO J=1,N

YRAY(J)=0.0+(J-1)*STEP
ZMAT(I,J)=(XRAY(I)**2.-1.)**2. +

* (YRAY(J)**2.-1.)**2.
END DO

END DO

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX

CALL MIXALF
CALL TITLIN(’Shaded Contour Plot’,1)
CALL TITLIN(’F(X,Y) = (X[2$ - 1)[2$ + (Y[2$ - 1)[2$’,3)
CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)

CALL SHDMOD(’POLY’,’CONTUR’)
CALL AXSPOS(450,2670)
CALL GRAF(0.0,1.6,0.0,0.2,0.0,1.6,0.0,0.2)

DO I=1,12
ZLEV(13-I)=0.1+(I-1)*0.1

END DO

CALL CONSHD(XRAY,N,YRAY,N,ZMAT,ZLEV,12)

CALL HEIGHT(50)
CALL TITLE
CALL DISFIN
END

210

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
X-axis

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Y
-a

xi
s

Shaded Contour Plot

F(X,Y) = (X2 - 1)2 + (Y2 - 1)2

Figure 14.3: Shaded Contour Plot

211

212

Chapter 15

Widget Routines

DISLIN offers some routines for creating graphical user interfaces in Fortran and C programs. The
routines are called widget routines and use the Motif widget libraries on X11 and the API functions on
Windows systems.

There are sets of routines in DISLIN for creating single widgets, for setting parameters, for requesting
current widget values selected by the user and for creating dialogs.

Routines for creating single widgets begin with the characters ’WG’, parameter setting routines with the
characters ’SWG’, requesting routines with the characters ’GWG’ and dialog routines with the characters
’DWG’.

Normally, creating widget and parameter setting routines should be used between the routines WGINI
and WGFIN while requesting routines can be called after WGFIN, or in a callback routine. Dialog
routines can be used independently from the routines WGINI and WGFIN.

15.1 Widget Routines

W G I N I
The routine WGINI initializes the widget routines and creates a main widget.

The call is: CALL WGINI (COPT, ID)

or: int wgini (char *copt);

COPT is a character string that defines how children widgets are laid out in the main
widget:

= ’VERT’ means that children widgets are laid out in columns from top to bottom.

= ’HORI’ means that children widgets are laid out in rows from left to right.

= ’FORM’ means that the position and size of children widgets is defined by the user with
the routines SWGPOS, SWGSIZ and SWGWIN.

ID is the returned widget index. It can be used as a parent widget index in other
widget calls.

W G F I N
WGFIN terminates the widget routines. The widgets will be displayed on the screen. After choosing
OK in the Exit menu, all widgets are deleted and the program is continued after WGFIN. After choosing
Quit in the Exit menu, the program is terminated.

The call is: CALL WGFIN

or: void wgfin ();

213

W G B A S
The routine WGBAS creates a container widget. It can be used as a parent widget for other widgets.

The call is: CALL WGBAS (IP, COPT, ID)

or: int wgbas (int ip, char *copt);

IP is the index of the parent widget.

COPT is a character string that can have the values ’HORI’, ’VERT’ and ’FORM’.
It determines how children widgets are laid out in the container widget (s.
WGINI).

ID is the returned widget index. It can be used as a parent widget index in other
widget calls.

W G P O P
The routine WGPOP creates a popup menu in the menubar of the main widget, or a popup submenu of a
pop umenu. Entries in the popup menu must be created with WGAPP.

The call is: CALL WGPOP (IP, CLAB, ID)

or: int wgpop (int ip, char *clab);

IP is the index of a widget created by WGINI, or the index of another popup
widget.

CLAB is a character string containing the title of the popup menu.

ID is the returned widget index. It can be used as a parent widget index for
WGAPP and WGPOP.

W G A P P
The routine WGAPP creates an entry in a popup menu. The popup menu must be created with the routine
WGPOP.

The call is: CALL WGAPP (IP, CLAB, ID)

or: int wgapp (int ip, char *clab);

IP is the index of a popup menu created with WGPOP.

CLAB is a character string containing a label.

ID is the returned widget index. It should be connected with a callback routine
(see SWGCBK).

W G L A B
The routine WGLAB creates a label widget. The widget can be used to display a character string.

The call is: CALL WGLAB (IP, CSTR, ID)

or: int wglab (int ip, char *cstr);

IP is the index of the parent widget.

CSTR is a character string that should be displayed.

ID is the returned widget index.

W G B U T
The routine WGBUT creates a button widget. The widget represents a labeled button that the user can
turn on or off by clicking.

214

The call is: CALL WGBUT (IP, CLAB, IVAL, ID)

or: int wgbut (int ip, char *clab, int ival);

IP is the index of the parent widget.

CLAB is a character string that will be used as a label.

IVAL can have the values 0 (off) and 1 (on) and is used to initialize the button.

ID is the returned widget index.

W G S T X T
The routine WGSTXT creates a scrolled widget that can be used for text output. The text cannot not be
modified. Text entries in the widget can be made with the routine SWGTXT.

The call is: CALL WGSTXT (IP, NSIZE, NMAX, ID)

or: int wgtxt (int ip, int nsize, int nmax);

IP is the index of the parent widget.

NSIZE defines the vertical size of the widget in text rows.

NMAX defines the maximal number of displayed entries in the scrolled widget. If this
number is reached and a new entry is made, the first entry in the widget is
deleted.

ID is the returned widget index.

W G T X T
The routine WGTXT creates a text widget. The widget can be used to get text from the keyboard.

The call is: CALL WGTXT (IP, CSTR, ID)

or: int wgtxt (int ip, char *cstr);

IP is the index of the parent widget.

CSTR is a character string that will be displayed in the text widget (≤ 256 characters).

ID is the returned widget index.

W G L T X T
The routine WGLTXT creates a labeled text widget. The widget can be used to get text from the key-
board.

The call is: CALL WGLTXT (IP, CLAB, CSTR, NWTH, ID)

or: int wgltxt (int ip, char *clab, char *cstr, int nwth);

IP is the index of the parent widget.

CLAB is a character string containing a label. It will be displayed on the left side of
the widget.

CSTR is a character string that will be displayed in the text widget (≤ 256 characters).

NWTH defines the width of the text field (0≤ NWTH ≤ 100). For example, NWTH
= 30 means that the width of the text field is: 0.3 * widget width.

ID is the returned widget index.

W G F I L
The routine WGFIL creates a file widget. The widget can be used to get a filename from the keyboard.
The filename can be typed directly into the file field or can be selected from a file selection box if an
entry in the File menu is chosen.

215

The call is: CALL WGFIL (IP, CLAB, CFIL, CMASK, ID)

or: int wgfil (int ip, char *clab, char *cfil, char *cmask);

IP is the index of the parent widget.

CLAB is a character string used for an entry in the File menu.

CFIL is a character string that will be displayed in the file widget (≤ 256 characters).

CMASK specifies the search pattern used in determining the files to be displayed in the
file selection box.

ID is the returned widget index.

W G L I S
The routine WGLIS creates a list widget. This widget is used whenever an application must present a
list of names from which the user can choose.

The call is: CALL WGLIS (IP, CLIS, ISEL, ID)

or: int wglis (int ip, char *clis, int isel);

IP is the index of the parent widget.

CLIS is a character string that contains the list elements. Elements must be separated
by the character ’|’.

ISEL defines the pre-selected element (≥ 1).

ID is the returned widget index.

W G D L I S
The routine WGDLIS creates a dropping list widget. This list widget can be used to save space in the
parent widget.

The call is: CALL WGDLIS (IP, CLIS, ISEL, ID)

or: int wgdlis (int ip, char *clis, int isel);

IP is the index of the parent widget.

CLIS is a character string that contains the list elements. Elements must be separated
by the character ’|’.

ISEL defines the pre-selected element (≥ 1).

ID is the returned widget index.

Additional note: This widget may not be supported on all X11 workstations since it is a feature
of Motif 1.2. If WGDLIS is not supported, WGLIS will be used instead.

W G B O X
The routine WGBOX creates a list widget where the list elements are displayed as toggle buttons.

The call is: CALL WGBOX (IP, CLIS, ISEL, ID)

or: int wgbox (int ip, char *clis, int isel);

IP is the index of the parent widget.

CLIS is a character string that contains the list elements. Elements must be separated
by the character ’|’.

ISEL defines the pre-selected element (≥ 1).

ID is the returned widget index.

216

W G S C L
The routine WGSCL creates a scale widget. The widget can be displayed in horizontal or vertical direc-
tion.

The call is: CALL WGSCL (IP, CLAB, XMIN, XMAX, XVAL, NDEZ, ID)

or: int wgscl (int ip, char *clab, float xmin, float xmax, float xval, int ndez);

IP is the index of the parent widget.

CLAB is a character string used for a label.

XMIN is a floating-point value that defines the minimal value of the scale widget.

XMAX is a floating-point value that defines the maximal value of the scale widget.

XVAL defines the value of the scale widget.

NDEZ is the number of digits used in the scale widget.

ID is the returned widget index.

Additional note: A step parameter for scale widgets can be defined with the routine SWGSTP.

W G P B A R
The routine WGPBAR creates progress bars. The widget can be displayed in horizontal or vertical
direction.

The call is: CALL WGPBAR (IP, XMIN, XMAX, XSTP, ID)

or: int wgpbar (int ip, float xmin, float xmax, float xstp);

IP is the index of the parent widget.

XMIN is a floating-point value that defines the minimal value of the progress bar.

XMAX is a floating-point value that defines the maximal value of the progress bar.

XSTP defines the step size. XSTP is used to calculate the maximal number of rectan-
gles in non-smoothed progress bars. XSTP is ignored for smoothed progress
bars.

ID is the returned widget index.

Additional note: The appearance of progress bars can be modified with the routines SWGCLR,
SWGOPT and SWGTYP. The value of progress bars can be set with SWG-
VAL.

W G D R A W
The routine WGDRAW creates a draw widget that can be used for graphical output from DISLIN plotting
routines.

The call is: CALL WGDRAW (IP, ID)

or: int wgdraw (int ip);

IP is the index of the parent widget.

ID is the returned widget index.

Additional notes: - The returned widget ID of a draw widget can be used in the routine SETXID
for setting the graphical output of DISLIN routines to the draw widget. For
X11, SETXID should be called if the widgets are already realized. Normally,
SETXID should be called in a callback routine.

217

- By default, the height of a draw widget is identical width the width of the wid-
get. The height of draw widgets can be modified with the routine SWGDRW.

W G T B L
The routine WGTBL creates a table widget that can be used for data input and output.

The call is: CALL WGTBL (IP, NROWS, NCOLS, ID)

or: int wgtbl (int ip, int nrows, int ncols);

IP is the index of the parent widget.

NROWS, NCOLS are the number of rows and columns of the table.

ID is the returned widget index.

Additional notes: - The values of the table cells can be defined with the routines SWGTBL,
SWGTBF, SWGTBI and SWGTBS for setting float, integer and character val-
ues. CELL values can be requested with the routines GWGTBL, GWGTBF,
GWGTBI and GWGTBS.

- Table cells can be editable if this mode is enabled with the routines SWGOPT
or SWGTBS. The set of possible input characters for editable table cells may
be restricted with the ’VERIFY’ option in SWGOPT and SWGTBS.

- The width of table columns can be modified with the routine SWGRAY.

- Fore- and background colours of table cells can be defined with SWGTBI.

- The routine SWGCB2 defines callback routines for table widgets.

W G O K
The routine WGOK creates a push button widget where the button has the same meaning as the OK
entry in the Exit menu. If the button is pressed, all widgets are deleted and the program is continued after
WGFIN.

The call is: CALL WGOK (IP, ID)

or: int wgok (int ip);

IP is the index of the parent widget.

ID is the returned widget index.

W G Q U I T
The routine WGQUIT creates a push button widget where the button has the same meaning as the QUIT
entry in the Exit menu. If the button is pressed, the program is terminated.

The call is: CALL WGQUIT (IP, ID)

or: int wgquit (int ip);

IP is the index of the parent widget.

ID is the returned widget index.

W G P B U T
The routine WGPBUT creates a push button widget.

The call is: CALL WGPBUT (IP, CLAB, ID)

or: int wgpbut (int ip, char *clab);

IP is the index of the parent widget.

218

CLAB is a character string that will be used as a label.

ID is the returned widget index. It should be connected with a callback routine.

Additional note: The status of a push button (if it is pressed or not) can be requested with GWG-
BUT.

W G C M D
The routine WGCMD creates a push button widget. A corresponding system command will be executed
if the button is pressed.

The call is: CALL WGCMD (IP, CLAB, CMD, ID)

or: int wgcmd (int ip, char *clab, char *cmd);

IP is the index of the parent widget.

CLAB is a character string that will be used as a label.

CMD is a character string containing a system command.

ID is the returned widget index. It should be connected with a callback routine.

15.2 Parameter Setting Routines

S W G W T H
The routine SWGWTH sets the default width of horizontal and parent/base widgets.

The call is: CALL SWGWTH (NWTH)

or: void swgwth (int nwth);

NWTH is an integer containing a positive number of characters or a negative number
between -1 and -100. If NWTH< 0, the widget width is set to ABS(NWTH)
* NWIDTH / 100 where NWIDTH is the screen width.

Default: NWTH = 20.

S W G D R W
The routine SWGDRW modifies the height of draw widgets.

The call is: CALL SWGDRW (XF)

or: void swgdrw (float xf);

XF is a positive floatingpoint number. The height of a draw widget is set to XF *
NW where NW is the widget width.

Default: XF = 1.

S W G C L R
The routine SWGCLR defines colours for widgets.

The call is: CALL SWGCLR (XR, XG, XB, COPT)

or: void swgclr (float xr, float xg, float xb, char *copt);

XR, XG, XB are RGB values between 0 and 1.

COPT is a character string that can have the values ’BACK’, ’FORE’, ’SCROLL’,
’LTEXT’ and ’PBAR’. The keywords ’BACK’ and ’FORE’ define back- and
foreground colours, ’SCROLL’ and ’PBAR’ define the colour of the slider in
scale widgets and progress bars, and ’LTEXT’ sets the background colour of
the edit window in labeled text widgets.

219

Additional notes: - Colours can not be defined for push button widgets. This is a restriction in the
Windows API.

- Multiple draw widgets must have the same background colour since they be-
long to the same widget class. The same is valid for multiple main widgets
created by WGINI.

S W G F N T
The routine SWGFNT defines fonts for widgets.

The call is: CALL SWGFNT (CFNT, NPTS)

or: void swgfnt (char *cfnt, int npts);

CFNT is a character string containing the font. For Windows, CFNT can contain
a TrueType font (see WINFNT), or one of the Windows raster fonts such as
System, FixedSys, Terminal, Courier, MS Serif and MS Sans Serif. For X11,
CFNT can contain an X11 font. CNFT = ’STANDARD’ resets the font to the
default value.

NPTS is the font size in points (72 points = 1 inch). Note that only a few different font
sizes are available for Windows raster fonts. For X11, the parameter NPTS will
be ignored since the font size is already part of the font name.

S W G F O C
The routine SWGFOC sets the keyboard focus to the specified widget.

The call is: CALL SWGFOC (ID)

or: void swgfoc (int id);

ID is the widget index.

S W G O P T
The routine SWGOPT sets widget options.

The call is: CALL SWGOPT (COPT, CKEY)

or: void swgopt (char *copt, char *ckey);

COPT is a character string containing an option.

CKEY is a character string containing a keyword:

= ’BORDER’ This keyword defines borders around table cells. COPT can have the values
’NONE’, ’COLUMNS’, ’ROWS’ and ’BOTH’. The default value is ’BOTH’.

= ’CALLBACK’ The behaviour of callback routines for text widgets can be modified with this
keyword. COPT can have the values ’RETURN’, ’CHANGE’ and ’BOTH’.
For ’RETURN’, the callback routine is only called if a return is given in the
text field, for ’CHANGE, the callback routine is called for each change in the
text field. The default value is ’RETURN’.

= ’CLOSE’ This keyword changes the behaviour of the close button of the main widget.
For COPT = ’QUIT’, the program will be terminated. For COPT = ’OK’, the
main widget is deleted and the program is continued after WGFIN.

= ’EDIT’ This keyword defines if table cells are editable or not. COPT can have the
values ’OFF’ and ’ON’.

= ’FRAME’ Enables or disables a frame around table widgets. COPT can have the values
’OFF’ and ’ON’.

220

= ’HEADER’ This keyword enables header cells in table widgets. COPT can have the values
’NONE’, ’COLUMNS’, ’ROWS’ and ’BOTH’.

= ’MASK’ If CKEY = ’MASK’, COPT can have the values ’STANDARD’ and ’USER’.
For COPT = ’USER’, the mask entry in the routines WGFIL and DWGFIL
can be controlled completely by the user. For that case, the mask parameter in
WGFIL and DWGFIL can have the following syntax: it contains of a pair of
strings separated by a ’+’ sign. The first string contains the label, the second
string the search filter. For example: ’Data (*.dat)+*.dat’. ’Data (*.dat)’ is
the label while ’*.dat’ the filter. Multiple pairs of strings for the mask are also
possible.

= ’PBAR’ This option changes the appearance of progress bars. COPT can have the
values ’SMOOTH’, ’NOSMOOTH’, ’BACK’, ’NOBACK’, ’LABEL’,’ NO-
LABEL’, ’FRAME’ and ’NOFRAME’. The defaults are ’NOSMOOTH’,
’BACK’, ’NOLABEL’ and ’FRAME’.

= ’POSITION’ If CKEY = ’POSITION’, COPT can have the values ’STANDARD’ and ’CEN-
TER’. For COPT = ’CENTER’, the main widget will be centered on the screen.
The default position of the main widget is the upper left corner of the screen.

= ’SCROLL’ This option changes the behaviour of callback routines for scroll widgets.
COPT can have the values ’TRACK’, ’BUTTON’ and ’END’. If COPT =
’TRACK’, the callback routine is called for each change of the scroll value.
If COPT = ’BUTTON’, the callback routine is only called if an user releases
the mouse button. For COPT = ’END’, the callback routine is called at the end
of the scroll action.

= ’VERIFY’ The keyword ’VERIFY’ enables a check of input charcters in text and
table cells. COPT can have the values ’NONE’, ’INTEGER’, ’FLOAT’,
’EFLOAT’, ’DFLOAT’, ’ALPHA’, ’NALPHA’, ’EMAIL’, ’TIME’, ’DATE’,
’PHONE’, ’HEXA’ and ’OCTAL’. The default value is COPT = ’NONE’. A
table of the possible chacters correspondig to the verify options is given below.

Default: (’BOTH’, ’BORDER’), (’RETURN’, ’CALLBACK’),
(’QUIT’, ’CLOSE’), (’OFF’, ’EDIT’), (’ON’, ’FRAME’),

(’HEADER’, ’NONE’), (’STANDARD’, ’MASK’),
(’STANDARD’, ’POSITION’), (’BUTTON’, ’SCROLL’),

(’NONE’, ’VERIFY’).

Additional note: Some X11 Window managers ignore the position of the main widget.

The following table shows the possible characters for the different ’VERIFY’ options in SWGOPT:

221

NONE all characters

INTEGER 0 - 9, ’+’, ’-’

FLOAT 0 - 9, ’.’, ’+’, ’-’

DFLOAT 0 - 9, ’.’, ’+’, ’-’, ’d’, ’D’

EFLOAT 0 - 9, ’.’, ’+’, ’-’, ’e’, ’E’

DIGITS 0 - 9

ALPHA a - z, A - Z, ’ ’

NALPHA a - z, A - Z, 0 - 9, ’ ’

EMAIL a - z, A - Z, 0 - 9, ’.’, ’@’, ’-’

TIME 0 - 9, ’:’

DATE 0 - 9, ’.’, ’/’

PHONE 0 - 9, ’-’, ’ ’, ’/’

HEXA 0 - 9, A - E, a - e, ’x’, ’X’

OCTAL 0 - 7, ’o’, ’O’

Figure 15.1: SWGOPT Verify Options

S W G P O P
The routine SWGPOP modifies the appearance of the popup menubar.

The call is: CALL SWGPOP (COPT)

or: void swgpop (char *copt);

COPT is a character string containing an option:

= ’NOOK’ suppresses the ’OK’ entry in the ’EXIT’ menu.

= ’NOQUIT’ suppresses the ’QUIT’ entry in the ’EXIT’ menu.

= ’NOHELP’ suppresses the ’HELP’ button in the menubar.

= ’OK’ enables the ’OK’ entry in the ’EXIT’ menu (default).

= ’QUIT’ enables the ’QUIT’ entry in the ’EXIT’ menu (default).

= ’HELP’ enables the ’HELP’ button in the menubar (default).

S W G T I T
The routine SWGTIT defines a title displayed in the main widget.

The call is: CALL SWGTIT (CTIT)

or: void swgtit (char *ctit);

CTIT is a character string containing the title.

S W G H L P
The routine SWGHLP sets a character string that will be displayed if the Help menu is clicked by the
user.

The call is: CALL SWGHLP (CSTR)

222

or: void swghlp (char *cstr);

CSTR is a character string that will be displayed in the help box. The character ’|’
can be used as a newline character.

S W G S I Z
The routine SWGSIZ defines the size of widgets.

The call is: CALL SWGSIZ (NW, NH)

or: void swgsiz (int nw, int nh);

NW, NH are the width and height of the widget in pixels.

S W G P O S
The routine SWGPOS defines the position of widgets.

The call is: CALL SWGPOS (NX, NY)

or: void swgpos (int nx, int ny);

NX, NY are the upper left corner of the widget in pixels. The point is relative to the
upper left corner of the parent widget.

S W G W I N
The routine SWGWIN defines the position and size of widgets.

The call is: CALL SWGWIN (NX, NY, NW, NH)

or: void swgwin (int nx, int ny, int nw, int nh);

NX, NY are the upper left corner of the widget in pixels. The point is relative to the
upper left corner of the parent widget.

NW, NH are the width and height of the widget in pixels.

S W G T Y P
The routine SWGTYP modifies the appearance of certain widgets.

The call is: CALL SWGTYP (CTYPE, CLASS)

or: void swgtyp (char *ctype, char *class);

CTYPE is a character string containing a keyword:

= ’VERT’ means that list elements in box widgets or scale widgets will be displayed in
vertical direction.

= ’HORI’ means that box widgets, scale widgets and progress bars will be displayed in
horizontal direction.

= ’SCROLL’ means that scrollbars will be created in list, table and draw widgets.

= ’NOSCROLL’ means that no scrollbars will be created in list, table and draw widgets.

= ’VSCROLL’ means that just a vertical scrollbar is created in list widgets.

= ’AUTO’ means that scrollbars will be created in list and table widgets if the widgget
content does not fit the widget size.

223

CLASS is a character string containing the widget class where CLASS can have the
values ’LIST’, ’BOX’, ’SCALE’, ’PBAR’ ’TABLE’ and ’DRAW’. If CLASS
= ’LIST’, CTYPE can have the values ’AUTO’, ’SCROLL’ and ’NOSCROLL’.
If CLASS = ’BOX’ or CLASS = ’SCALE’, CTYPE can have the values
’VERT’ and ’HORI’. The class ’TABLE’ can have the options ’AUTO’,
’SCROLL’ and ’NOSCROLL’. For CLASS = ’DRAW’, CTYPE can have the
values ’SCROLL’ and ’NOSCROLL’. The size of a graphics in draw widgets
with scroll bars can be defined with the routine WINSIZ before SETXID.

Defaults: (’VERT’, ’BOX’), (’HORI’, ’SCALE’), (’AUTO’, ’TABLE’),
(’HORI’, ’PBAR’),(’AUTO’, ’LIST’), (’NOSCROLL’, ’DRAW’).

S W G J U S
The routine SWGJUS defines the alignment of labels in label and button widgets and of cell values in
table widgets.

The call is: CALL SWGJUS (CJUS, CLASS)

or: void swgjus (char *cjus, char *class);

CJUS is a character string defining the alignment:

= ’LEFT’ means left-justified.

= ’CENTER’ means centered.

= ’RIGHT’ means right-justified.

CLASS is a character string defining the widget class. CLASS can have the values
’LABEL’, ’BUTTON’ and ’TABLE’.

Defaults: (’LEFT’, ’LABEL’), (’CENTER’, ’BUTTON’), (’CENTER’,
’TABLE’).

S W G S P C
The routine SWGSPC defines horizontal and vertical space between widgets.

The call is: CALL SWGSPC (XSPC, YSPC)

or: void swgspc (float xspc, float yspc);

XSPC, YSPC are floatingpoint numbers defining the space between widgets. For non neg-
ative values, the spaces XSPC * NWCHAR and YSPC * NHCHAR are used
where NWCHAR and NHCHAR are the current character width and height.
For negative values, the horizontal and vertical spaces are set to ABS(XSPC)
* NWIDTH / 100 and ABS (YSPC) * NHEIGHT where NWIDTH and
NHEIGHT are the width and height of the screen.

Default: (4.0, 0.5).

S W G S T P
The routine SWGSTP defines a step value for scale widgets.

The call is: CALL SWGSTP (XSTP)

or: void swgstp (float xstp);

XSTP is a positive floatingpoint number defining the step value. The default value is
(MAX - MIN) / 100.

S W G M R G
The routine SWGMRG defines margins for widgets.

224

The call is: CALL SWGMRG (IVAL, CMRG)

or: void swgmrg (int ival, char *cmrg);

IVAL is the margin value in pixels.

CMRG is a character string that can have the values ’LEFT’, ’TOP’, ’RIGHT’ and
’BOTTOM’. By default, all margins are zero.

S W G M I X
The routine SWGMIX defines control characters for separating elements in list strings.

The call is: CALL SWGMIX (CHAR, CMIX)

or: void swgmix (char *char, char *cmix);

CHAR is a new control character.

CMIX is a character string that defines the function of the control character. CMIX
can have the value ’SEP’.

S W G C B K
The routine SWGCBK connects a widget with a callback routine. The callback routine is called if the
status of the widget is changed. Callback routines can be defined for button, pushbutton, file, list, scale,
box, text and table widgets, and for popup menu entries. Since the syntax of callback routines for table
widgets is different, they must be defined with SWGCB2.

The call is: CALL SWGCBK (ID, ROUTINE)

or: void swgcbk (int id, void (*routine)(int id));

ID is a widget ID.

ROUTINE is the name of a routine defined by the user. In Fortran, the routine must be
declared as EXTERNAL. The only parameter that is passed to the callback
routine is the widget ID.

Additional notes: - SWGCBK is a new version of the old DISLIN routine SWGCB (ID, ROU-
TINE, IRAY) that is still in the library.

- See section 15.6 for examples.

S W G C B 2
The routine SWGCB2 defines callback routines for table widgets.

The call is: CALL SWGCB2 (ID, ROUTINE)

or: void swgcb2 (int id, void (*routine)(int id, int *iray));

ID is a widget ID.

ROUTINE is the name of a routine defined by the user. In Fortran, the routine must be
declared as EXTERNAL. The parameters passed to the callback routine are
the widget ID, the row number and the column number of the table cell that
has invoked the callback routine.

S W G A T T
The routine SWGATT sets widget attributes.

The call is: CALL SWGATT (ID, CATT, COPT)

225

or: void swgatt (int id, char *catt, char *copt);

ID is a widget ID.

CATT is a character string containing an attribute. If COPT = ’STATUS’, CATT
can have the values ’ACTIVE’, ’INACTIVE’ and ’INVISIBLE’. If COPT =
’LIST’, CATT can have new list elements for a list widget. In that case, CATT
has the same meaning as the parameter CLIS in WGLIS.

COPT is a character string that can have the values ’STATUS’ and ’LIST’.

S W G B U T
The routine SWGBUT sets the status of a button widget. If the widget is a push button widget, the
connected callback routine will be executed if the status 1 is passed to SWGBUT.

The call is: CALL SWGBUT (ID, IVAL)

or: void swgbut (int id, int ival);

ID is a widget ID of a button widget.

IVAL can have the values 0 and 1.

S W G L I S
The routine SWGLIS changes the selection in a list widget.

The call is: CALL SWGLIS (ID, ISEL)

or: void swglis (int id, int isel);

ID is a widget ID of a list widget.

ISEL defines the selected element (≥ 1).

S W G B O X
The routine SWGBOX changes the selection in a box widget.

The call is: CALL SWGBOX (ID, ISEL)

or: void swgbox (int id, int isel);

ID is a widget ID of a box widget.

ISEL defines the selected element (≥ 1).

S W G T X T
The routine SWGTXT changes the value of a text widget and the label text in label widgets.

The call is: CALL SWGTXT (ID, CVAL)

or: void swgtxt (int id, char *cval);

ID is a widget ID of a text widget.

CVAL is a character string containing the new text.

S W G I N T
The routine SWGINT changes the value of a text widget.

The call is: CALL SWGINT (ID, IVAL)

or: void swgint (int id, int ival);

226

ID is a widget ID of a text widget.

IVAL is an integer number which will be displayed in a text widget.

S W G F L T
The routine SWGFLT changes the value of a text widget.

The call is: CALL SWGFLT (ID, XVAL, NDIG)

or: void swgflt (int id, float xval, int ndig);

ID is a widget ID of a text widget.

XVAL is a floatingpoint number which will be displayed in a text widget.

NDIG is the number of digits displayed after the decimal point (≥ -2). NDIG = -2
means that the number of digits is calculated by DISLIN.

S W G F I L
The routine SWGFIL changes the value of a file widget.

The call is: CALL SWGFIL (ID, CFIL)

or: void swgfil (int id, char *cfil);

ID is a widget ID of a file widget.

CFIL is a character string containing the new filename.

S W G S C L
The routine SWGSCL changes the value of a scale widget.

The call is: CALL SWGSCL (ID, XVAL)

or: void swgscl (int id, float xval);

ID is a widget ID of a scale widget.

XVAL is a floatingpoint number containing the new value of the scale widget.

S W G V A L
The routine SWGVAL changes the value of a progress bar.

The call is: CALL SWGVAL (ID, XVAL)

or: void swgval (int id, float xval);

ID is a widget ID of a progress bar.

XVAL is a floatingpoint number containing the new value of the progress bar.

S W G T B F
The routine SWGTBF sets floatingpoint values in table cells.

The call is: CALL SWGTBF (ID, XVAL, NDIG, IROW, ICOL, COPT)

or: void swgtbf (int id, float xval, int ndig, int irow, int icol, char copt);

ID is a widget ID of a table widget.

XVAL is a floatingpoint number which will be displayed in a table widget.

227

NDIG is the number of digits displayed after the decimal point (≥ -2). NDIG = -2
means that the number of digits is calculated by DISLIN.

IROW, ICOL are the row and column indices of the table cell (≥ -1). The value -1 means that
a complete row or column is filled with XVAL and the index 0 corresponds to
header cells.

COPT is a character string that can have the value ’VALUE’.

S W G T B I
The routine SWGTBI sets integers in table cells, or defines fore- and background colours for table cells.

The call is: CALL SWGTBI (ID, IVAL, IROW, ICOL, COPT)

or: void swgtbi (int id, int ival, int irow, int icol, char copt);

ID is a widget ID of a table widget.

IVAL is an integer that contains the cell or a colour value. Colour values can be
calculated from RGB values with the function INTRGB.

IROW, ICOL are the row and column indices of the table cell (≥ -1). The value -1 means
that a complete row or column is used while the index 0 corresponds to header
cells.

COPT is a character string that defines the meaning of IVAL. COPT can have the
values ’VALUE’, ’BACK’, ’FORE’ and ’SYSTEM’. The options ’BACK’ and
’FORE’ are used for back- and foreground colours. The option ’SYSTEM’
resets the colours in table cells back to system values.

S W G T B L
The routine SWGTBL passes an array of floatingpoint values to a table widget.

The call is: CALL SWGTBL (ID, XRAY, N, NDIG, IDX, COPT)

or: void swgtbl (int id, float *xray, int n, int ndig, int idx, char copt);

ID is a widget ID of a table widget.

XRAY is an array of floatingpoint numbers.

N is the number of elements in XRAY.

NDIG is the number of digits displayed after the decimal point (≥ -2) for XRAY.
NDIG = -2 means that the number of digits is calculated by DISLIN.

IDX is the index of a table row or column (≥ 1). IDX may be ignored for some
options in COPT.

COPT is a character string that can have the values ’ROW’, ’COLUMN’, ’RTABLE’
and ’CTABLE’. The keyword ’ROW’ means that a table row is filled with
XRAY. ’COLUMN’ means that a column is used. For COPT = ’RTABLE’,
the complete table is filled with XRAY by rows and for COPT = ’CTABLE’,
the table is filled by columns.

S W G T B S
The routine SWGTBS sets character values and options for single table cells.

The call is: CALL SWGTBS (ID, CVAL, IROW, ICOL, COPT)

or: void swgtbs (int id, char *cval, int irow, int icol, char copt);

228

ID is a widget ID of a table widget.

CVAL is a character string that contains the new cell value or a character option. Up
to 80 characters are accepted by table cells.

IROW, ICOL are the row and column indices of the table cell (≥ -1). The value -1 means
that a complete row or column is used while the index 0 corresponds to header
cells.

COPT is a character string that defines the meaning of CVAL. COPT can have the
values ’VALUE’, ’EDIT’ and ’ALIGN’. The option ’EDIT’ enables or dis-
ables edit mode for table cells where the corresponding option in CVAL can
have the values ’ON’ and ’OFF’. The default behaviour is ’OFF’. ’ALIGN’ de-
fines the alignment in table cells where CVAL can have the keywords ’LEFT’,
’CENTER’ and ’RIGHT’. The default value is ’RIGHT’.

S W G R A Y
The routine SWGRAY sets the width of table columns. It should be called before WGTBL.

The call is: CALL SWGRAY (XRAY, N, COPT)

or: void swgray (float *xray, int n, char *copt);

XRAY is an array of floatingpoint numbers. A positive value is interpreted as charac-
ters, a negative number as percent from the widget width. If a table contains a
header column, the first index of XRAY is used for that column.

N is the number of elements in XRAY.

COPT is a character string that can have the value ’TABLE’.

15.3 Requesting Routines

Requesting routines can be used to request the current widget values selected by the user. The routines
should be called after WGFIN, or in a callback routine.

G W G B U T
The routine GWGBUT returns the status of a button or push button widget.

The call is: CALL GWGBUT (ID, IVAL)

or: int gwgbut (int id);

ID is the index of the button widget.

IVAL is the returned status where IVAL = 0 means off and IVAL = 1 means on.

G W G T X T
The routine GWGTXT returns the input of a text widget.

The call is: CALL GWGTXT (ID, CSTR)

or: void gwgtxt (int id, char *cstr);

ID is the index of the text widget.

CSTR is the returned character string that can have up to 256 characters.

G W G I N T
The routine GWGINT returns the input of a text widget as an integer value.

229

The call is: CALL GWGINT (ID, IVAL)

or: int gwgint (int id);

ID is the index of the text widget.

IVAL is the returned integer number.

G W G F L T
The routine GWGFLT returns the input of a text widget as a floatingpoint value.

The call is: CALL GWGFLT (ID, XVAL)

or: float gwgflt (int id);

ID is the index of the text widget.

XVAL is the returned floatingpoint number.

G W G F I L
The routine GWGFIL returns the input of a file widget.

The call is: CALL GWGFIL (ID, CFIL)

or: void gwgfil (int id, char *cfil);

ID is the index of the file widget.

CFIL is the returned filename that can have up to 256 characters.

G W G L I S
The routine GWGLIS returns the selected element of a list widget.

The call is: CALL GWGLIS (ID, ISEL)

or: int gwglis (int id);

ID is the index of the list widget.

ISEL is the selected list element returned by GWGLIS.

G W G B O X
The routine GWGBOX returns the selected element of a box widget.

The call is: CALL GWGBOX (ID, ISEL)

or: int gwgbox (int id);

ID is the index of the box widget.

ISEL is the selected element returned by GWGBOX.

G W G S C L
The routine GWGSCL returns the value of a scale widget.

The call is: CALL GWGSCL (ID, XVAL)

or: float gwgscl (int id);

ID is the index of the scale widget.

XVAL is the returned value.

230

G W G T B F
The routine GWGTBF returns the value of a table cell as floatingpoint number.

The call is: CALL GWGTBF (ID, IROW, ICOL, XVAL)

or: float gwgtbf (int id, int irow, int icol);

ID is a widget ID of a table widget.

IROW, ICOL are the row and column indices of the table cell (≥ 1).

XVAL is the returned floatingpoint number.

G W G T B I
The routine GWGTBI returns the value of a table cell as integer number.

The call is: CALL GWGTBI (ID, IROW, ICOL, IVAL)

or: int gwgtbf (int id, int irow, int icol);

ID is a widget ID of a table widget.

IROW, ICOL are the row and column indices of the table cell (≥ 1).

IVAL is the returned integer number.

G W G T B L
The routine GWGTBL fills a floatingpoint user array with table values.

The call is: CALL GWGTBL (ID, XRAY, N, IDX, COPT)

or: void gwgtbl (int id, float *xray, int n, int idx, char *copt);

ID is a widget ID of a table widget.

XRAY is a floatingpoint array that will contain the cell values after the call to
GWGTBL.

N is the number of elements in XRAY.

IDX is the index of a table row or column (≥ 1), or may be ignored.

COPT is a character string that can have the values ’ROW’, ’COLUMN’, ’RTABLE’
and ’CTABLE’. The keywords have the same meaning as in SWGTBL.

G W G T B S
The routine GWGTBS returns the value of a table cell as character string.

The call is: CALL GWGTBS (ID, IROW, ICOL, CVAL)

or: void gwgtbs (int id, int irow, int icol, char *cstr);

ID is a widget ID of a table widget.

IROW, ICOL are the row and column indices of the table cell (≥ 1).

CVAL is the returned character string that can have up to 80 characters.

G W G A T T
The routine GWGATT returns a widget attribute.

The call is: CALL GWGATT (ID, IATT, COPT)

or: int gwgatt (int id, char *copt);

231

ID is a widget ID.

IATT is a returned attribute. If COPT = ’STATUS’, IATT can have the values 0 for
’ACTIVE’, 1 for ’INACTIVE’ and 2 for ’INVISIBLE’.

COPT is a character string that can have the value ’STATUS’.

G W G X I D
The routine GWGXID returns the window ID for a specified widget ID.

The call is: CALL GWGXID (ID, IWINID)

or: int gwgxid (int id);

ID is the widget ID.

IWINID is the returned window ID.

Additional note: For X11, the window ID of a widget can only be calculated if the widget is
already realized. This means that GWGXID should be called in a callback
routine and not directly behind a widget. For X11, widgets are realized in the
routine WGFIN.

15.4 Utility Routines

I T M S T R
The routine ITMSTR extracts a list element from a list string.

The call is: CALL ITMSTR (CLIS, IDX, CITEM)

or: char *itmstr (char *clis, int idx);

CLIS is a character string that contains the list elements (s. WGLIS).

IDX is the index of the element that should be extracted from CLIS (beginning with
1).

CITEM is a character string containing the extracted list element. For C, the returned
string is an allocated pointer via malloc and can be freed by an user.

I T M C N T
The routine ITMCNT returns the number of elements in a list string.

The call is: N = ITMCNT (CLIS)

or: int itmcnt (char *clis);

CLIS is a character string that contains the list elements (s. WGLIS).

N is the calculated number of elements in CLIS.

I T M C A T
The routine ITMCAT concatenates an element to a list string.

The call is: CALL ITMCAT (CLIS, CITEM)

or: void itmcat (char *clis, char *item);

CLIS is a character string that contains the list elements (s. WGLIS).

CITEM is a character string that will be concatenated to CLIS. If CLIS is blank,
CITEM will be the first element in CLIS.

232

Additional note: Trailing blanks in CLIS and CITEM will be ignored.

M S G B O X
The routine MSGBOX displays a message in form of a dialog widget. It can be used to display messages
in callback routines.

The call is: CALL MSGBOX (CSTR)

or: void msgbox (char *cstr);

CSTR is a character string containing a message.

R E A W G T
The routine REAWGT realizes a widget tree. Since the windows ID of a widget can only be calculated
for X11 if the widget is already realized, this routine is useful if the windows ID of a widget is needed
before WGFIN. Normally, the widget tree is realized in WGFIN.

The call is: CALL REAWGT

or: void reawgt ();

S E N D O K
The routine SENDOK has the same meaning as when the OK entry in the Exit menu is pressed. All
widgets are deleted and the program is continued after WGFIN.

The call is: CALL SENDOK

or: void sendok ();

S E N D M B
The routine SENDMB sends a mouse button 2 event to the DISLIN routine DISFIN. It can be used for
closing the graphics window.

The call is: CALL SENDMB

or: void sendmb ();

15.5 Dialog Routines

Dialog routines are collections of widgets that can be used to display messages, to get text strings, to get
filenames from a file selection box and to get selections from a list of items. Dialog routines can be used
independently from the routines WGINI and WGFIN.

D W G M S G
The routine DWGMSG displays a message.

The call is: CALL DWGMSG (CSTR)

or: void dwgmsg (char *cstr);

CSTR is a character string that will be displayed in a message box. Multiple lines can
be separated by the character ’|’.

D W G B U T
The routine DWGBUT displays a message that can be answered by the user with ’Yes’ or ’No’.

The call is: CALL DWGBUT (CSTR, IVAL)

233

or: int dwgbut (char *cstr, int ival);

CSTR is a character string that will be displayed in a message box. Multiple lines can
be separated by the character ’|’.

IVAL is the returned answer of the user. IVAL = 1 means ’Yes’, IVAL = 0 means
’No’. IVAL is also used to initialize the button.

D W G T X T
The routine DWGTXT creates a dialog widget that can be used to prompt the user for input.

The call is: CALL DWGTXT (CLAB, CSTR)

or: char *dwgtxt (char *clab, char *cstr);

CLAB is a character string that will be displayed in the dialog widget as a label.

CSTR is a character string that is used to initialize the text field. After the call to
DWGTXT, CSTR returns the user input. For the C Routine, the user input is
returned as function value. The returned pointer is allocated by malloc and can
be freed by an user.

D W G F I L
The routine DWGFIL creates a file selection box that can be used to get a filename.

The call is: CALL DWGFIL (CLAB, CFIL, CMASK)

or: char *dwgfil (char *clab, char *cfil, char *cmask);

CLAB is a character string that will be displayed in the dialog widget.

CFIL is the returned filename selected by the user. The variable can also be used to
pre-define a filename. For the C Routine, the user input is returned as function
value. The returned pointer is allocated by malloc and can be freed by an user.

CMASK specifies the search pattern used in determining the files to be displayed in the
file selection box.

D W G L I S
The routine DWGLIS creates a dialog widget that can be used to to get a selection from a list of items.

The call is: CALL DWGLIS (CLAB, CLIS, ISEL)

or: int dwglis (char *clab, char *clis, int isel);

CLAB is a character string that will be displayed in the dialog widget.

CLIS is a character string that contains the list elements. Elements must be separated
by the character ’|’.

ISEL defines the pre-selected element and contains the selected element after return.
Element numbering begins with the number 1.

234

15.6 Examples

The following short program creates some widgets and requests the values of the widgets.

PROGRAM EXA1
CHARACTER*80 CL1,CFIL

CL1=’Item1|Item2|Item3|Item4|Item5’
CFIL=’ ’

CALL SWGTIT (’EXAMPLE 1’)
CALL WGINI (’VERT’, IP)

CALL WGLAB (IP, ’File Widget:’, ID)
CALL WGFIL (IP, ’Open File’, CFIL, ’*.c’, ID_FIL)

CALL WGLAB (IP, ’List Widget:’, ID)
CALL WGLIS (IP, CL1, 1, ID_LIS)

CALL WGLAB (IP, ’Button Widgets:’, ID)
CALL WGBUT (IP, ’This is Button 1’, 0, ID_BUT1)
CALL WGBUT (IP, ’This is Button 2’, 1, ID_BUT2)

CALL WGLAB (IP, ’Scale Widget:’, ID)
CALL WGSCL (IP, ’ ’, 0., 10., 5., 1, ID_SCL)

CALL WGOK (IP, ID_OK)
CALL WGFIN

CALL GWGFIL (ID_FIL, CFIL)
CALL GWGLIS (ID_LIS, ILIS)
CALL GWGBUT (ID_BUT1, IB1)
CALL GWGBUT (ID_BUT2, IB2)
CALL GWGSCL (ID_SCL, XSCL)
END

235

Figure 15.2: Widgets

236

The next example displays some widgets packed in two columns.

PROGRAM EXA2
CHARACTER*80 CL1,CSTR

CL1=’Item1|Item2|Item3|Item4|Item5’
CSTR=’ ’

CALL SWGTIT (’EXAMPLE 2’)
CALL WGINI (’HORI’, IP)
CALL WGBAS (IP, ’VERT’, IPL)
CALL WGBAS (IP, ’VERT’, IPR)

CALL WGLAB (IPL, ’Text Widget:’, ID)
CALL WGTXT (IPL, CSTR, ID_TXT1)
CALL WGLAB (IPL, ’List Widget:’, ID)
CALL WGLIS (IPL, CL1, 1, ID_LIS)
CALL WGLAB (IPR, ’Labeled Text Widget:’, ID)
CALL WGLTXT (IPR, ’Give Text:’, CSTR, 40, ID_TXT2)
CALL WGLAB (IPR, ’Box Widget:’, ID)
CALL WGBOX (IPR, CL1, 1, ID_BOX)

CALL WGQUIT (IPL, ID_OK)
CALL WGOK (IPL, ID_OK)
CALL WGFIN
END

Figure 15.3: Widgets

237

The following example explains the use of callback routines. A list widget is created and the selected list
element is displayed in a text widget.

PROGRAM EXA3
COMMON /MYCOM1/ ID_LIS,ID_TXT
COMMON /MYCOM2/ CLIS
CHARACTER*80 CLIS
EXTERNAL MYSUB

CLIS = ’Item 1|Item 2|Item 3|Item 4|Item 5’

CALL WGINI (’VERT’, IP)
CALL WGLIS (IP, CLIS, 1, ID_LIS)
CALL SWGCBK (ID_LIS, MYSUB)
CALL WGTXT (IP, ’ ’, ID_TXT)
CALL WGFIN
END

SUBROUTINE MYSUB (ID)
C ID is the widget ID of WGLIS (= ID_LIS)

COMMON /MYCOM1/ ID_LIS,ID_TXT
COMMON /MYCOM2/ CLIS
CHARACTER*80 CLIS, CITEM

CALL GWGLIS (ID_LIS, ISEL)
CALL ITMSTR (CLIS, ISEL, CITEM)
CALL SWGTXT (ID_TXT, CITEM)
END

Figure 15.4: Widgets

238

The C coding of example 3 is given below:

#include <stdio.h>
#include "dislin.h"

void mysub (int ip);

static int id_lis, id_txt;
static char clis[] = "Item 1|Item 2|Item 3|Item 4|Item 5";

main()
{ int ip;

swgtit ("Example 3");

ip = wgini ("VERT");
id_lis = wglis (ip, clis, 1);
swgcbk (id_lis, mysub);

id_txt = wgtxt (ip, " ");
wgfin ();

}

void mysub (int id)
{ int isel;

char *citem;

isel = gwglis (id_lis);
citem = itmstr (clis, isel);
swgtxt (id_txt, citem);

}

The last example creates a table widget.

PROGRAM EXA4
REAL XRAY(50),XWRAY(6)
CHARACTER*80 CSTR
DATA XWRAY/-10.,-18.,-18.,-18.,-18.,-18./

DO I=1,50
XRAY(I)=I

END DO

CALL SWGWTH (100)
CALL SWGTIT (’DISLIN Table Widget’)

CALL WGINI (’VERT’,IP)

CALL SWGOPT (’BOTH’,’HEADER’)
CALL SWGTYP (’NOSCROLL’, ’TABLE’)
CALL SWGRAY (XWRAY, 6, ’TABLE’)
CALL WGTBL (IP,10,5,ID_TBL)

239

CALL SWGTBS (ID_TBL, ’Table’, 0, 0, ’VALUE’)

DO I=1,10
IF (I.EQ.10) THEN

WRITE(CSTR, ’(A,I2)’) ’R’,I
else

WRITE(CSTR,’(A,I1)’) ’R’,I
END IF
CALL SWGTBS (ID_TBL, CSTR, I, 0, ’VALUE’)

END DO

DO I=1,5
WRITE(CSTR, ’(A,I1)’) ’C’,I
CALL SWGTBS (ID_TBL, CSTR, 0, I, ’VALUE’)

END DO

CALL SWGTBL(ID_TBL, XRAY, 50, 2, 0, ’CTABLE’)

CALL WGOK (IP, ID_OK)
CALL WGFIN
END

Figure 15.5: Table Widget

240

Chapter 16

Quickplots

This chapter presents some quickplots that are collections of DISLIN routines for displaying data with
one statement. Axis scaling is done automatically by the quickplots. By default, graphical output is sent
to the screen.

16.1 Plotting Curves

Q P L O T

QPLOT connects data points with lines.

The call is: CALL QPLOT (XRAY, YRAY, N) level 0, 1

or: void qplot (float *xray, float *yray, int n);

XRAY, YRAY are arrays that contain X- and Y-coordinates.

N is the number of data points.

16.2 Scatter Plots

Q P L S C A

QPLSCA marks data points with symbols.

The call is: CALL QPLSCA (XRAY, YRAY, N) level 0, 1

or: void qplsca (float *xray, float *yray, int n);

XRAY, YRAY are arrays that contain X- and Y-coordinates.

N is the number of data points.

16.3 Bar Graphs

Q P L B A R

QPLBAR plots a bar graph.

The call is: CALL QPLBAR (XRAY, N) level 0, 1

or: void qplbar (float *xray, int n);

XRAY is an array containing data points.

N is the number of data points.

241

16.4 Pie Charts

Q P L P I E

QPLPIE plots a pie chart.

The call is: CALL QPLPIE (XRAY, N) level 0, 1

or: void qppie (float *xray, int n);

XRAY is an array containing data points.

N is the number of data points.

16.5 3-D Colour Plots

Q P L C L R

QPLCLR makes a 3-D colour plot of a matrix.

The call is: CALL QPLCLR (ZMAT, IXDIM, IYDIM) level 0, 1

or: void qplclr (float *zmat, int ixdim, int iydim);

ZMAT is a matrix with the dimension (IXDIM, IYDIM) containing the function val-
ues.

IXDIM, IYDIM are the dimensions of ZMAT.

16.6 Surface Plots

Q P L S U R

QPLSUR makes a surface plot of a matrix.

The call is: CALL QPLSUR (ZMAT, IXDIM, IYDIM) level 0, 1

or: void qplsur (float *zmat, int ixdim, int iydim);

ZMAT is a matrix with the dimension (IXDIM, IYDIM) containing the function val-
ues.

IXDIM, IYDIM are the dimensions of ZMAT.

16.7 Contour Plots

Q P L C O N

QPLCON makes a contour plot of a matrix.

The call is: CALL QPLCON (ZMAT, IXDIM, IYDIM, NLV) level 0, 1

or: void qplcon (float *zmat, int ixdim, int iydim, int nlv);

ZMAT is a matrix with the dimension (IXDIM, IYDIM) containing the function val-
ues.

IXDIM, IYDIM are the dimensions of ZMAT.

NLV is the number of contour levels that should be generated.

242

16.8 Setting Parameters for Quickplots

Quickplots can be called in level 0 and in level 1 of DISLIN. If they are called in level 0, the statements
CALL METAFL (’CONS’) and CALL DISINI are executed by quickplots. If they are called in level 1,
these statements will be suppressed. This means that programs can change the output device of quickplots
and define axis names and titles if they call quickplots in level 1 after a call to DISINI.

The following example defines axis names and a title for QPLOT:

CALL METAFL (’CONS’)
CALL DISINI

CALL NAME (’X-axis’, ’X’)
CALL NAME (’Y-axis’, ’Y’)
CALL TITLIN (’This is a Title’, 2)
CALL QPLOT (XRAY, YRAY, N)
END

243

244

Appendix A

Using DISLIN from Interpreting
Languages

The most DISLIN distributions contain plotting extensions for the interpreting languages Perl, Python
and Java. This appendix gives a short description of how DISLIN can be called from this languages. For
a complete description, the user is referred to the Perl, Python, Java and DISGCL manuals of DISLIN.

A.1 The DISLIN Interpreter DISGCL

The DISLIN utility program DISGCL is an interpreter for DISLIN. All DISLIN statements can be written
to a script file and then be executed with DISGCL, or can be entered in an interactive mode.

Similar to programming languages such as Fortran and C, high-level language elements can be used
within DISGCL. These are variables, operators, expressions, array operations, loops, if and switch state-
ments, user-defined subroutines and functions, and file I/O routines.

An easy to use interface for data input is given to include data into DISGCL jobs. The format of data
files is very simple and useful for most DISLIN plotting routines.

Several quickplots are offered by DISGCL which are collections of DISLIN statements to display data
with one command.

The DISGCL command has the following syntax:

Command: DISGCL [filename[.gcl]] [args] [options]

filename is the name of a DISGCL script file. The extension ’.gcl’ is optional.

args are optional arguments that can be passed to DISGCL scripts (see DISGCL).

options is an optional field of keywords separated by blanks (see DISGCL).

Notes: - If no parameters are specified, DISGCL runs in interactive mode.

- DISGCL searches the current working directory for the DISGCL script file. If
the search fails, DISGCL searches the directory defined by the environment
variable GCLPATH.

- On UNIX systems, an DISGCL script file can be executed directly if the fol-
lowing line is included at the beginning of the script file:

#! /path/disgcl -f

where path is the directory containing the disgcl executable.

DISGCL script files must have the following syntax:

245

- A DISGCL script file must begin with the indentifier ’%GCL’.

- Each line may contain up to 132 characters.

- The current statement can be continued on the next line if a masterspace (@) is used at the end of
the line.

- Lines are allowed to carry trailing comment fields, following a double slash (//) or the ’#’ character.
Empty lines are also be interpreted as comment lines.

- Keywords and routine names can be in upper and lowercase letters.

- String constants must be enclosed in a pair of either apostrophes or quotation marks.

Here is the example C.1 of appendix C coded as GCL script file:

%GCL
// Demonstration of CURVE

N=101
PI = 3.1415926

XRAY = FALLOC (N)
XRAY = (XRAY - 1.) * 3.6
YRAY1 = SIN (XRAY * PI / 180.)
YRAY2 = COS (XRAY * PI / 180.)

METAFL (’CONS’)
DISINI ()
COMPLX ()
PAGERA ()

AXSPOS (450, 1800)
AXSLEN (2200, 1200)

NAME (’X-axis’, ’X’)
NAME (’Y-axis’, ’Y’)
TITLIN (’Demonstration of CURVE’, 1)
TITLIN (’SIN(X), COS(X)’, 3)
TICKS (10, ’X’)
LABDIG (-1, ’X’)

GRAF (0.,360.,0.,90.,-1.,1.,-1.,0.5)
TITLE ()

COLOR (’RED’)
CURVE (xray, yray1, n)
COLOR (’GREEN’)
CURVE (xray, yray2, n)

COLOR (’FORE’)
DASH ()
XAXGIT ()
DISFIN ()

246

A.2 Using DISLIN from Perl

The Practical Extraction and Report Language is supported by DISLIN. Pre-compiled DISLIN modules
for Perl are available for the most operating systems.

For passing parameters from Perl to DISLIN, the following rules are applied:

- Parameters can be passed from Perl to DISLIN routines as variables, constants and expressions.

- String constants must be enclosed in a pair of either apostrophes or quotation marks.

- Floatingpoint parameters can be passed from Perl as integer and floatingpoint numbers.

- Arrays can be passed from Perl to DISLIN with the starting characters ’\@’.

Note: Normally, the number and meaning of parameters passed to DISLIN routines are identical with
the syntax description of the routines in the DISLIN manual. DISLIN routines that return one
scalar are implemented for Perl as functions. A description of all DISLIN routines that can be
called from Perl is presented in the DISLIN manual for Perl.

Here is the example C.1 of appendix C in Perl coding:

#!/usr/bin/perl
use Dislin;

$n = 101;
$pi = 3.1415926;
$f = $pi / 180.;
$step = 360. / ($n - 1);
for ($i = 0; $i < $n; $i++) {

$xray[$i] = $i * $step;
$x = $xray[$i] * $f;
$y1ray[$i] = sin ($x);
$y2ray[$i] = cos ($x);

}

Dislin::metafl (’xwin’);
Dislin::disini ();
Dislin::complx ();
Dislin::pagera ();

Dislin::axspos (450, 1800);
Dislin::axslen (2200, 1200);

Dislin::name (’X-axis’, ’X’);
Dislin::name (’Y-axis’, ’Y’);

Dislin::labdig (-1, ’X’);
Dislin::ticks (10, ’XY’);

Dislin::titlin (’Demonstration of CURVE’, 1);
Dislin::titlin (’SIN (X), COS (X)’, 3);

Dislin::graf (0., 360., 0., 90., -1., 1., -1., 0.5);
Dislin::title ();

247

Dislin::color (’red’);
Dislin::curve (\@xray, \@y1ray, $n);
Dislin::color (’green’);
Dislin::curve (\@xray, \@y2ray, $n);

Dislin::color (’foreground’);
Dislin::dash ();
Dislin::xaxgit ();
Dislin::disfin ();

A.3 Using DISLIN from Python

The programming language is also a popular interpreting language that is supported by DISLIN. The
passing of parameters from Python to DISLIN routines is not so strict as in other programming languages.
The following rules are applied:

- Parameters can be passed from Python to DISLIN routines as variables, constants and expres-
sions.

- String constants must be enclosed in a pair of either apostrophes or quotation marks.

- Floatingpoint parameters can be passed from Python as integer and floatingpoint numbers.

- Integer parameters can be passed from Python as integer and floatingpoint numbers. If a float-
ingpoint number is passed for an integer parameter, the fractional part of the floatingpoint
number will be truncated.

- Floatingpoint arrays can be passed from Python as floatingpoint and integer lists. They were
copied to 32 bit C arrays before they are passed to DISLIN routines.

- Integer arrays must be passed as integer lists.

- Memory must be allocated for Arrays that are used from DISLIN routines as output parameters.
For example, they can be created with the Python command ’range’.

Note: Normally, the number and meaning of parameters passed to DISLIN routines are identical with
the syntax description of the routines in the DISLIN manual. DISLIN routines that return one
ore more scalars are implemented for Python as functions that return a tuple of scalars. For
example, the statement ’nw,nh = getpag ()’ returns the page size.

The example C.1 of appendix C has in Python the following coding:

#! /usr/bin/env python
import math
import dislin

n = 101
f = 3.1415926 / 180.
x = range (n)
y1 = range (n)
y2 = range (n)
for i in range (0,n):

x[i] = i * 3.6
v = i * 3.6 * f
y1[i] = math.sin (v)
y2[i] = math.cos (v)

248

dislin.metafl (’xwin’)
dislin.disini ()
dislin.complx ()
dislin.pagera ()

dislin.axspos (450, 1800)
dislin.axslen (2200, 1200)

dislin.name (’X-axis’, ’X’)
dislin.name (’Y-axis’, ’Y’)

dislin.labdig (-1, ’X’)
dislin.ticks (10, ’XY’)

dislin.titlin (’Demonstration of CURVE’, 1)
dislin.titlin (’SIN (X), COS (X)’, 3)

dislin.graf (0., 360., 0., 90., -1., 1., -1., 0.5)
dislin.title ()

dislin.color (’red’)
dislin.curve (x, y1, n)
dislin.color (’green’)
dislin.curve (x, y2, n)

dislin.color (’foreground’)
dislin.dash ()
dislin.xaxgit ()
dislin.disfin ()

A.4 Using DISLIN from Java

Pre-compiled interfaces for calling DISLIN from Java are available for the most operating systems. The
following rules are applied for calling DISLIN routines from Java:

- Parameters can be passed from Java to DISLIN routines as variables, constants and expressions.

- String constants must be enclosed in a pair quotation marks.

- Floatingpoint parameters must be passed as float variables, constants and expressions. Float-
ingpoint constants are specified with an appending f or F.

- Integer parameters must be of type int.

- Two-dimensional arrays must be passed as one-dimensional arrays from Java to DISLIN.
For example, if you have the two-dimensional array XMAT[N][M] in Java, you have to
pass the one-dimensional array XRAY[N*M] to DISLIN where XRAY[i*M+j] corresponds
to XMAT[i][j].

- The number and meaning of parameters passed to DISLIN routines are identical with the syntax
description of the routines in the DISLIN manual except for routines that change parameters.
These routines are implemented in Java as functions with a return value. For example, the func-
tion getpag (&nw, &nh) returns in DISLIN the page width. In Java, this routine is implemented
as nw = getpag (1) and nh = getpag (2).

249

Example C.1 of appendix C coded in Java has the following form:

import de.dislin.Dislin;
public class curve {

public static void main (String args []) {
int n = 100, i;
double x, fpi = 3.1415926/180., step = 360. / (n-1);

float xray [] = new float [n];
float y1ray [] = new float [n];
float y2ray [] = new float [n];

for (i = 0; i < n; i++) {
xray[i] = (float) (i * step);
x = xray[i] * fpi;
y1ray[i] = (float) Math.sin (x);
y2ray[i] = (float) Math.cos (x);

}

Dislin.metafl ("cons");
Dislin.disini ();
Dislin.pagera ();
Dislin.complx ();

Dislin.axspos (450, 1800);
Dislin.axslen (2200, 1200);
Dislin.name ("X-axis", "x");
Dislin.name ("Y-axis", "y");

Dislin.labdig (-1, "x");
Dislin.ticks (10, "xy");
Dislin.titlin ("Demonstration of CURVE", 1);
Dislin.titlin ("SIN(X), COS(X)", 3);

Dislin.graf (0.f, 360.f, 0.f, 90.f,
-1.f, 1.f, -1.f, 0.5f);

Dislin.title ();

Dislin.color ("red");
Dislin.curve (xray, y1ray, n);
Dislin.color ("green");
Dislin.curve (xray, y2ray, n);

Dislin.color ("fore");
Dislin.dash ();
Dislin.xaxgit ();
Dislin.disfin ();

}
}

250

Appendix B

Short Description of Routines

Initialization and Introductory Routines

BMPMOD defines the physical resolution of BMP files.
CGMBGD defines the background colour for CGM files.
CGMPIC sets the picture ID for CGM files.
DISINI initializes DISLIN.
ERASE clears the screen.
ERRDEV defines the error device.
ERRFIL sets the name of the error file.
ERRMOD modifies the printing of error messages.
FILBOX defines the position and size of included metafiles.
FILOPT modifies rules for creating file versions.
GIFMOD enables transparency for GIF files.
HPGMOD sets options for HPGL files.
HWORIG defines the origin of the PostScript hardware page.
HWPAGE defines the size of the PostScript hardware page.
HWSCAL modifies the scale operator in PostScript files.
IMGFMT defines the format of image files.
INCFIL includes GKSLIN, CGM and BMP files into a graphics.
METAFL defines the plotfile format.
NEWPAG creates a new page.
ORIGIN defines the origin.
PAGE sets the page size.
PAGERA plots a page border.
PAGFLL fills the page with a colour.
PAGHDR plots a page header.
PAGMOD selects a page rotation.
PAGORG defines the origin of the page.
PDFBUF copies a PDF file to a buffer.
PDFMOD defines compression mode for PDF files.
PDFMRK defines bookmarks for PDF files.
PNGMOD enables transparency for PNG files.
SCLFAC defines a scaling factor for the entire plot.
SCLMOD defines a scaling mode.
SCRMOD swaps back- and foreground colours.
SETFIL sets the plotfile name.
SETPAG selects a predefined page format.
SETXID defines an external X window or pixmap.
SYMFIL sends a plotfile to a device.

251

TIFMOD defines the physical resolution of TIFF files.

UNITS defines the plot units.

WMFMOD modifies the format of WMF files.

Termination and Parameter Resetting

DISFIN terminates DISLIN.

ENDGRF terminates an axis system and sets the level to 1.

RESET resets parameters to default values.

Plotting Text and Numbers

ANGLE defines the character angle.

CHAANG defines an inclination angle for characters.

CHASPC affects character spacing.

CHAWTH affects the width of characters.

FIXSPC sets a constant character width.

FRMESS defines the thickness of text frames.

HEIGHT defines the character height.

MESSAG plots text.

MIXALF enables control signs in character strings for plotting indices and exponents.

NEWMIX defines an alternate set of control characters for plotting indices and exponents.

NLMESS returns the length of character strings in plot coordinates.

NUMBER plots floating-point numbers.

NUMFMT determines the format of numbers.

NUMODE modifies the appearance of numbers.

RLMESS plots text where the position is specified in user coordinates.

RLNUMB plots numbers where the position is specified in user coordinates.

SETBAS determines the position of indices and exponents.

SETEXP determines the character height of indices and exponents.

SETMIX defines global control signs for plotting indices and exponents.

TEXMOD enables TeX mode for plotting mathematical formulas.

TEXOPT defines TeX options.

TEXVAL modifies the character height of indices and exponents in TeX mode.

TXTJUS defines the alignment of text and numbers.

Colours

COLOR defines the colour used for text and lines.

HSVRGB converts HSV to RGB coordinates.

INDRGB calculates an colour index.

INTRGB calculates an explicit colour value.

MYVLT changes the current colour table.

RGBHSV converts RGB to HSV coordinates.

SETCLR defines colours.

SETIND changes the current colour table.

SETRGB defines colours.

SETVLT selects a colour table.

VLTFIL stores or loads a colour table.

252

Fonts

BASALF defines the base alphabet.
BMPFNT defines a bitmap font.
CHACOD defines the character coding.
COMPLX sets a complex font.
DUPLX sets a double-stroke font.
DISALF sets the default font.
EUSHFT defines a shift character for special European characters.
GOTHIC sets a gothic font.
HELVE sets a shaded font.
HELVES sets a shaded font with small characters.
HWFONT sets a standard hardware font.
PSFONT sets a PostScript font.
PSMODE enables Greek and Italic PostScript characters.
SERIF sets a complex shaded font.
SIMPLX sets a single-stroke font.
SMXALF defines shift characters for alternate alphabets.
TRIPLX sets a triple-stroke font.
WINFNT sets a TrueType font for screen output on Windows.
X11FNT sets an X11 font for screen output on X11 systems.

Symbols

HSYMBL defines the height of symbols.
MYSYMB defines an user-defined symbol.
RLSYMB plots symbols where the centre is specified in user coordinates.
SYMBOL plots symbols.
SYMROT defines a rotation angle for symbols.

Axis Systems

ADDLAB plots additional single labels.
AX2GRF suppresses the plotting of the upper X- and the left Y-axis.
AX3LEN defines axis lengths for a coloured 3-D axis system.
AXGIT plots the lines X = 0 and Y = 0.
AXSBGD defines the background colour.
AXSLEN defines axis lengths for a 2-D axis system.
AXSORG determines the position of crossed axis systems.
AXSPOS determines the position of axis systems.
AXSTYP selects rectangular or crossed axis systems.
BOX2D plots a border around an axis system.
CENTER centres axis systems.
CROSS plots the lines X = 0 and Y = 0 and marks them with ticks.
ENDGRF terminates an axis system.
FRMCLR defines the colour of frames.
FRAME defines the frame thickness of axis systems.
GAXPAR calculates axis parameters.
GRACE affects the clipping margin of axis systems.
GRAF plots a two-dimensional axis system.
GRAF3 plots an axis system for colour graphics.
GRAFP plots a polar axis system.
GRDPOL plos a ploar grid.
GRID overlays a grid on an axis system.

253

NOCLIP suppresses clipping of user coordinates.
NOGRAF suppresses the plotting of an axis system.
POLMOD modifies the appearance of polar labels.
SETGRF suppresses parts of an axis system.
SETSCL sets automatic scaling.
TITLE plots a title over an axis system.
XAXGIT plots the line Y = 0.
XCROSS plots the line Y = 0 and marks it with ticks.
YAXGIT plots the line X = 0.
YCROSS plots the line X = 0 and marks it with ticks.

Secondary Axes

XAXIS plots a linear X-axis.
XAXLG plots a logarithmic X-axis.
YAXIS plots a linear Y-axis.
YAXLG plots a logarithmic Y-axis.
ZAXIS plots a linearly scaled colour bar.
ZAXLG plots a logarithmically scaled colour bar.

Modification of Axes

AXCLRS defines colours for axis elements.
AXENDS suppresses certain labels.
AXSSCL defines the axis scaling.
HNAME defines the character height of axis names.
INTAX defines integer numbering for all axes.
LABDIG sets the number of decimal places for labels.
LABDIS sets the distance between labels and ticks.
LABELS selects labels.
LABJUS defines the alignment of axis labels.
LABMOD modifies date labels.
LABPOS determines the position of labels.
LABTYP defines vertical or horizontal labels.
LOGTIC modifies the appearance of logarithmic ticks.
MYLAB sets user-defined labels.
NAMDIS sets the distance between axis names and labels.
NAME defines axis titles.
NAMJUS defines the alignment of axis titles.
NOLINE suppresses the plotting of axis lines.
RGTLAB right-justifies labels.
RVYNAM defines an angle for Y-axis names.
TICKS sets the number of ticks.
TICLEN sets the length of ticks.
TICMOD modifies the plotting of ticks at calendar axes.
TICPOS determines the position of ticks.
TIMOPT modifies time labels.

Axis System Titles

HTITLE defines the character height of titles.
LFTTIT left-justifies title lines.
LINESP defines line spacing.
TITJUS defines the alignment of titles.
TITLE plots axis system titles.
TITLIN defines text lines for titles.
TITPOS defines the position of titles.
VKYTIT shifts titles in the vertical direction.

254

Plotting Data Points

BARS plots a bar graph.
BARS3D plots 3-D bars.
CHNATT changes curve attributes.
CHNCRV defines attributes changed automatically by CURVE.
CRVMAT plots a coloured surface.
CRVTRI plots a coloured surface from triangulated data.
CURVE plots curves.
CURVE3 plots coloured rectangles.
CURVX3 plots rows of coloured rectangles.
CURVY3 plots columns of coloured rectangles.
ERRBAR plots error bars.
FIELD plots a vector field.
GAPCRV defines gaps plotted by CURVE.
INCCRV defines the number of curves plotted with equal attributes.
INCMRK selects symbols or lines for CURVE.
MARKER sets the symbols plotted by CURVE.
NOCHEK suppresses listing of data points that lie outside of the axis scaling.
PIEGRF plots a pie chart.
POLCRV defines the interpolation method used by CURVE.
RESATT resets curve attributes.
SETRES sets the size of coloured rectangles.
SHDCRV plots shaded areas between curves.
SPLMOD modifies spline interpolation.
THKCRV defines the thickness of curves.
VECFLD plots a vector field.

Legends

FRAME sets the frame thickness of legends.
LEGEND plots legends.
LEGINI initializes legends.
LEGLIN defines text for legend lines.
LEGOPT modifies the appearance of legends.
LEGPAT stores curve attributes.
LEGPOS determines the position of legends.
LEGTIT defines the legend title.
LEGVAL modifies the appearance of legends.
LINESP affects line spacing.
MIXLEG enables multiple text lines in legends.
NXLEGN returns the width of legends in plot coordinates.
NYLEGN returns the height of legends in plot coordinates.

Line Styles and Shading Patterns

CHNDOT sets a dotted-dashed line style.
CHNDSH sets a dashed-dotted line style.
COLOR sets a colour.
DASH sets a dashed line style.
DASHL sets a long-dashed line style.
DASHM sets a medium-dashed line style.
DOT sets a dotted line style.
DOTL sets a long-dotted line style.

255

LINTYP defines a line style.
LINWID sets the line width.
LNCAP sets the line cap parameter.
LNJOIN sets the line join parameter.
LNMLT sets the miter limit parameter.
MYLINE sets a user-defined line style.
MYPAT defines a global shading pattern.
PENWID sets the pen width.
SHDPAT selects a shading pattern.
SOLID sets a solid line style.

Cycles

CLRCYC modifies the colour cycle.
LINCYC modifies the line style cycle.
PATCYC modifies the pattern cycle.

Base Transformations

TR3RES resets 3-D base transformations.
TR3ROT affects the 3-D rotation of plot vectors.
TR3SCL affects the 3-D scaling of plot vectors.
TR3SHF affects the 3-D shifting of plot vectors.
TRFRES resets base transformations.
TRFROT affects the rotation of plot vectors.
TRFSCL affects the scaling of plot vectors.
TRFSHF affects the shifting of plot vectors.

Shielding

SHIELD defines automatic shielding.
SHLCIR defines circles as shielded areas.
SHLDEL deletes shielded areas.
SHLELL defines ellipses as shielded areas.
SHLIND returns the index of a shielded area.
SHLPIE defines pie segments as shielded areas.
SHLPOL defines polygons as shielded areas.
SHLRCT defines rotated rectangles as shielded areas.
SHLREC defines rectangles as shielded areas.
SHLRES deletes shielded areas.
SHLVIS enables or disables shielded areas.

Parameter Requesting Routines

GETALF returns the base alphabet.
GETANG returns the current angle used for text and numbers.
GETCLP returns the currents clipping window.
GETCLR returns the current colour number.
GETDIG returns the number of decimal places used in labels.
GETDSP returns the terminal type.
GETFIL returns the current plotfile name.
GETGRF returns the scaling of the current axis system.
GETHGT returns the current character height.
GETHNM returns the character height of axis titles.
GETIND returns the RGB coordinates for a colour index.

256

GETLAB returns the current labels.
GETLEN returns the current axis lengths.
GETLEV returns the current level.
GETLIN returns the current line width.
GETMFL returns the current file format.
GETMIX returns shift characters defined for indices and exponents.
GETOR returns the current origin.
GETPAG returns the current page size.
GETPAT returns the current shading pattern.
GETPLV returns the patchlevel of the current DISLIN library.
GETPOS returns the position of the axis system.
GETRAN returns the range of colour bars.
GETRES returns the size of points used in 3-D colour graphics.
GETRGB returns the RGB coordinates of the current colour.
GETSCL returns the current axis scaling.
GETSCR returns the screen size in pixels.
GETSHF returns the control character used for European characters.
GETSP1 returns the distance between axis ticks and labels.
GETSP2 returns the distance between axis labels and names.
GETSYM returns the current symbol number and height.
GETTCL returns the current tick lengths.
GETTIC returns the number of ticks plotted between labels.
GETTYP returns the current line style.
GETUNI returns the current unit used for messages.
GETVER returns the version number of the currently used DISLIN library.
GETVK returns the current lengths used for shifting.
GETVLT returns the current colour table.
GETWID returns the width of colour bars.
GETWIN returns the position and size of the graphics window.
GETXID returns the X window ID.
GMXALF returns shift characters for alphabets.

Elementary Plot Routines

ARCELL plots elliptical arcs.
AREAF plots polygons.
CIRCLE plots circles.
CONNPT plots a line to a point.
ELLIPS plots ellipses.
LINE plots lines.
NOARLN suppresses the outline of geometric figures.
PIE plots pie segments.
POINT plots coloured rectangles where the position is defined by the centre point.
RECFLL plots coloured rectangles.
RECTAN plots rectangles.
RNDREC plots a rectangle with rounded corners.
RLARC plots elliptical arcs for user coordinates.
RLAREA plots polygons for user coordinates.
RLCIRC plots circles for user coordinates.
RLCONN plots a line to a point (user coordinates).
RLELL plots ellipses for user coordinates.
RLINE plots lines for user coordinates.
RLPIE plots pie segments for user coordinates.

257

RLPOIN plots coloured rectangles for user coordinates.
RLREC plots rectangles for user coordinates.
RLRND plots for user coordinates a rectangle with rounded corners.
RLSEC plots coloured pie sectors for user coordinates.
RLSTRT moves the pen to a point (user coordinates).
RLVEC plots vectors for user coordinates.
RLWIND plots wind speed symbols for user coordinates.
SECTOR plots coloured pie sectors.
STRTPT moves the pen to a point.
TRIFLL plots filled triangles.
VECCLR defines coulour for arrow heads.
VECOPT defines vector options.
VECTOR plots vectors.
WINDBR plots wind speed symbols.
XMOVE moves the pen to a point.
XDRAW plots a line to a point.

Conversion of Coordinates

COLRAY converts Z-coordinates to colour numbers.
NXPIXL converts X plot coordinates to pixel
NXPOSN converts X-coordinates to plot coordinates.
NYPIXL converts Y plot coordinates to pixel
NYPOSN converts Y-coordinates to plot coordinates.
NZPOSN converts Z-coordinates to colour numbers.
TRFCO1 converts one-dimensional coordinates.
TRFCO2 converts two-dimensional coordinates.
TRFCO3 converts three-dimensional coordinates.
TRFREL converts X- and Y-coordinates to plot coordinates.
XINVRS converts X plot coordinates to user coordinates.
XPOSN converts X-coordinates to real plot coordinates.
YINVRS converts Y plot coordinates to user coordinates.
YPOSN converts Y-coordinates to real plot coordinates.

Utility Routines

BEZIER calculates a Bezier interpolation.
BITSI2 allows bit manipulation on 16 bit variables.
BITSI4 allows bit manipulation on 32 bit variables.
CIRC3P calculates a circle specified by three points.
FCHA converts floating-point numbers to character strings.
FLEN calculates the number of digits for floating-point numbers.
HISTOG calculates a histogram.
INTCHA converts integers to character strings.
INTLEN calculates the number of digits for integers.
INTUTF converts Unicode numbers to an UTF8 string.
NLMESS returns the length of character strings in plot coordinates.
NLNUMB returns the length of numbers in plot coordinates.
POLCLP clips a polygon.
SORTR1 sorts floating-point numbers.
SORTR2 sorts points in the X-direction.
SPLINE returns splined points as calculated in CURVE.
SWAPI2 swaps the bytes of 16 bit variables.

258

SWAPI4 swaps the bytes of 32 bit variables.
TRFMAT converts matrices.
TRIANG calculates the Delaunay triangulation.
TRMLEN calculates the number of characters in character strings.
UPSTR converts a character string to uppercase letters.
UTFINT converts an UTF8 string to Unicode numbers.

Binary File I/O

CLOSFL closes a file.
OPENFL opens a file for binary I/O.
POSIFL skips to a certain position relative to the start.
READFL reads a given number of bytes.
SKIPFL skips a number of bytes from the current position.
TELLFL returns the file position.
WRITFL writes a given number of bytes.

Date Routines

BASDAT defines the base date.
INCDAT calculates incremented days.
NWKDAY returns the weekday for a date.
TRFDAT converts incremented days to a date.

Window Routines

CLSWIN closes a window.
OPNWIN opens a window for graphics output.
PAGWIN defines page formats for windows.
SELWIN selects a window for graphics output.
WINAPP defines a window or console application.
WINDOW defines the position and size of windows.
WINID returns the ID of the currently selected window.
WINKEY defines a key that can be used for program continuation in DISFIN.
WINMOD affects the handling of windows in the termination routine DISFIN.
WINSIZ defines the size of windows.
WINTIT sets the title of the currently selected window.

Cursor Routines

CSRKEY returns a key event.
CSRMOD modifies the behavior of CSRPOS.
CSRMOV returns collected cursor movements.
CSRPOS sets and returns the cursor position.
CSRPT1 returns a pressed cursor position.
CSRPTS returns collected cursor positions.
CSRREC returns a rectangle created with the mouse cursor.
CSRTYP defines the cursor type.
CSRUNI defines the unit returned cursor routines.
SETCSR defines the cursor type of the graphics window.

259

Image Routines

IMGBOX defines a rectangle for PostScript/PDF output.

IMGCLP defines a clipping rectangle for RBMP, RTIFF, RPNG, RGIF, and RPPM.

IMGINI initializes transfering of image data.

IMGFIN terminates transfering of image data.

IMGMOD selects index or RGB mode.

IMGSIZ defines an image size for PostScript/PDF output.

RBFPNG stores an image as PNG file in a buffer.

RBMP stores an image as a BMP file.

RGIF stores an image as a GIF file.

RIMAGE copies an image from memory to a file.

RPIXEL reads a pixel from memory.

RPIXLS reads image data from memory.

RPNG stores an image as a PNG file.

RPPM stores an image as a PPM file.

RPXROW reads a row of image data from memory.

RTIFF stores an image as a TIFF file.

TIFORG defines the position of TIFF files copied with WTIFF.

TIFWIN defines a clipping window for TIFF files copied with WTIFF.

WIMAGE copies an image from file to memory.

WPIXEL writes a pixel to memory.

WPIXLS writes image data to memory.

WPXROW write a row of image data to memory.

WTIFF copies a TIFF file created by DISLIN to memory.

Transparency

TPRFIN terminates alpha blending.

TPRINI initializes alpha blending.

TPRMOD modifies alpha blending.

TPRVAL sets the alpha value.

Bar Graphs

BARBOR defines the colour of bar borders.

BARCLR defines the colours of bars.

BARGRP affects clustered bars.

BARMOD selects fixed or variable bars.

BAROPT sets parameters for 3-D bars.

BARPOS selects predefined positions for bars.

BARS plots bar graphs.

BARTYP selects vertical or horizontal bars.

CHNBAR modifies the appearance of bars.

LABCLR defines the colour of bar labels.

LABDIG defines the number of decimal places in bar labels.

LABELS defines bar labels.

LABPOS defines the position of bar labels.

260

Pie Charts

CHNPIE defines colour and pattern attributes for pie segments.

LABCLR defines the colour of segment labels.

LABDIG defines the number of decimal places in segment labels.

LABELS defines pie labels.

LABPOS defines the position of segment labels.

LABTYP modifies the appearance of segment labels.

PIEBOR defines the colour of pie borders.

PIECLR defines pie colours.

PIEEXP defines exploded pie segments.

PIEGRF plots pie charts.

PIELAB sets additional character strings plotted in segment labels.

PIEOPT sets parameters for 3-D pie charts.

PIETYP selects 2-D or 3-D pie charts.

PIEVEC modifies the arrow plotted between labels and segments.

USRPIE is a user-defined subroutine to modify pie charts.

Coloured 3-D Graphics

AX3LEN defines axis lengths.

COLOR defines colours.

COLRAN defines the range of colour bars.

CRVMAT plots a coloured surface.

CRVTRI plots a coloured surface from triangulated data..

CURVE3 plots coloured rectangles.

CURVX3 plots rows of coloured rectangles.

CURVY3 plots columns of coloured rectangles.

ERASE erases the screen.

GRAF3 plots a coloured axis system.

NOBAR suppresses the plotting of colour bars.

NOBGD suppresses the plotting of points which have the same colour as the background.

NZPOSN converts a Z-coordinate to a colour number.

POINT plots coloured rectangles.

RECFLL plots coloured rectangles.

RLPOIN plots coloured rectangles for user coordinates where the position is defined by the
centre point.

RLSEC plots coloured pie sectors for user coordinates.

SECTOR plots coloured pie sectors.

SETRES defines the size of coloured rectangles.

VKXBAR shifts colour bars in the X-direction.

VKYBAR shifts colour bars in the Y-direction.

WIDBAR defines the width of colour bars.

ZAXIS plots linearly scaled colour bars.

ZAXLG plots logarithmically scaled colour bars.

261

3-D Graphics

ABS3PT converts absolute 3-D coordinates to plot coordinates.
AXIS3D defines the lengths of the 3-D box.
BARS3D plots 3-D bars.
BOX3D plots a border around the 3-D box.
CONE3D plots a cone.
CONN3D plots a line to a point in 3-D space.
CURV3D plots curves or symbols.
CYLI3D plots a cylinder.
DBFFIN termintes a depth sort.
DBFINI initializes a depth sort.
DISK3D plots a disk.
FIELD3D plots a vector field.
FLAB3D disables the suppression of axis labels.
GETLIT calculates colour values.
GETMAT calculates a function matrix from randomly distributed data points.
GRAF3D plots an axis system.
GRFFIN terminates a projection into 3-D space.
GRFINI initializes projections in 3-D space.
GRID3D plots a grid.
HSYM3D sets the height of 3-D symbols.
ISOPTS calculates isosurfaces.
LABL3D modifies the appearance of labels on the 3-D box.
LIGHT turns lighting on or off.
LITMOD turns single light sources on or off.
LITOP3 modifies light parameters.
LITOPT modifies light parameters.
LITPOS sets the position of light sources.
MATOP3 modifies material parameters.
MATOPT modifies material parameters.
MDFMAT modifies the algorithm used in GETMAT.
MSHCLR defines the colour of surface meshes.
NOHIDE disables the hidden-line algorithm.
PIKE3D plots a cone.
PLAT3D plots a Platonic solid.
POS3PT converts user coordinates to absolute 3-D coordinates.
PYRA3D plots a pyramid.
QUAD3D plots a quad.
REL3PT converts user coordinates to plot coordinates.
ROT3D defines rotation angles for symbols and solids.
SETFCE sets a face side for defining material parameters.
SHDMOD defines flat or smooth shading for surfaces.
SHLSUR protects surfaces from overwriting.
SPHE3D plots a sphere.
STRT3D moves the pen to a point.
SURCLR selects surface colours.
SURFCE plots the surface of a function matrix.
SURFCP plots a shaded surface of a parametric function.
SURFUN plots the surface of the function Z = F(X,Y).
SURISO plots isosurfaces.
SURMAT plots the surface of a function matrix.

262

SURMSH enables grid lines.
SUROPT suppresses surfaces lines plotted by SURFCE.
SURSHD plots a coloured surface.
SURTRI plots a coloured surface from triangulated data.
SURVIS determines the visible part of surfaces.
SYMB3D plots a 3-D symbol.
TORUS3D plots a torus.
TUBE3D plots a tube.
VANG3D defines the field of view.
VECF3D plots a vector field.
VECTR3 plots vectors in 3-D space.
VFOC3D defines the focus point.
VIEW3D defines the viewpoint.
VTX3D plots faces from vertices.
VTXC3D plots faces from vertices.
VTXN3D plots faces from vertices.
VUP3D defines the camera orientation.
ZBFERS erases the frame buffer of a Z-buffer.
ZBFFIN terminates the Z-buffer.
ZBFINI allocates space for a Z-buffer.
ZBFLIN plots lines.
ZBFRES resets the Z-buffer.
ZBFSCL scales the internal image for PDF output.
ZBFTRI plots triangles.
ZSCALE defines a Z-scaling for coloured surfaces.

Geographical Projections

CURVMP plots curves or symbols.
GRAFMP plots a geographical axis system.
GRIDMP plots a grid.
MAPBAS defines a base map.
MAPFIL defines an external map file.
MAPLAB enables labels for elliptical and azimuthal projections.
MAPLEV specifies land or lake plotting.
MAPMOD modifies the connection of points used in CURVMP.
MAPOPT sets options for map plotting.
MAPPOL defines the map pole used for azimuthal projections.
MAPREF defines two latitudes used for conical projections.
POS2PT converts user coordinates to plot coordinates.
PROJCT selects a projection.
SETCBK sets a callback routine for a user-defined projection.
SHDAFR shades African countries.
SHDASI shades Asiatic countries.
SHDAUS shades Oceanic countries.
SHDEUR shades European countries.
SHDMAP shades continents.
SHDNOR shades states of North and Central America.
SHDSOU shades states of South America.
SHDUSA shades USA states.
WORLD plots coastlines and lakes.
XAXMAP plots a secondary X-axis.
YAXMAP plots a secondary Y-axis.

263

Contouring

CONCLR defines colours fro filled contours.
CONCRV plots generated contours.
CONFLL plots filled contours from triangulated data.
CONGAP affects the spacing between contour lines and labels.
CONLAB defines a character string used for contour labels.
CONMAT plots contours.
CONMOD affects the position of contour labels.
CONPTS generates contours.
CONSHD plots shaded contours.
CONTRI plots contours from triangulated data.
CONTUR plots contours.
LABCLR defines the colour of contour labels.
LABDIS defines the distance between labels.
LABELS defines contour labels.
SHDMOD sets the algorithm for shaded contours.
TRIPTS generates contours from triangulated data.

Widget Routines

DWGBUT displays a message that can be answered with ’Yes’ or ’No’.
DWGFIL creates a file selection box.
DWGLIS gets a selection from a list of items.
DWGMSG displays a message.
DWGTXT prompts an user for input.
GWGATT requests a widget attribute.
GWGBOX requests the value of a box widget.
GWGBUT requests the status of a button widget.
GWGFIL requests the value of a file widget.
GWGFLT requests the value of a text widget as real number.
GWGINT requests the value of a text widget as integer.
GWGLIS requests the value of a list widget.
GWGSCL requests the value of a scale widget.
GWGTBF requests cell values of table widgets.
GWGTBI requests cell values of table widgets.
GWGTBL requests cell values of table widgets.
GWGTBS requests cell values of table widgets.
GWGTXT requests the value of a text widget.
GWGXID returns the window ID for a widget.
ITMCAT concatenates an element to a list string.
ITMCNT calculates the number of elements in a list string.
ITMSTR extracts an element from a list string.
MSGBOX prints a message.
SWGATT sets widget attributes.
SWGBOX changes the selection of a box widget.
SWGBUT changes the status of a button widget.
SWGCB2 connects a table widget with a callback routine.
SWGCBK connects a widget with a callback routine.
SWGCLR defines colours for widgets.
SWGDRW defines the height of draw widgets.
SWGFIL changes the value of a file widget.
SWGFLT changes the value of text widgets.

264

SWGFNT sets fonts for widgets.
SWGFOC sets the keyboard focus.
SWGHLP sets a character string that will be displayed if the Help menu is clicked.
SWGINT changes the value of text widgets.
SWGJUS defines the alignment of label widgets.
SWGLIS changes the selection of a list widget.
SWGMIX defines control characters.
SWGMRG defines widget margins.
SWGOPT sets a center option for the parent widget.
SWGPOP modifies the appearance of the popup menubar.
SWGPOS defines the position of widgets.
SWGRAY defines the width of columns in table widgets.
SWGSCL changes the value of a scale widget.
SWGSIZ defines the size of widgets.
SWGSPC modifies the space between widgets.
SWGSTP defines a step value for scale widgets.
SWGTBF sets cell values of table widgets.
SWGTBI sets cell values of table widgets.
SWGTBL sets cell values of table widgets.
SWGTBS sets cell values of table widgets.
SWGTIT sets a title for the main widget.
SWGTXT changes the value of a text widget.
SWGTYP modifies the appearance of widgets.
SWGVAL changes the value of progress bars.
SWGWIN defines the position and size of widgets.
SWGWTH sets the default width of widgets.
WGAPP creates an entry in a popup menu.
WGBAS creates a container wdiget.
WGBOX creates a list widget where the list elements are displayed as toggle buttons.
WGBUT creates a button widget.
WGCMD creates a command widget.
WGDLIS creates a dropping list widget.
WGDRAW creates a draw widget.
WGFIL creates a file widget.
WGFIN terminates widget routines.
WGINI creates a main widget and initalizes widget routines.
WGLAB creates a label widget.
WGLIS creates a list widget.
WGLTXT creates a labeled text widget.
WGOK creates a OK push button widget.
WGPBAR creates a progress bar.
WGPBUT creates a push button widget.
WGPOP creates a popup menu.
WGQUIT creates a QUIT push button widget.
WGSCL creates a scale widget.
WGSTXT creates a scrolled text widget.
WGTBL creates a table widget.
WGTXT creates a text widget.

265

Quickplots

QPLBAR plots a bar graph.
QPLCLR plots a colour surface of a matrix.
QPLCON plots a contour lines of a matrix.
QPLPIE plots a pie chart.
QPLOT makes a curve plot.
QPLSCA makes a scatter plot.
QPLSUR plots a surface of a matrix.

MPS Logo

MPSLOGO plots the MPS logo.

266

Appendix C

Examples

267

C.1 Demonstration of CURVE

PROGRAM EXA_1
C USE DISLIN for Fortran 90!

PARAMETER (N=301)
DIMENSION XRAY(N),Y1RAY(N),Y2RAY(N)

PI=3.1415926
FPI=PI/180.
STEP=360./(N-1)

DO I=1,N
XRAY(I)=(I-1)*STEP
X=XRAY(I)*FPI
Y1RAY(I)=SIN(X)
Y2RAY(I)=COS(X)

END DO

CALL DISINI
CALL PAGERA
CALL COMPLX

CALL AXSPOS(450,1800)
CALL AXSLEN(2200,1200)

CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)

CALL LABDIG(-1,’X’)
CALL TICKS(9,’XY’)

CALL TITLIN(’Demonstration of CURVE’,1)
CALL TITLIN(’SIN(X), COS(X)’,3)

CALL GRAF(0.,360.,0.,90.,-1.,1.,-1.,0.5)
CALL TITLE

CALL CURVE(XRAY,Y1RAY,N)
CALL CURVE(XRAY,Y2RAY,N)

CALL DASH
CALL XAXGIT

CALL DISFIN
END

268

0
9

0
1

8
0

2
7

0
3

6
0

X
-a

x
is

-1
.0

-0
.5

0
.0

0
.5

1
.0

Y-axis
D

em
o

n
st

ra
ti

o
n

 o
f

C
U

R
V

E

S
IN

(X
),

 C
O

S
(X

)

Figure B.1: Demonstration of CURVE

269

C.2 Polar Plots

PROGRAM EXA_2
C USE DISLIN for Fortran 90!

PARAMETER (N=300, M=10)
REAL XRAY1(N),YRAY1(N),XRAY2(M),YRAY2(M)

XPI=3.1415927
STEP=360./(N-1)
DO I=1,N

A=(I-1)*STEP
A=A*XPI/180
YRAY1(I)=A
XRAY1(I)=SIN(5*A)

END DO

DO I=1,M
XRAY2(I)=I
YRAY2(I)=I

END DO

CALL SETPAG(’DA4P’)
CALL METAFL(’CONS’)
CALL DISINI
CALL PAGERA
CALL HWFONT

CALL TITLIN (’Polar Plots’, 2)
CALL TICKS(3,’Y’)
CALL AXENDS(’NOENDS’,’X’)
CALL LABDIG(-1,’Y’)
CALL AXSLEN(1000,1000)
CALL AXSORG(1050,900)

CALL POLAR(1.,0., 0.2, 0., 30.)
CALL CURVE(XRAY1,YRAY1,N)
CALL HTITLE(50)
CALL TITLE
CALL ENDGRF

CALL LABDIG(-1,’X’)
CALL AXSORG(1050,2250)
CALL LABTYP(’VERT’,’Y’)
CALL POLAR(10.,0.,2.,0.,30.)
CALL BARWTH(-5.)
CALL POLCRV(’FBARS’)
CALL CURVE(XRAY2,YRAY2,M)
CALL DISFIN
END

270

0.2 0.4 0.6 0.8
0

30

60

90120

150

180

210

24
0

27
0

300

330

Polar Plots

2 4 6 8

0

30

60
90

120

15
0

18
0

21
0

240
270

300

330

Figure B.2: Polar Plots

271

C.3 Symbols

PROGRAM EXA_3
C USE DISLIN for Fortran 90!

CHARACTER*20 CTIT,CSTR*2
CTIT=’Symbols’

CALL SETPAG(’DA4P’)
CALL DISINI
CALL COMPLX
CALL PAGERA
CALL PAGHDR(’H. Michels (’,’)’,2,0)

CALL HEIGHT(60)

NL=NLMESS(CTIT)
CALL MESSAG(CTIT,(2100-NL)/2,200)

CALL HEIGHT(50)
CALL HSYMBL(120)

NY=150

DO I=0,21
IF(MOD(I,4).EQ.0) THEN

NY=NY+400
NXP=550

ELSE
NXP=NXP+350

END IF

IF(I.LT.10) THEN
WRITE(CSTR,’(I1)’) I

ELSE
WRITE(CSTR,’(I2)’) I

END IF

NL=NLMESS(CSTR)/2
CALL MESSAG(CSTR,NXP-NL,NY+150)
CALL SYMBOL(I,NXP,NY)

END DO

CALL DISFIN
END

272

H. Michels (11.09.2002, 15:59:29, DISLIN 8.0)

Symbols

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

Figure B.3: Symbols

273

C.4 Logarithmic Scaling

PROGRAM EXA_4
C USE DISLIN for Fortran 90!

CHARACTER*60 CTIT,CLAB(3)*5
DATA CLAB/’LOG’,’FLOAT’,’ELOG ’/

CTIT=’Logarithmic Scaling’

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX
CALL AXSLEN(1400,500)

CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)
CALL AXSSCL(’LOG’,’XY’)

CALL TITLIN(CTIT,2)

DO I=1,3
NYA=2650-(I-1)*800
CALL LABDIG(-1,’XY’)
IF(I.EQ.2)THEN

CALL LABDIG(1,’Y’)
CALL NAME(’ ’,’X’)

END IF

CALL AXSPOS(500,NYA)
CALL MESSAG(’Labels: ’//CLAB(I),600,NYA-400)
CALL LABELS(CLAB(I),’XY’)
CALL GRAF(0.,3.,0.,1.,-1.,2.,-1.,1.)

IF(I.EQ.3) THEN
CALL HEIGHT(50)
CALL TITLE

END IF

CALL ENDGRF
END DO

CALL DISFIN
END

274

Figure B.4: Logarithmic Scaling

275

C.5 Interpolation Methods

PROGRAM EXA_5
C USE DISLIN for Fortran 90!

DIMENSION X(16), Y(16)
CHARACTER*8 CPOL(6),CTIT*60

DATA X/0.,1.,3.,4.5,6.,8.,9.,11.,12.,12.5,13.,
* 15.,16.,17.,19.,20./,
* Y/2.,4.,4.5,3.,1.,7.,2.,3.,5.,2.,2.5,2.,4.,6.,
* 5.5,4./,
* CPOL/’SPLINE’,’STEM’,’BARS’,’STAIRS’,’STEP,’LINEAR’/
* NYA/2700/

CTIT=’Interpolation Methods’

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX
CALL INCMRK(1)
CALL HSYMBL(25)
CALL TITLIN(CTIT,1)
CALL AXSLEN(1500,350)
CALL SETGRF(’LINE’,’LINE’,’LINE’,’LINE’)

DO I=1,6
CALL AXSPOS(350,NYA-(I-1)*350)
CALL POLCRV(CPOL(I))
CALL MARKER(0)

CALL GRAF(0.,20.,0.,5.,0.,10.,0.,5.)
NX=NXPOSN(1.)
NY=NYPOSN(8.)
CALL MESSAG(CPOL(I),NX,NY)
CALL CURVE(X,Y,16)

IF(I.EQ.6) THEN
CALL HEIGHT(50)
CALL TITLE

END IF
CALL ENDGRF

END DO

CALL DISFIN
END

276

Figure B.5: Interpolation Methods

277

C.6 Line Styles

PROGRAM EXA_6
C USE DISLIN for Fortran 90!

DIMENSION X(2),Y(2)
CHARACTER*6 CTYP(8)
DATA X/3.,9./CTYP/’SOLID’,’DOT’,’DASH’,’CHNDSH’,

* ’CHNDOT’,’DASHM’,’DOTL’,’DASHL’/

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX
CALL CENTER
CALL CHNCRV(’LINE’)

CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)

CALL TITLIN(’Demonstration of CURVE’,1)
CALL TITLIN(’Line Styles’,3)

CALL GRAF(0.,10.,0.,2.,0.,10.,0.,2.)
CALL TITLE

DO I=1,8
Y(1)=9.5-I
Y(2)=9.5-I
NY=NYPOSN(Y(1))
NX=NXPOSN(1.0)
CALL MESSAG(CTYP(I),NX,NY-20)
CALL CURVE(X,Y,2)

END DO

CALL DISFIN
END

278

Figure B.6: Line Styles

279

C.7 Legends

PROGRAM EXA_7
C USE DISLIN for Fortran 90!

PARAMETER(N=301)
DIMENSION XRAY(N),Y1RAY(N),Y2RAY(N)
CHARACTER*14 CBUF

FPI=3.1415926/180.
STEP=360./(N-1)
DO I=1,N

XRAY(I)=(I-1)*STEP
X=XRAY(I)*FPI
Y1RAY(I)=SIN(X)
Y2RAY(I)=COS(X)

END DO

CALL DISINI
CALL PAGERA
CALL COMPLX
CALL AXSPOS(450,1800)
CALL AXSLEN(2200,1200)

CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)
CALL TITLIN(’Demonstration of CURVE’,1)
CALL TITLIN(’Legend’,3)
CALL LABDIG(-1,’X’)
CALL TICKS(10,’XY’)

CALL GRAF(0.,360.,0.,90.,-1.,1.,-1.,0.5)
CALL TITLE
CALL XAXGIT

CALL CHNCRV(’LINE’)
CALL CURVE(XRAY,Y1RAY,N)
CALL CURVE(XRAY,Y2RAY,N)

CALL LEGINI(CBUF,2,7) ! Legend statements
NX=NXPOSN(190.)
NY=NYPOSN(0.75)
CALL LEGPOS(NX,NY)
CALL LEGLIN(CBUF,’sin (x)’,1)
CALL LEGLIN(CBUF,’cos (x)’,2)
CALL LEGTIT(’Legend’)
CALL LEGEND(CBUF,3)

CALL DISFIN
END

280

0
90

18
0

27
0

36
0

X
-a

xi
s

-1
.0

-0
.50.
0

0.
5

1.
0

Y-axis
D

em
on

st
ra

ti
on

 o
f

C
U

R
V

E

L
eg

en
d

L
eg

en
d

si
n

(x
)

co
s

(x
)

Figure B.7: Legends

281

C.8 Shading Patterns (AREAF)

PROGRAM EXA_8
C USE DISLIN for Fortran 90!

DIMENSION IXP(4),IYP(4),IX(4),IY(4)
CHARACTER*60 CTIT,CSTR*2
DATA IX/0,300,300,0/IY/0,0,400,400/

CTIT=’Shading Patterns (AREAF)’

CALL DISINI
CALL PAGERA
CALL COMPLX

CALL HEIGHT(50)
NL=NLMESS(CTIT)
NX=(2970-NL)/2
CALL MESSAG(CTIT,NX,200)

NX0=335
NY0=350

DO I=1,3
NY=NY0+(I-1)*600
DO J=1,6

NX=NX0+(J-1)*400
II=(I-1)*6+J-1
CALL SHDPAT(II)
WRITE(CSTR,’(I2)’) II

DO K=1,4
IXP(K)=IX(K)+NX
IYP(K)=IY(K)+NY

END DO
CALL AREAF(IXP,IYP,4)

NL=NLMESS(CSTR)
NX=NX+(300-NL)/2
CALL MESSAG(CSTR,NX,NY+460)

END DO
END DO

CALL DISFIN
END

282

Figure B.8: Shading Patterns

283

C.9 Vectors

PROGRAM EXA_8
C USE DISLIN for Fortran 90!

DIMENSION IVEC(20)
CHARACTER*60 CTIT,CNUM*4
DATA IVEC/0,1111,1311,1421,1531,1701,1911,

* 3111,3311,3421,3531,3703,4221,4302,
* 4413,4522,4701,5312,5502,5703/

CTIT=’Vectors’

CALL DISINI
CALL PAGERA
CALL COMPLX

CALL HEIGHT(60)
NL=NLMESS(CTIT)
NX=(2970-NL)/2
CALL MESSAG(CTIT,NX,200)

CALL HEIGHT(50)
NX=300
NY=400

DO I=1,20
IF(I.EQ.11) THEN

NX=NX+2970/2
NY=400

END IF

WRITE(CNUM,’(I4)’) IVEC(I)
NL=NLMESS(CNUM)
CALL MESSAG(CNUM,NX-NL,NY-25)

CALL VECTOR(NX+100,NY,NX+1000,NY,IVEC(I))
NY=NY+160

END DO

CALL DISFIN
END

284

V
ec

to
rs

 0

11
11

13
11

14
21

15
31

17
01

19
11

31
11

33
11

34
21

35
31

37
03

42
21

43
02

44
13

45
22

47
01

53
12

55
02

57
03

Figure B.9: Vectors

285

C.10 Shading Patterns (PIEGRF)

PROGRAM EXA_10
C USE DISLIN for Fortran 90!

DIMENSION XRAY(18)
CHARACTER*60 CTIT,CBUF*36,CSTR*2
DATA XRAY/18*1./

CTIT=’Shading Patterns (PIEGRF)’

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX

CALL AXSPOS(250,2700)
CALL AXSLEN(1600,2200)
CALL TITLIN(CTIT,3)
CALL HEIGHT(50)

CALL LEGINI(CBUF,18,2)

DO I=1,18
WRITE(CSTR,’(I2)’) I-1
CALL LEGLIN(CBUF,CSTR,I)

END DO

CALL LABELS(’NONE’,’PIE’)
CALL PIEGRF(CBUF,1,XRAY,18)
CALL TITLE

CALL DISFIN
END

286

Figure B.10: Shading Patterns

287

C.11 3-D Bar Graph / 3-D Pie Chart

PROGRAM EXA_11
C USE DISLIN for Fortran 90!

CHARACTER*80 CBUF
REAL XRAY(5),Y1RAY(5),Y2RAY(5)
INTEGER IC1RAY(5),IC2RAY(5)
DATA XRAY/2.,4.,6.,8.,10./,Y1RAY/0.,0.,0.,0.,0./,

* Y2RAY/3.2,1.5,2.0,1.0,3.0/
DATA IC1RAY/50,150,100,200,175/,

* IC2RAY/50,150,100,200,175/

CALL METAFL(’POST’)
CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL HWFONT

CALL TITLIN(’3-D Bar Graph / 3-D Pie Chart’, 2)
CALL HTITLE(40)

CALL SHDPAT(16)
CALL AXSLEN(1500,1000)
CALL AXSPOS(300,1400)

CALL BARWTH(0.5)
CALL BARTYP(’3DVERT’)
CALL LABELS(’SECOND’,’BARS’)
CALL LABPOS(’OUTSIDE’,’BARS’)
CALL LABCLR(255,’BARS’)
CALL GRAF(0.,12.,0.,2.,0.,5.,0.,1.)
CALL TITLE
CALL COLOR(’RED’)
CALL BARS(XRAY,Y1RAY,Y2RAY,5)
CALL ENDGRF

CALL SHDPAT(16)
CALL LABELS(’DATA’,’PIE’)
CALL LABCLR(255,’PIE’)
CALL CHNPIE(’NONE’)
CALL PIECLR(IC1RAY,IC2RAY,5)
CALL PIETYP(’3D’)
CALL AXSPOS(300,2700)
CALL PIEGRF(CBUF,0,Y2RAY,5)
CALL DISFIN
END

288

0.0 2.0 4.0 6.0 8.0 10.0 12.0
0.0

1.0

2.0

3.0

4.0

5.0

3-D Bar Graph / 3-D Pie Chart

3.2

1.5

2.0

1.0

3.0

3.2

1.5
2.0

1.0

3.0

Figure B.11: 3-D Bar Graph / 3-D Pie Chart

289

C.12 Surface Plot (SURFUN)

PROGRAM EXA_12
C USE DISLIN for Fortran 90!

CHARACTER*60 CTIT1,CTIT2
EXTERNAL ZFUN

CTIT1=’Surface Plot (SURFUN)’
CTIT2=’F(X,Y) = 2*SIN(X)*SIN(Y)’

CALL SETPAG(’DA4P’)
CALL DISINI
CALL PAGERA
CALL COMPLX

CALL AXSPOS(200,2600)
CALL AXSLEN(1800,1800)

CALL NAME(’X-axis’,’X’)
CALL NAME(’Y-axis’,’Y’)
CALL NAME(’Z-axis’,’Z’)

CALL TITLIN(CTIT1,2)
CALL TITLIN(CTIT2,4)

CALL VIEW3D(-5.,-5.,4.,’ABS’)
CALL GRAF3D(0.,360.,0.,90.,0.,360.,0.,90.,

* -3.,3.,-3.,1.)
CALL HEIGHT(50)
CALL TITLE

CALL SURFUN(ZFUN,1,10.,1,10.)

CALL DISFIN
END

FUNCTION ZFUN(X,Y)
FPI=3.14159/180.
ZFUN=2*SIN(X*FPI)*SIN(Y*FPI)
END

290

Figure B.12: Surface Plot

291

C.13 Map Plot

PROGRAM EXA_13
C USE DISLIN for Fortran 90!

DIMENSION XC(9),YC(9)
CHARACTER*12 CSTR(9)

DATA XC/-22.,18.,37.5,0.,2.5,12.5,23.5,-3.75,14.25/
* YC/64.,59.6,56.,51.5,48.5,42.,38.,40.3,50.1/
* CSTR/’Reykjavik’,’Stockholm’,’Moskau’,’London’,
* ’Paris’,’Rom’,’Athen’,’Madrid’,’Prag’/

CALL METAFL(’POST’)
CALL DISINI
CALL PAGERA
CALL HWFONT

CALL AXSPOS(500,1850)
CALL AXSLEN(2200,1400)

CALL LABDIG(-1,’xy’)
CALL TICKS(1,’xy’)
CALL NAME(’Longitude’,’x’)
CALL NAME(’Latitude’,’y’)

CALL TITLIN(’Map Plot’,3)
CALL INCMRK(-1)

CALL LABELS(’MAP’,’xy’)
CALL PROJCT(’LAMBERT’)
CALL FRAME(3)
CALL GRAFMP(-40.,60.,-40.,20.,35.,70.,40.,10.)

CALL WORLD
CALL CURVMP(XC,YC,9)

DO I=1,9
CALL POS2PT(XC(I),YC(I),XP,YP)
NXP=XP+30
NYP=YP
CALL MESSAG(CSTR(I),NXP,NYP)

END DO

CALL GRIDMP(1,1)

CALL HEIGHT(50)
CALL TITLE
CALL DISFIN
END

292

20
o

W
0o

20
o

E
40

o
E

L
on

gi
tu

de

40
o

N

50
o

N

Latitude

R
ey

kj
av

ik

S
to

ck
ho

lm
M

os
ka

u

L
on

do
n

P
ar

is

R
om

A
th

en

M
ad

ri
d

P
ra

g

M
ap

 P
lo

t

Figure B.13: Map Plot

293

294

Appendix D

Index

This appendix presents all routines in the graphics library in alphabetical order. For parameters, the
following conventions are used:

- INTEGER variables begin with the character N or I

- CHARACTER variables begin with the character C

- other variables are REAL

- arrays end with the keyword ’RAY’.

The abbreviations have the meaning:

ps denotes a parameter setting routine

rq denotes a parameter requesting routine

p denotes a plot routine.

w denotes a widget routine.

Routine Parameter Level Page

ABS3PT (X, Y, Z, XP, YP) 3 171
ADDLAB (CSTR, V, ITIC, CAX) 2,3 p 18
ANGLE (NGRAD) 1,2,3 ps 55
ARCELL (NX, NY, NA, NB, A, B, T) 1,2,3 p 101
AREAF (NXRAY, NYRAY, N) 1,2,3 p 101
AUTRES (IXDIM, IYDIM) 1 ps 141
AX2GRF none 1,2,3 ps 48
AX3LEN (NXL, NYL, NZL) 1 ps 142
AXCLRS (NCLR, COPT, CAX) 1,2,3 ps 50
AXENDS (CSTR, CAX) 1,2,3 ps 48
AXGIT none 2,3 p 17
AXIS3D (X3AXIS, Y3AXIS, Z3AXIS) 1,2,3 ps 147
AXSBGD (NCLR) 1,2,3 ps 50
AXSLEN (NXL, NYL) 1 ps 40
AXSORG (NX, NY) 1 ps 39
AXSPOS (NXA, NYA) 1 ps 39
AXSSCL (CSCL,CAX) 1,2,3 ps 40
AXSTYP (COPT) 1 ps 39
BARBOR (ICLR) 1,2,3 ps 127

295

Routine Parameter Level Page

BARCLR (IC1, IC2, IC3) 1,2,3 ps 127
BARGRP (NGRP, GAP) 1,2,3 ps 127
BARMOD (CMOD,COPT) 1,2,3 ps 126
BAROPT (XF, ANG) 1,2,3 ps 128
BARPOS (COPT) 1,2,3 ps 126
BARS (XRAY, Y1RAY, Y2RAY, N) 2,3 p 125
BARS3D (XRAY, YRAY, Z1RAY, Y2RAY, XWRAY, YWRAY,

ICRAY, N)
2,3 p 155

BARTYP (CTYP) 1,2,3 ps 125
BARWTH (FACTOR) 1,2,3 ps 83, 126
BASALF (CALPH) 1,2,3 ps 60
BASDAT (ID, IM, IY) 0,1,2,3 ps 109
BEZIER (XRAY, YRAY, N, XPRAY, YPRAY, NP) 0,1,2,3 108
BITSI2 (NBITS, NINP2, IINP, NOUT2, IOUT, IOPT) 0,1,2,3 110
BITSI4 (NBITS, NINP, IINP, NOUT, IOUT, IOPT) 0,1,2,3 111
BMPFNT (CFONT) 1,2,3 ps 59
BMPMOD (N, CVAL, COPT) 0 ps 31
BOX2D none 1,2,3 p 16
BOX3D none 3 p 150
CENTER none 1,2,3 ps 40
CGMBGD (XR, XG, XB) 0,1,2,3 ps 30
CGMPIC (CSTR) 0,1,2,3 ps 30
CHAANG (ANGLE) 1,2,3 ps 56
CHACOD (COPT) 1,2,3 ps 59
CHASPC (XSPC) 1,2,3 ps 56
CHAWTH (XWTH) 1,2,3 ps 56
CHNATT none 1,2,3 ps 80
CHNBAR (COPT) 1,2,3 ps 126
CHNCRV (CATT) 1,2,3 ps 80
CHNDOT none 1,2,3 ps 83
CHNDSH none 1,2,3 ps 83
CHNPIE (CATT) 1,2,3 ps 130
CIRC3P (X1, Y1, X2, Y2, X3, Y3, XM, YM, R) 0,1,2,3 109
CIRCLE (NX, NY, NR) 1,2,3 p 100
CIRCSP (NSPC) 1,2,3 ps 102
CLIP3D (COPT) 1,2,3 ps 158
CLOSFL (NLU) 0,1,2,3 112
CLPBOR (COPT) 2,3 ps 49
CLPWIN (NX, NY, NW, NH) 1,2,3 ps 49
CLRCYC (INDEX, ICLR) 1,2,3 ps 86
CLRMOD (CMOD) 0 ps 37
CLSWIN (ID) 1,2,3 ps 114
COLOR (CCOL) 1,2,3 ps 52
COLRAN (NCA, NCE) 1,2,3 ps 142
COLRAY (ZRAY, NRAY, N) 3 145
COMPLX none 1,2,3 ps 57
CONCLR (NCRAY,N) 1,2,3 ps 205
CONCRV (XRAY, YRAY, N, ZLEV) 2,3 p 199
CONE3D (XM, YM, ZM, R, H1, H2, N, M) 3 p 168

296

Routine Parameter Level Page

CONFLL (XRAY, YRAY, ZVRAY, N, I1RAY, I2RAY, I3RAY,
NTRI, ZLVRAY, NLEV)

2,3 p 201

CONGAP (XFAC) 1,2,3 ps 204
CONLAB (CSTR) 1,2,3 ps 204
CONMAT (ZMAT, N, M, ZLEV) 2,3 p 200
CONMOD (XFAC, XQUOT) 1,2,3 ps 204
CONN3D (X, Y, Z) 3 p 166
CONNPT (X, Y) 1,2,3 p 97
CONPTS (XRAY, N, YRAY, M, ZMAT, ZLEV, XPTS, YPTS,

MAXPTS, IRAY, MAXCRV, NCRV)
0,1,2,3 202

CONSHD (XRAY, N, YRAY, M, ZMAT, ZLVRAY, NLEV) 2,3 p 201
CONTRI (XRAY, YRAY, ZVRAY, N, I1RAY, I2RAY, I3RAY,

NTRI, ZLEV)
2,3 p 200

CONTUR (XRAY, N, YRAY, M, ZMAT, ZLEV) 2,3 p 199
CROSS none 2,3 p 18
CRVMAT (ZMAT, N, M, IXPTS, IYPTS) 3 p 140
CRVTRI (XRAY, YRAY, ZVRAY, N, I1RAY, I2RAY, I3RAY,

NTRI)
2,3 p 140

CSRKEY (CKEY) 1,2,3 115
CSRMOD (CMOD, CKEY) 1,2,3 ps 116
CSRMOV (NXRAY, NYRAY, NMAX, N, IRET) 1,2,3 116
CSRPOS (NX, NY, IKEY) 1,2,3 115
CSRPT1 (NX, NY) 1,2,3 116
CSRPTS (NXRAY, NYRAY, NMAX, N, IRET) 1,2,3 116
CSRREC (NX1, NY1, NX2, NY2) 1,2,3 116
CSRTYP (COPT) 1,2,3 ps 117
CSRUNI (COPT) 1,2,3 ps 117
CURV3D (XRAY, YRAY, ZRAY, N) 3 p 150
CURVE (XRAY, YRAY, N) 2,3 p 21
CURVE3 (XRAY, YRAY, ZRAY, N) 3 p 140
CURVMP (XRAY, YRAY, N) 2 p 186
CURVX3 (XRAY, Y, ZRAY, N) 3 p 140
CURVY3 (X, YRAY, ZRAY, N) 3 p 140
CYLI3D (XM, YM, ZM, R, H, N, M) 3 p 169
DASH none 1,2,3 ps 83
DASHL none 1,2,3 ps 83
DASHM none 1,2,3 ps 83
DBFFIN none 1,2,3 ps 166
DBFINI (IRET) 1,2,3 ps 165
DISALF none 1,2,3 ps 57
DISFIN none 1,2,3 ps 11
DISINI none 0 11
DISK3D (XM, YM, ZM, R1, R2, N, M) 3 p 169
DOT none 1,2,3 ps 83
DOTL none 1,2,3 ps 83
DUPLX none 1,2,3 ps 57
DWGBUT (CSTR, IVAL) 0 w 233
DWGFIL (CLAB, CFIL, CMASK) 0 w 234
DWGLIS (CLAB, CLIS, ISEL) 0 w 234

297

Routine Parameter Level Page

DWGMSG (CSTR) 0 w 233
DWGTXT (CLAB, CSTR) 0 w 234
ELLIPS (NX, NY, NA, NB) 1,2,3 p 101
ENDGRF none 2,3 16
ERASE none 1,2,3 p 113
ERRBAR (XRAY, YRAY, E1RAY, E2RAY, N) 2,3 p 24
ERRDEV (CDEV) 0 ps 36
ERRFIL (CFIL) 0 ps 36
ERRMOD (CKEY,CMOD) 0 ps 35
EUSHFT (CNAT, CHAR) 1,2,3 ps 60
EXPZLB (CSTR) 1,2,3 ps 143
FCHA (X, NDIG, NL, CSTR) 0,1,2,3 107
FIELD (X1RAY, Y1RAY, X2RAY, Y2RAY, N, IVEC) 2, 3 p 25
FIELD3D (X1RAY, Y1RAY, Z1RAY, X2RAY, Y2RAY, Z2RAY,

N, IVEC)
3 p 151

FILBOX (NX, NY, NW, NH) 1,2,3 ps 14
FILCLR (CMOD) 1,2,3 ps 14
FILMOD (CMOD) 0,1,2,3 ps 29
FILOPT (COPT, CKEY) 0,1,2,3 ps 29
FIXSPC (XFAC) 1,2,3 ps 57
FLAB3D none 1,2,3 ps 150
FLEN (X, NDIG, NL) 0,1,2,3 106
FRAME (NFRM) 1,2,3 ps 49
FRMCLR (NCLR) 1,2,3 ps 50
FRMESS (NFRM) 1,2,3 ps 55
GAPCRV (XGAP) 1,2,3 ps 83
GAXPAR (V1, V2, COPT, CAX, A, B, OR, STP, NDIG) 1,2,3 19
GETALF (CALPH) 1,2,3 rq 92
GETANG (NANG) 1,2,3 rq 92
GETBPP (NBPP) 0,1,2,3 rq 96
GETCLP (NX, NY, NW, NH) 1,2,3 rq 96
GETCLR (NCOL) 1,2,3 rq 94
GETDIG (NXDIG, NYDIG, NZDIG) 1,2,3 rq 93
GETDSP (CDSP) 0,1,2,3 rq 96
GETFIL (CFIL) 1,2,3 rq 91
GETGRF (XA, XE, XOR, XSTP, CAX) 2,3 rq 93
GETHGT (NHCHAR) 1,2,3 rq 92
GETHNM (NHNAME) 1,2,3 rq 92
GETIND (INDEX, XR, XG, XB) 1,2,3 rq 95
GETLAB (CXLAB, CYLAB, CZLAB) 1,2,3 rq 94
GETLEN (NXL, NYL, NZL) 1,2,3 rq 92
GETLEV (NLEV) 0,1,2,3 rq 94
GETLIN (NWIDTH) 1,2,3 rq 95
GETLIT (XP, YP, ZP, XN, YN, ZN, ICLR) 1,2,3 rq 161
GETMAT (XRAY, YRAY, ZRAY, N, ZMAT, NX, NY, ZVAL,

IMAT, WMAT)
2,3 161

GETMFL (CFMT) 1,2,3 rq 91
GETMIX (CHAR, CMIX) 1,2,3 rq 92
GETOR (NX0, NY0) 1,2,3 rq 91

298

Routine Parameter Level Page

GETPAG (NXPAG, NYPAG) 1,2,3 rq 91
GETPAT (NPAT) 1,2,3 rq 95
GETPLV (NPLV) 1,2,3 rq 94
GETPOS (NXA, NYA) 1,2,3 rq 91
GETRAN (NCA, NCE) 1,2,3 rq 96
GETRES (NPB, NPH) 1,2,3 rq 95
GETRGB (XR, XG, XB) 1,2,3 rq 95
GETSCL (NXSCL, NYSCL, NZSCL) 1,2,3 rq 94
GETSCR (NWPIX, NHPIX) 0,1,2,3 rq 95
GETSHF (CNAT, CHAR) 1,2,3 rq 92
GETSP1 (NXDIS, NYDIS, NZDIS) 1,2,3 rq 93
GETSP2 (NXDIS, NYDIS, NZDIS) 1,2,3 rq 94
GETSYM (NSYM, NHSYM) 1,2,3 rq 94
GETTCL (NMAJ, NMIN) 1,2,3 rq 93
GETTIC (NXTIC, NYTIC, NZTIC) 1,2,3 rq 93
GETTYP (NTYP) 1,2,3 rq 95
GETUNI (NU) 1,2,3 rq 94
GETVER (XVER) 0,1,2,3 rq 94
GETVK (NV, NVFX, NVFY) 1,2,3 rq 96
GETVLT (CVLT) 1,2,3 rq 95
GETWID (NZB) 1,2,3 rq 96
GETWIN (NX, NY, NW, NH) 1,2,3 rq 96
GETXID (IVAL, CTYPE) 1,2,3 rq 96
GIFMOD (CMODE, CKEY) 0 ps 32
GMXALF (CALPH, C1, C2, N) 1,2,3 rq 93
GOTHIC none 1,2,3 ps 57
GRACE (NGRACE) 1,2,3 ps 49
GRAF (XA, XE, XOR, XSTP, YA, YE, YOR, YSTP) 1 p 15
GRAF3 (XA, XE, XOR, XSTP, YA, YE, YOR, YSTP, ZA, ZE,

ZOR, ZSTP)
1 p 139

GRAF3D (XA, XE, XOR, XSTP, YA, YE, YOR, YSTP, ZA, ZE,
ZOR, ZSTP)

1 p 149

GRAFMP (XA, XE, XOR, XSTP, YA, YE, YOR, YSTP) 1 p 179
GRAFP (XE, XOR, XSTP, YOR, YSTP) 1 p 16
GRDPOL (IXGRID, IYGRID) 2,3 p 17
GRFFIN none 1,2,3 ps 164
GRFINI (X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3) 3 ps 164
GRID (IXGRID, IYGRID) 2,3 p 17
GRID3D (IXGRID, IYGRID, COPT) 2,3 p 150
GRIDMP (IXGRID, IYGRID) 2 p 179
GWGATT (ID, IATT, COPT) 0 rq 231
GWGBOX (ID, ISEL) 0 rq 230
GWGBUT (ID, IVAL) 0 rq 229
GWGFIL (ID, CFIL) 0 rq 230
GWGFLT (ID, XVAL) 0 rq 230
GWGINT (ID, IVAL) 0 rq 229
GWGLIS (ID, ISEL) 0 rq 230
GWGSCL (ID, XVAL) 0 rq 230
GWGTBF (ID, IROW, ICOL, XVAL) 0 rq 231

299

Routine Parameter Level Page

GWGTBI (ID, IROW, ICOL, IVAL) 0 rq 231
GWGTBL (ID, XRAY, N, IDX, COPT) 0 rq 231
GWGTBS (ID, IROW, ICOL, CVAL) 0 rq 231
GWGTXT (ID, CSTR) 0 rq 229
GWGXID (ID, IWINID) 0 rq 232
HEIGHT (NHCHAR) 1,2,3 ps 54
HELVE none 1,2,3 ps 57
HELVES none 1,2,3 ps 57
HISTOG (XRAY, N, XHRAY, YHRAY, NH) 0,1,2,3 ps 108
HNAME (NHNAME) 1,2,3 ps 47
HPGMOD (CMOD, CKEY) 0 ps 32
HSVRGB (XH, XS, XV, XR, XG, XB) 0,1,2,3 54
HSYM3D (H) 1,2,3 ps 158
HSYMBL (NHSYM) 1,2,3 ps 81
HTITLE (NHTIT) 1,2,3 ps 51
HWFONT none 1,2,3 ps 59
HWORIG (NX, NY) 0 ps 35
HWPAGE (NW, NH) 0 ps 35
HWSCAL (XSCL) 0 ps 35
IMGBOX (NX, NY, NW, NH) 1,2,3 ps 119
IMGCLP (NX, NY, NW, NH) 1,2,3 ps 122
IMGFIN none 1,2,3 ps 118
IMGFMT (COPT) 0 ps 32
IMGINI none 1,2,3 ps 117
IMGMOD (COPT) 1,2,3 ps 119
IMGSIZ (NW, NH) 1,2,3 ps 119
INCCRV (NCRV) 1,2,3 ps 80
= INCDAT (ID, IM, IY) 0,1,2,3 110
INCFIL (CFIL) 1,2,3 p 14
INCMRK (NMRK) 1,2,3 ps 81
= INDRGB (XR, XG, XB) 1,2,3 54
INTAX none 1,2,3 ps 45
INTCHA (NX, NL, CSTR) 0,1,2,3 106
INTLEN (NX, NL) 0,1,2,3 106
= INTRGB (XR, XG, XB) 0,1,2,3 54
INTUTF (IRAY, NRAY, CSTR, NMAX, N) 0,1,2,3 105
ISOPTS (XRAY, NX, YRAY, NY, ZRAY, NZ, WMAT, WLEV,

XTRI, YTRI, ZTRI, NMAX, NTRI)
3 155

ITMCAT (CLIS, CITEM) 0,1,2,3 232
= ITMCNT (CLIS) 0,1,2,3 232
ITMSTR (CLIS, IDX, CITEM) 0,1,2,3 232
LABCLR (ICLR, COPT) 1,2,3 ps 129,204
LABDIG (NDIG, CAX) 1,2,3 ps 45
LABDIS (NDIS, CAX) 1,2,3 ps 45,204
LABELS (CLAB, CAX) 1,2,3 ps 43,203
LABJUS (CJUS, CAX) 1,2,3 ps 44
LABL3D (COPT) 1,2,3 ps 156
LABMOD (CKEY, CVAL, CAX) 1,2,3 ps 45
LABPOS (CPOS, CAX) 1,2,3 ps 44

300

Routine Parameter Level Page

LABTYP (CTYP, CAX) 1,2,3 ps 44
LEGCLR none 1,2,3 ps 23
LEGEND (CBUF, NCOR) 2,3 p 22
LEGINI (CBUF, NLIN, NMAXLN) 1,2,3 ps 22
LEGLIN (CBUF, CSTR, ILIN) 1,2,3 ps 22
LEGOPT (XF1, XF2, XF3) 1,2,3 ps 23
LEGPAT (ITYP, ITHK, ISYM, ICLR, IPAT, ILIN) 1,2,3 ps 23
LEGPOS (NX, NY) 1,2,3 ps 23
LEGTIT (CSTR) 1,2,3 ps 23
LEGVAL (X, COPT) 1,2,3 ps 24
LFTTIT none 1,2,3 ps 51
LIGHT (CMODE) 1,2,3 ps 159
LINCYC (INDEX, ITYP) 1,2,3 ps 86
LINE (NX, NY, NU, NV) 1,2,3 p 98
LINESP (XFAC) 1,2,3 ps 51
LINTYP (NTYP) 1,2,3 ps 83
LINWID (NWIDTH) 1,2,3 ps 84
LITMOD (ID, CMODE) 1,2,3 ps 159
LITOP3 (ID, XR, XG, XB, CTYPE) 1,2,3 ps 160
LITOPT (ID, XVAL, CTYPE) 1,2,3 ps 160
LITPOS (ID, XP, YP, ZP, COPT) 1,2,3 ps 159
LNCAP (CAP) 1,2,3 ps 84
LNJOIN (CJOIN) 1,2,3 ps 84
LNMLT (XFC) 1,2,3 ps 84
LOGTIC (CMOD) 1,2,3 ps 42
MAPBAS (COPT) 1,2,3 ps 187
MAPFIL (CFIL, COPT) 1,2,3 ps 187
MAPLAB (COPT, CKEY) 1,2,3 ps 188
MAPLEV (COPT) 1,2,3 ps 188
MAPMOD (CMODE) 1,2,3 ps 189
MAPOPT (COPT, CKEY) 1,2,3 ps 189
MAPPOL (XPOL, YPOL) 1 ps 188
MAPREF (YLOWER, YUPPER) 1 ps 188
MAPSPH (XRAD) 1 ps 188
MARKER (NSYM) 1,2,3 ps 81
MATOP3 (XR, XG, XB, CTYPE) 1,2,3 ps 160
MATOPT (XVAL, CTYPE) 1,2,3 ps 160
MDFMAT (IX, IY, WEIGHT) 1,2,3 ps 162
MESSAG (CSTR, NX, NY) 1,2,3 p 11
METAFL (CFMT) 0 ps 28
MIXALF none 1,2,3 ps 70
MIXLEG none 1,2,3 ps 23
MPSLOGO (NX, NY, NSIZE, COPT) 1,2,3 p 124
MSGBOX (CSTR) 0 w 233
MSHCLR (ICLR) 1,2,3 ps 158
MYLAB (CSTR, ITICK, CAX) 1,2,3 ps 43
MYLINE (NRAY, N) 1,2,3 ps 83
MYPAT (IANG, ITYPE, IDENS, ICROSS) 1,2,3 ps 85
MYSYMB (XRAY, YRAY, N, ISYM, IFLAG) 1,2,3 ps 81

301

Routine Parameter Level Page

MYVLT (XRRAY, XGRAY, XBRAY, N) 0,1,2,3 ps 53
NAMDIS (NDIS, CAX) 1,2,3 ps 47
NAME (CSTR, CAX) 1,2,3 ps 47
NAMJUS (CJUS, CAX) 1,2,3 ps 47
NEGLOG (EPS) 1,2,3 ps 21
NEWMIX none 1,2,3 ps 70
NEWPAG none 1 ps 34
= NLMESS (CSTR) 1,2,3 105
= NLNUMB (X, NDIG) 1,2,3 106
NOARLN none 1,2,3 ps 86
NOBAR none 1,2,3 ps 142
NOBGD none 1,2,3 ps 143
NOCHEK none 1,2,3 ps 83
NOCLIP none 1,2,3 ps 49
NOGRAF none 1 ps 48
NOHIDE none 1,2,3 ps 156
NOLINE (CAX) 1,2,3 ps 48
NUMBER (X, NDIG, NX, NY) 1,2,3 p 11
NUMFMT (COPT) 1,2,3 ps 55
NUMODE (CDEC, CGRP, CPOS, CFIX) 1,2,3 ps 55
=NWKDAY (ID, IM, IY) 0,1,2,3 110
=NXLEGN (CBUF) 2,3 23
=NXPIXL (IX, IY) 1,2,3 103
=NXPOSN (X) 2,3 103
=NYLEGN (CBUF) 2,3 23
=NYPIXL (IX, IY) 1,2,3 103
=NYPOSN (Y) 2,3 103
=NZPOSN (Z) 3 144
OPENFL (CFIL, NLU, IRW, ISTAT) 0,1,2,3 111
OPNWIN (ID) 1,2,3 114
ORIGIN (NX0, NY0) 1 ps 28
PAGE (NWPAGE, NHPAGE) 0 ps 32
PAGERA none 1,2,3 p 13
PAGFLL (NCLR) 1,2,3 p 13
PAGHDR (CSTR1, CSTR2, IOPT, IDIR) 1,2,3 p 13
PAGMOD (CMOD) 0 ps 34
PAGORG (COPT) 1,2,3 ps 27
PAGWIN (NW,NW) 1,2,3 ps 114
PATCYC (INDEX, IPAT) 1,2,3 ps 86
PDFBUF (CBUF, NMAX, N) 0 122
PDFMOD (CMOD, CKEY) 0 ps 31
PDFMRK (CSTR, COPT) 1,2,3 ps 31
PENWID (XWIDTH) 1,2,3 ps 84
PIE (NXM, NYM, NR, ALPHA, BETA) 1,2,3 p 101
PIEBOR (ICLR) 1,2,3 ps 131
PIECLR (IC1RAY, IC2RAY, N) 1,2,3 ps 131
PIEEXP none 1,2,3 ps 132
PIEGRF (CBUF, NLIN, XRAY, NSEG) 1 p 129
PIELAB (CLAB, CPOS) 1,2,3 ps 132

302

Routine Parameter Level Page

PIEOPT (XF, ANG) 1,2,3 ps 132
PIETYP (CTYP) 1,2,3 ps 129
PIEVEC (IVEC, COPT) 1,2,3 ps 132
PIKE3D (X1, Y1, Z1, X2, Y2, Z2, R, N, M) 3 p 168
PLAT3D (XM, YM, ZM, XL, COPT) 3 p 170
PNGMOD (CMOD, CKEY) 0 ps 32
POINT (NX, NY, NB, NH, NCOL) 1,2,3 p 143
POLAR (XE, XOR, XSTP, YOR, YSTP) 1 p 16
POLCLP (XRAY, YRAY, N, XOUT, YOUT, NMAX, XV,

CEDGE)
0,1,2,3 109

POLCRV (CPOL) 1,2,3 ps 82
POLMOD (CPOS, CDIR) 1,2,3 ps 46
POS2PT (X, Y, XP, YP) 2 189
POS3PT (X, Y, Z, XABS, YABS, ZABS) 3 171
POSIFL (NLU, NBYTE, ISTAT) 0,1,2,3 113
PROJCT (CPROJ) 1 ps 181
PSFONT (CFONT) 1,2,3 ps 57
PSMODE (CMODE) 1,2,3 ps 60
PYRA3D (XM, YM, ZM, XL, H1, H2, N) 3 p 169
QPLBAR (XRAY, N) 0,1 p 241
QPLCLR (ZMAT, IXDIM, IYDIM) 0,1 p 242
QPLCON (ZMAT, IXDIM, IYDIM, NLEV) 0,1 p 242
QPLOT (XRAY, YRAY, N) 0,1 p 241
QPLPIE (XRAY, N) 0,1 p 242
QPLSCA (XRAY, YRAY, N) 0,1 p 241
QPLSUR (ZMAT, IXDIM, IYDIM) 0,1 p 242
QUAD3D (XM, YM, ZM, XL, YL, ZL) 3 p 169
RBFPNG (CBUF, NMAX, N) 1,2,3 121
RBMP (CFIL) 1,2,3 122
READFL (NLU, IRAY, NBYTE, ISTAT) 0,1,2,3 112
REAWGT none 0 w 233
RECFLL (NX, NY, NW, NH, NCOL) 1,2,3 p 143
RECTAN (NX, NY, NW, NH) 1,2,3 p 100
REL3PT (X, Y, Z, XP, YP) 3 171
RESATT none 1,2,3 ps 80
RESET (CNAME) 1,2,3 ps 27
RGBHSV (XR, XG, XB, XH, XS, XV) 0,1,2,3 54
RGIF (CFIL) 1,2,3 121
RGTLAB none 1,2,3 ps 46
RIMAGE (CFIL) 1,2,3 120
RLARC (XM, YM, XA, XB, A, B, T) 2,3 p 102
RLAREA (XRAY, YRAY, N) 2,3 p 102
RLCIRC (XM, YM, R) 2,3 p 102
RLCONN (X, Y) 2,3 p 97
RLELL (XM, YM, A, B) 2,3 p 102
RLINE (X, Y, U, V) 2,3 p 98
RLMESS (CSTR, X, Y) 2,3 p 12
RLNUMB (X, NDIG, XP, YP) 2,3 p 12
RLPIE (XM, YM, R, ALPHA, BETA) 2,3 p 102

303

Routine Parameter Level Page

RLPOIN (X, Y, NB, NH, NCOL) 2,3 p 144
RLREC (X, Y, WIDTH, HEIGHT) 2,3 p 102
RLRND (X, Y, WIDTH, HEIGHT, IOPT) 2,3 p 102
RLSEC (XM, YM, R1, R2, ALPHA, BETA, NCOL) 2,3 p 144
RLSTRT (X, Y) 2,3 p 97
RLSYMB (NSYM,X,Y) 2,3 p 12
RLVEC (X1, Y1, X2, Y2, IVEC) 2,3 p 99
RLWIND (X,XP,YP,NW,A) 2,3 p 100
RNDREC (NX, NY, NW, NH, IOPT) 1,2,3 p 100
ROT3D (AX, AY, AZ) 1,2,3 ps 159
RPIXEL (IX, IY, NCLR) 1,2,3 118
RPIXLS (IRAY, IX, IY, NW, NH) 1,2,3 118
RPNG (CFIL) 1,2,3 121
RPPM (CFIL) 1,2,3 121
RPXROW (IRAY, IX, IY, N) 1,2,3 119
RTIFF (CFIL) 1,2,3 120
RVYNAM none 1,2,3 ps 47
SCALE (CSCL,CAX) 1,2,3 ps 40
SCLFAC (XFAC) 0 ps 33
SCLMOD (CMODE) 0 ps 34
SCRMOD (CMODE) 0 ps 30
SECTOR (NX, NY, NR1, NR2, ALPHA, BETA, NCOL) 1,2,3 p 144
SELWIN (ID) 1,2,3 ps 114
SENDBF none 0,1,2,3 113
SENDMB none 1,2,3 233
SENDOK none 0 233
SERIF none 1,2,3 ps 57
SETBAS (XFAC) 1,2,3 ps 70
SETCBK (ROUTINE, COPT) 0,1,2,3 ps 190
SETCLR (NCOL) 1,2,3 ps 52
SETCSR (COPT) 1,2,3 ps 117
SETEXP (FEXP) 1,2,3 ps 70
SETFCE (COPT) 1,2,3 ps 158
SETFIL (CFIL) 0 29
SETGRF (C1, C2, C3, C4) 1 ps 48
SETIND (INDEX, XR, XG, XB) 1,2,3 ps 53
SETMIX (CHAR, CMIX) 1,2,3 ps 70
SETPAG (CPAG) 0 33
SETRES (NPB, NPH) 1,2,3 ps 141
SETRGB (XR, XG, XB) 1,2,3 ps 52
SETSCL (XRAY, N, CAX) 1,2,3 ps 40
SETVLT (CVLT) 1,2,3 ps 53
SETXID (ID,COPT) 0,1,2,3 ps 38
SHDAFR (INRAY, IPRAY, ICRAY, N) 2 p 182
SHDASI (INRAY, IPRAY, ICRAY, N) 2 p 183
SHDAUS (INRAY, IPRAY, ICRAY, N) 2 p 184
SHDCHA none 1,2,3 ps 57
SHDCRV (X1RAY, Y1RAY, N1, X2RAY, Y2RAY, N2) 2,3 p 24
SHDEUR (INRAY, IPRAY, ICRAY, N) 2 p 184

304

Routine Parameter Level Page

SHDMAP (CMAP) 2,3 p 182
SHDMOD (CMOD, CTYPE) 1,2,3 ps 157, 205
SHDNOR (INRAY, IPRAY, ICRAY, N) 2 p 185
SHDPAT (IPAT) 1,2,3 ps 85
SHDSOU (INRAY, IPRAY, ICRAY, N) 2 p 185
SHDUSA (INRAY, IPRAY, ICRAY, N) 2 p 186
SHIELD (CAREA, CMODE) 1,2,3 ps 87
SHLCIR (NX, NY, NR) 1,2,3 ps 88
SHLDEL (ID) 1,2,3 ps 88
SHLELL (NX, NY, NA, NB, THETA) 1,2,3 ps 88
SHLIND (ID) 1,2,3 ps 88
SHLPIE (NX, NY, NR, A, B) 1,2,3 ps 88
SHLPOL (NXRAY, NYRAY, N) 1,2,3 ps 88
SHLRCT (NX, NY, NW, NH, THETA) 1,2,3 ps 88
SHLREC (NX, NY, NW, NH) 1,2,3 ps 88
SHLRES (N) 1,2,3 ps 89
SHLSUR none 1,2,3 ps 156
SHLVIS (ID, CMODE) 1,2,3 ps 89
SIMPLX none 1,2,3 ps 57
SKIPFL (NLU, NBYTE, ISTAT) 0,1,2,3 112
SMXALF (CALPH, C1, C2, N) 1,2,3 ps 60
SOLID none 1,2,3 ps 83
SORTR1 (XRAY, N, COPT) 0,1,2,3 107
SORTR2 (XRAY, YRAY, N, COPT) 0,1,2,3 107
SPHE3D (XM, YM, ZM, R, N, M) 3 p 168
SPLINE (XRAY, YRAY, N, XSRAY, YSRAY, NSPL) 1,2,3 107
SPLMOD (NGRAD, NPTS) 1,2,3 p 82
STRT3D (X, Y, Z) 3 p 166
STRTPT (X, Y) 1,2,3 p 97
SURCLR (ICTOP, ICBOT) 1,2,3 ps 157
SURFCE (XRAY, N, YRAY, M, ZMAT) 3 p 152
SURFCP (ZFUN, T1, T2, TSTP, U1, U2, USTP) 3 p 154
SURFUN (ZFUN, IXPTS, XD, IYPTS, YD) 3 p 152
SURISO (XRAY, NX, YRAY, NY, ZRAY, NZ, WMAT, WLEV) 3 p 154
SURMAT (ZMAT, NX, NY, IXPTS, IYPTS) 3 p 152
SURMSH (COPT) 1,2,3 ps 157
SUROPT (COPT) 1,2,3 ps 156
SURSHD (XRAY, N, YRAY, M, ZMAT) 3 p 153
SURSZE (XMIN, XMAX, YMIN, YMAX) 1,2,3 ps 153
SURTRI (XRAY, YRAY, ZRAY, N, I1RAY, I2RAY, I3RAY,

NTRI)
3 p 154

SURVIS (CVIS) 1,2,3 ps 156
SWAPI2 (IRAY2, N) 0,1,2,3 111
SWAPI4 (IRAY, N) 0,1,2,3 111
SWGATT (ID, CATT, COPT) 0 ps 225
SWGBOX (ID, ISEL) 0 ps 226
SWGBUT (ID, IVAL) 0 ps 226
SWGCB2 (IP, ROUTINE) 0 ps 225
SWGCBK (IP, ROUTINE) 0 ps 225

305

Routine Parameter Level Page

SWGCLR (XR, XG, XB, COPT) 0 ps 219
SWGDRW (XF) 0 ps 219
SWGFIL (ID, CFIL) 0 ps 227
SWGFLT (ID, XVAL, NDIG) 0 ps 227
SWGFNT (CFONT, NPTS) 0 ps 220
SWGFOC (ID) 0 ps 220
SWGHLP (CSTR) 0 ps 222
SWGINT (ID, IVAL) 0 ps 226
SWGJUS (CJUS, CLASS) 0 ps 224
SWGLIS (ID, ISEL) 0 ps 226
SWGMIX (CHAR, CMIX) 0 ps 225
SWGMRG (IVAL, CMRG) 0 ps 224
SWGOPT (COPT, CKEY) 0 ps 220
SWGPOP (COPT) 0 ps 222
SWGPOS (NX, NY) 0 ps 223
SWGRAY (XRAY, N, COPT) 0 ps 229
SWGSCL (ID, XVAL) 0 ps 227
SWGSIZ (NW, NH) 0 ps 223
SWGSPC (XSPC, YSPC) 0 ps 224
SWGSTP (XSTP) 0 ps 224
SWGTBF (ID, XVAL, NDIG, IROW, ICOL, COPT) 0 ps 227
SWGTBI (ID, IVAL, IROW, ICOL, COPT) 0 ps 228
SWGTBL (ID, XRAY, N, NDIG, IDX, COPT) 0 ps 228
SWGTBS (ID, CVAL, IROW, ICOL, COPT) 0 ps 228
SWGTIT (CTIT) 0 ps 222
SWGTXT (ID, CSTR) 0 ps 226
SWGTYP (CTYPE, CLASS) 0 ps 223
SWGVAL (ID, XVAL) 0 ps 227
SWGWIN (NX, NY, NW, NH) 0 ps 223
SWGWTH (NWTH) 0 ps 219
SYMB3D (N, XM, YM, ZM) 3 p 170
SYMBOL (NSYM, NX, NY) 1,2,3 p 12
SYMFIL (CDEV, CSTAT) 0 13
SYMROT (ANGLE) 1,2,3 ps 12
TELLFL (NLU, NBYTE) 0,1,2,3 113
TEXMOD (CMODE) 1,2,3 ps 74
TEXOPT (COPT, CTYPE) 1,2,3 ps 74
TEXVAL (X, COPT) 1,2,3 ps 75
THKCRV (NTHK) 1,2,3 ps 81
THRINI (N) 0 124
THRFIN none 0 124
TICKS (ITICK, CAX) 1,2,3 ps 41
TICLEN (NMAJ, NMIN) 1,2,3 ps 42
TICMOD (CMOD, CAX) 1,2,3 ps 42
TICPOS (CPOS, CAX) 1,2,3 ps 41
TIFMOD (N, CVAL, COPT) 0 ps 30
TIFORG (NX, NY) 1,2,3 ps 121
TIFWIN (NX, NY, NW, NH) 1,2,3 ps 121
TIMOPT none 1,2,3 ps 46

306

Routine Parameter Level Page

T TITJUS (CJUS) 1,2,3 ps 51
TITLE none 2,3 p 16
TITLIN (CSTR, N) 1,2,3 ps 50
TITPOS (CPOS) 1,2,3 ps 51
TORUS3D (XM, YM, ZM, R1, R2, H, A1, A2, H, N, M) 3 p 170
TPRFIN none 1,2,3 ps 122
TPRINI none 1,2,3 ps 123
TPRMOD (CMOD,CKEY) 1,2,3 ps 123
TPRVAL (X) 1,2,3 ps 123
TR3RES none 1,2,3 ps 172
TR3ROT (A, B, C) 1,2,3 ps 172
TR3SCL (XSCL, YSCL, YSCL) 1,2,3 ps 172
TR3SHF (XSHFT, YSHFT, ZSHFT) 1,2,3 ps 171
TRFCO1 (XRAY, N, CFROM, CTO) 0,1,2,3 104
TRFCO2 (XRAY, YRAY, N, CFROM, CTO) 0,1,2,3 104
TRFCO3 (XRAY, YRAY, ZRAY,N, CFROM, CTO) 0,1,2,3 104
TRFDAT (N, ID, IM, IY) 0,1,2,3 110
TRFMAT (ZMAT, NX, NY, ZMAT2, NX2, NY2) 0,1,2,3 104
TRFREL (XRAY, YRAY, N) 2,3 103
TRFRES none 1,2,3 ps 87
TRFROT (XANG, NX, NY) 1,2,3 ps 87
TRFSCL (XSCL, YSCL) 1,2,3 ps 87
TRFSHF (NXSHFT, NYSHFT) 1,2,3 ps 87
TRIA3D (XRAY, YRAY, ZRAY) 3 p 166
TRIANG (XRAY, YRAY, N, I1RAY, I2RAY, I3RAY, NMAX,

NTRI)
0,1,2,3 108

TRIFLL (XRAY, YRAY) 1,2,3 p 99
TRIPLX none 1,2,3 ps 57
TRIPTS (XRAY, YRAY, ZVRAY, N, I1RAY, I2RAY, I3RAY,

NTRI, ZLEV, XPTS, YPTS, MAXPTS, IRAY, MAX-
CRV, NCRV)

0,1,2,3 203

= TRMLEN (CSTR) 0,1,2,3 105
TUBE3D (X1, Y1, Z1, X2, Y2, Z2, R, N, M) 3 p 169
TXTJUS (CJUS) 1,2,3 ps 55
UNIT (NU) 1,2,3 ps 36
UNITS (COPT) 0 ps 27
UPSTR (CSTR) 0,1,2,3 105
USRPIE (ISEG, XD, XP, NR, NOFF, ANG, NVY, IDRW,

IANN)
1,2,3 ps 133

UTFINT (CSTR, IRAY, NRAY, N) 0,1,2,3 105
VANG3D (ANG) 1,2,3 ps 149
VCLP3D (XCLP1, XCLP2) 1,2,3 ps 158
VECCLR (NCLR) 1,2,3 ps 99
VECF3D (XVRAY, YVRAY, ZVRAY, XPRAY, YPRAY, ZPRAY,

N, IVEC)
3 p 151

VECFLD (XVRAY, YVRAY, XPRAY, YPRAY, N, IVEC) 2, 3 p 25
VECOPT (XOPT, CKEY) 1,2,3 ps 99
VECTOR (NX1, NY1, NX2, NY2, IVEC) 1,2,3 p 98
VECTR3 (X1, Y1, Z1, X2, Y2, Z2, IVEC) 3 p 166

307

Routine Parameter Level Page

VFOC3D (X, Y, Z, COPT) 1,2,3 ps 149
VIEW3D (XVU, YVU, ZVU, CVU) 1,2,3 ps 148
VKXBAR (NVFX) 1,2,3 ps 142
VKYBAR (NVFY) 1,2,3 ps 142
VKYTIT (NV) 1,2,3 ps 51
VLTFIL (CFIL, CMODE) 1,2,3 54
VTX3D (XRAY, YRAY, ZRAY, N, COPT) 3 p 167
VTXC3D (XRAY, YRAY, ZRAY, ICRAY, N, COPT) 3 p 167
VTXN3D (XRAY, YRAY, ZRAY, XNTAY, YNRAY, ZNRAY, N,

COPT)
3 p 167

VUP3D (ANG) 1,2,3 ps 149
WGAPP (IP, CLAB, ID) 0 w 214
WGBAS (IP, COPT, ID) 0 w 214
WGBOX (IP, CLIS, ISEL, ID) 0 w 216
WGBUT (IP, CLAB, IVAL, ID) 0 w 214
WGCMD (IP, CLAB, CMD, ID) 0 w 219
WGDLIS (IP, CLIS, ISEL, ID) 0 w 216
WGDRAW (IP) 0 w 217
WGFIL (IP, CLAB, CFIL, CMASK, ID) 0 w 215
WGFIN none) 0 w 213
WGINI (COPT, ID) 0 w 213
WGLAB (IP, CSTR, ID) 0 w 214
WGLIS (IP, CLIS, ISEL, ID) 0 w 216
WGLTXT (IP, CLAB, CSTR, NWTH, ID) 0 w 215
WGOK (IP, ID) 0 w 218
WGPBAR (IP, XMIN, XMAX, XSTP, ID) 0 w 217
WGPBUT (IP, CLAB, ID) 0 w 218
WGPOP (IP, CLAB, ID) 0 w 214
WGQUIT (IP, ID) 0 w 218
WGSCL (IP, CLAB, XMIN, XMAX, XVAL, NDEZ, ID) 0 w 217
WGSTXT (IP, NSIZE, NMAX, ID) 0 w 215
WGTBL (IP, NROWS, NCOLS, ID) 0 w 218
WGTXT (IP, CSTR, ID) 0 w 215
WIDBAR (NZB) 1,2,3 ps 142
WIMAGE (CFIL) 1,2,3 p 120
WINAPP (CAPP) 0 ps 36
WINDBR (X,NXP,NYP,NW,A) 1,2,3 p 99
WINDOW (NX, NY, NW, NH) 0 ps 36
WINFNT (CFONT) 1,2,3 ps 58
WINID (ID) 1,2,3 rq 115
WINKEY (COPT) 1,2,3 ps 38
WINMOD (CMOD) 1,2,3 ps 37
WINOPT (IOPT, CKEY) 1,2,3 ps 38
WINSIZ (NW, NH) 0,1,2,3 ps 37
WINTIT (CTIT) 1,2,3 ps 115
WMFMOD (CMOD, CKEY) 0 ps 31
WORLD none 2,3 p 182
WPIXEL (IX, IY, NCLR) 1,2,3 p 118
WPIXLS (IRAY, IX, IY, NW, NH) 1,2,3 p 118

308

Routine Parameter Level Page

WPXROW (IRAY, IX, IY, N) 1,2,3 p 119
WRITFL (NLU, IRAY, NBYTE, ISTAT) 0,1,2,3 112
WTIFF (CFIL) 1,2,3 p 120
X11FNT (CFONT,COPT) 1,2,3 ps 58
X11MOD (CMOD) 0 ps 37
= X2DPOS (X, Y) 2 189
= X3DABS (X, Y, Z) 3 171
= X3DPOS (X, Y, Z) 3 171
= X3DREL (X, Y, Z) 3 171
XAXGIT none 2,3 p 18
XAXIS (XA, XE, XOR, XSTP, NL, CX, IT, NX, NY) 1,2,3 p 18
XAXLG (XA, XE, XOR, XSTP, NL, CX, IT, NX, NY) 1,2,3 p 18
XAXMAP (XA, XE, XOR, XSTP, CX, IT, NY) 2 p 179
XCROSS none 2,3 p 18
XDRAW (X, Y) 1,2,3 p 97
=XINVRS (NXP) 2,3 103
XMOVE (X, Y) 1,2,3 p 97
=XPOSN (X) 2,3 103
= Y2DPOS (X, Y) 2 189
= Y3DABS (X, Y, Z) 3 171
= Y3DPOS (X, Y, Z) 3 171
= Y3DREL (X, Y, Z) 3 171
YAXGIT none 2,3 p 18
YAXIS (YA, YE, YOR, YSTP, NL, CY, IT, NX, NY) 1,2,3 p 18
YAXLG (YA, YE, YOR, YSTP, NL, CY, IT, NX, NY) 1,2,3 p 18
YAXMAP (YA, YE, YOR, YSTP, CY, IT, NX) 2 p 180
YCROSS none 2,3 p 18
=YINVRS (NYP) 2,3 103
=YPOSN (Y) 2,3 103
= Z3DPOS (X, Y, Z) 3 171
ZAXIS (A, B, OR, STEP, NL, CZ, IT, ID, NX, NY) 1,2,3 p 139
ZAXLG (A, B, OR, STEP, NL, CZ, IT, ID, NX, NY) 1,2,3 p 140
ZBFERS none 1,2,3 165
ZBFFIN none 1,2,3 164
ZBFINI (IRET) 1,2,3 164
ZBFLIN (X1, Y1, Z1, X2, Y2, Z2) 3 p 165
ZBFRES none 1,2,3 165
ZBFSCL (X) 1,2,3 165
ZBFTRI (XRAY, YRAY, ZRAY, IRAY) 3 p 165
ZSCALE (ZMIN, ZMAX) 1,2,3 ps 158

309

310

	Introduction
	Basic Concepts and Conventions
	Page Format
	File Format
	Level Structure of DISLIN
	Conventions
	Error Messages
	Programming in C
	Programming in Fortran 90
	Linking Programs
	Utility Programs
	WWW Homepage
	Reporting Bugs
	License Information

	Introductory Routines
	Initialization and Termination
	Plotting of Text and Numbers
	Plotting Symbols
	Plotting a Page Border, Background and Header
	Sending a Metafile to a Device
	Including Meta- and Bitmap files into a Graphics

	Plotting Axis Systems and Titles
	Plotting Axis Systems
	Termination of Axis Systems
	Plotting Titles
	Plotting Grid Lines
	Plotting Additional Labels
	Secondary Axes
	Calculating Axis Parameters

	Plotting Curves
	Plotting Curves
	Plotting Legends
	Plotting Shaded Areas between Curves
	Plotting Error Bars
	Plotting Vector Fields

	Parameter Setting Routines
	Basic Routines
	Resetting Parameters
	Changing the Plot Units
	Modifying the Origin
	File Format Control
	Page Control
	Error Handling
	Viewport Control

	Axis Systems
	Modifying the Type
	Modifying the Position and Size
	Axis Scaling
	Modifying Ticks
	Modifying Labels
	Modifying Axis Titles
	Suppressing Axis Parts
	Modifying Clipping
	Framing Axis Systems
	Setting Colours
	Axis System Titles

	Colours
	Changing the Foreground Colour
	Modifying Colour Tables
	Utitily Routines for Colours

	Text and Numbers
	Fonts
	Indices and Exponents
	Instruction Alphabet
	TeX Instructions for Mathematical Formulas
	Introduction
	Enabling TeX Mode and TeX Options
	Exponents and Indices
	Fractions
	Roots
	Sums and Integrals
	Greek Letters
	Mathematical Symbols
	Alternate Alphabets
	Function Names
	Accents
	Lines above and below Formulas
	Horizontal Spacing
	Selecting Character Size in TeX Mode
	Colours in TeX Mode
	Example

	Curve Attributes
	Line Attributes
	Shading
	Attribute Cycles
	Base Transformations
	Shielded Regions

	Parameter Requesting Routines
	Elementary Plot Routines
	Lines
	Vectors
	Filled Triangles
	Wind Speed Symbols
	Geometric Figures

	Utility Routines
	Transforming Coordinates
	String Arithmetic
	Number Arithmetic
	Date Routines
	Bit Manipulation
	Byte Swapping
	Binary I/O
	Window Terminals
	Clearing the Screen
	Clearing the Output Buffer
	Multiple Windows
	Cursor Routines

	Elementary Image Routines
	Transparency
	Using Threads
	Plotting the MPS Logo

	Business Graphics
	Bar Graphs
	Pie Charts
	Examples

	3-D Colour Graphics
	Introduction
	Plotting Coloured Axis Systems
	Secondary Colour Bars
	Plotting Data Points
	Parameter Setting Routines
	Elementary Plot Routines
	Conversion of Coordinates
	Example

	3-D Graphics
	Introduction
	Defining View Properties
	Plotting Axis Systems
	Plotting a Border around the 3-D Box
	Plotting Grids
	Plotting Curves
	Plotting Vector Fields
	Plotting a Surface Grid from a Function
	Plotting a Surface Grid from a Matrix
	Plotting a Shaded Surface from a Matrix
	Plotting a Shaded Surface from a Parametric Function
	Plotting a Shaded Surface from Triangulated Data
	Plotting Isosurfaces
	Plotting 3-D Bars
	Additional Parameter Setting Routines
	Lighting
	Surfaces from Randomly Distributed Points
	Projection of 2-D-Graphics into 3-D Space
	Using the Z-Buffer and Depth Sort
	Elementary Plot Routines
	Transformation of Coordinates
	Examples

	Geographical Projections and Plotting Maps
	Axis Systems and Secondary Axes
	Defining the Projection
	Plotting Maps
	Plotting Data Points
	Parameter Setting Routines
	Conversion of Coordinates
	User-defined Projections
	Examples

	Contouring
	Plotting Contours
	Plotting Filled Contours
	Generating Contours
	Parameter Setting Routines
	Examples

	Widget Routines
	Widget Routines
	Parameter Setting Routines
	Requesting Routines
	Utility Routines
	Dialog Routines
	Examples

	Quickplots
	Plotting Curves
	Scatter Plots
	Bar Graphs
	Pie Charts
	3-D Colour Plots
	Surface Plots
	Contour Plots
	Setting Parameters for Quickplots

	Using DISLIN from Interpreting Languages
	Short Description of Routines
	Examples
	Index

