
All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Cypress CyUsb.sys Programmer's Reference

© 2003 Cypress Semiconductor

Table of Contents

Part I Driver Overview 3

Part II Modifying CyUSB.INF 3

Part III Matching Devices to the Driver 7

... 71 Windows 2000

... 92 Windows XP

Part IV The IOCTL Interface 12

... 131 Getting a Handle to the Driver

... 142 IOCTL_ADAPT_ABORT_PIPE

... 153 IOCTL_ADAPT_CYCLE_PORT

... 154 IOCTL_ADAPT_GET_ADDRESS

... 155 IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING

... 166 IOCTL_ADAPT_GET_CURRENT_FRAME

... 167 IOCTL_ADAPT_GET_DEVICE_NAME

... 178 IOCTL_ADAPT_GET_DEVICE_POWER_STATE

... 179 IOCTL_ADAPT_GET_DEVICE_SPEED

... 1810 IOCTL_ADAPT_GET_DRIVER_VERSION

... 1811 IOCTL_ADAPT_GET_FRIENDLY_NAME

... 1912 IOCTL_ADAPT_GET_NUMBER_ENDPOINTS

... 1913 IOCTL_ADAPT_GET_TRANSFER_SIZE

... 1914 IOCTL_ADAPT_GET_USBDI_VERSION

... 2015 IOCTL_ADAPT_RESET_PARENT_PORT

... 2016 IOCTL_ADAPT_RESET_PIPE

... 2117 IOCTL_ADAPT_SELECT_INTERFACE

... 2118 IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER

... 2219 IOCTL_ADAPT_SEND_NON_EP0_TRANSFER

... 2320 IOCTL_ADAPT_SEND_NON_EP0_DIRECT

... 2521 IOCTL_ADAPT_SET_DEVICE_POWER_STATE

... 2622 IOCTL_ADAPT_SET_TRANSFER_SIZE

Part V CYIOCTL.H 27

... 281 ISO_ADV_PARAMS

... 292 SINGLE_TRANSFER

... 303 SETUP_PACKET

Cypress CyUsb.sys Programmer's ReferenceI

© 2003 Cypress Semiconductor

... 314 SET_TRANSFER_SIZE_INFO

IIContents

II

© 2003 Cypress Semiconductor

Cypress CyUsb.sys Programmer's Reference3

© 2003 Cypress Semiconductor

1 Driver Overview

The CYUSB.SYS driver is licensed for distribution ONLY with Cypress USB products and
products that employ Cypress USB chips.

CYUSB.SYS is a USB device driver for Windows 2000 and Windows XP that is capable of
communicating with any USB 2.0 compliant device. The driver is general-purpose, understanding
primitive USB commands, but not implementing higher-level, USB device-class specific commands.
For this reason, the driver is not capable, for instance, of interfacing a USB mass storage class device
to the Windows file system.

However, the driver would be ideal for communicating with a vendor-specific device from a custom
USB application. Or, it might be used to send low-level USB requests to any USB device for
experimental or diagnostic applications.

In order to use the driver to communicate with a device, Windows must match the device to the driver.

The class library, CyAPI.lib, provides a high-level programming interface to the driver. This help file
documents the low-level, more cumbersome and explicit, programming interface.

Features

· Windows Driver Model (WDM) compliant
· WHQL Certified (not signed)
· Compatible with any USB 2.0 compliant device
· Supports Windows PnP and Power Management level S4
· Supports USB Remote Wake-up
· Supports Control, Bulk, Interrupt and Isochronous endpoints
· Supports multiple USB devices connected at once
· Supports customizable driver GUID without re-building the driver
· Supports high bandwidth data transfers passing multiple packets per uframe
· Supports automatic play-back of control transfer scripts at device startup

2 Modifying CyUSB.INF

The CYUSB.INF file can be modified to accomplish several different objectives. These are:

 1. Add a device's identifiers to the driver
 2. Replace Cypress strings that are displayed during driver installation
 3. Implement a custom GUID for the driver
 4. Execute a saved script of commands at driver load time

Add a device's identifiers to the driver

To make the driver match to a specific device, the device's vendor ID and product ID need to be added
to the .inf file.

 Locate the [Cypress] section and duplicate the line
 ;%VID_VVVV&PID_PPPP.DeviceDesc%=CyUSB, USB\VID_VVVV&PID_PPPP

 Remove the semicolon from the duplicate line

Modifying CyUSB.INF 4

© 2003 Cypress Semiconductor

 Change the VVVV to contain the hexadecimal value of the VendorID for the device

 Change the PPPP to contain the hexadecimal value of the ProductID for the device

 For example, a device with vendorID 0x04B4 and productID 0xDE01 would have a new entry in the
[Cypress] section like the
 following
 %VID_04B4&PID_DE01.DeviceDesc%=CyUSB, USB\VID_04B4&PID_DE01

 Now, move to the bottom of the CYUSB.INF file and locate the [Strings] section and duplicate the
line.
 ;VID_VVVV&PID_PPPP.DeviceDesc="My Device Description"

 Remove the semicolon from the duplicate line

 Change the VVVV to contain the hexadecimal value of the VendorID for the device

 Change the PPPP to contain the hexadecimal value of the ProductID for the device

 For example, a device with vendorID 0x04B4 and productID 0xDE01 would have a new entry in the
[Strings] section like the
 following
 VID_04B4&PID_DE01.DeviceDesc="Cypress OTG DE1 DevBoard"

Replace Cypress strings

If you plan to do more than just add your device's VID/PID to the CYUSB.INF file, it is strongly
recommended that you create your own .INF file and a copy of CYUSB.SYS that you have re-named.
The remaining instructions assume that you have created your own .INF file to match your newly
named copy of CYUSB.SYS.

The driver can be customized to report a company other than Cypress as its manufacturer and
provider.

 Locate the [Strings] section at the bottom of the CYUSB.INF file.

 Change the quoted PROVIDER string.

 Change the quoted MFGNAME string.

 Change the quoted CyUSB.SvcDesc string.

 There is also an identifier named Cypress that is used in the file. This can be modified if you want
no mention of Cypress in the .inf file.

 Locate the [Manufacturer] section near the top of the file.

 Change the symbolic name, Cypress, in the line

 %MFGNAME%=Cypress

 Change the section name, [Cypress] in the next line to match the symbolic name used in the
%MFGNAME%= assignment.

Cypress CyUsb.sys Programmer's Reference5

© 2003 Cypress Semiconductor

Implement a custom GUID

Applications software usually accesses the driver using the driver's Global Unique IDentifier (GUID).
Each driver in the Windows system should have a unique GUID. By employing distinct GUIDs,
multiple instances of CYUSB.SYS from different hardware vendors can exist on a given system without
colliding.

To change the driver's GUID,

 Use the GUIDGEN.EXE utility (distributed with Microsoft Visual Studio) to get a new GUID.

 Locate the [Strings] section in the CyUSB.inf file

 Locate the line
 CyUSB.GUID="{AE18AA60-7F6A-11d4-97DD-00010229B959}"

 and replace the quoted GUID string with the new one you created. (Retain the curly braces.)

Execute a script at start-up

The CYUSB.SYS driver can be used to perform transfers to the default control endpoint (endpoint
address 0) when the device is started.

To configure the driver to perform a control transfer at startup

 Use the CyConsole.exe application to create a script file containing the control transfer commands.

 Save the script as a file named CYUSB.SPT

 Place that script file in the same directory as the the driver's .INF file

 Locate and uncomment the 6 lines in the .inf file that are preceeded by the comment

 -----Uncomment below to support script file processing----

A common use of this feature is to have the driver play a script which downloads a firmware image to
the USB device, thereby modifying its "personality" and usually causing it to re-enumerate on the bus.
If this re-enumeration occurs with the same VID/PID as the original "personality", the script will be
executed again and again in an un-ending loop.

To avoid this endless loop scenario, the second personality should enumerate with a different VID/PID
than the one which caused the script to play.

The .inf file can be modified to play a script when one VID/PID is enumerated and to simply load the
driver when a different VID/PID is detected.

The following is an excerpt from a .inf file that plays a script called MyDevice.spt when VID/PID of
04B4/8613 is enumerated. If VID/PID 0547/1002 enumerates, the script is not played. (This .inf is
compatible with WinXP and Win2k.)

Note the separate blocks of declarations for MYDEVICE and CYUSB.

Modifying CyUSB.INF 6

© 2003 Cypress Semiconductor

[Cypress]
%VID_04B4&PID_8613.DeviceDesc%=MYDEVICE, USB\VID_04B4&PID_8613
%VID_0547&PID_1002.DeviceDesc%=CYUSB, USB\VID_0547&PID_1002

[DestinationDirs]
CYUSB.Files = 10,System32\Drivers
MYDEVICE.Files = 10,System32\MYDEVICE

;=======================================

[MYDEVICE.Files]
MYDEVICE.SPT

[MYDEVICE.NT]
CopyFiles=CYUSB.Files, MYDEVICE.Files
AddReg=CYUSB.AddReg

[MYDEVICE.NT.HW]
AddReg=MYDEVICE.AddReg.Guid

[MYDEVICE.NT.Services]
Addservice = CYUSB, 0x00000002, CYUSB.AddService

[MYDEVICE.AddReg.Guid]
HKR,,DriverGUID,,%CYUSB.GUID%
HKR,,DriverEXECSCRIPT,,%MYDEVICE.EXECSCRIPT%

;=======================================

[CYUSB.Files]
CYUSB.SYS

[CYUSB.NT]
CopyFiles=CYUSB.Files
AddReg=CYUSB.AddReg

[CYUSB.NT.HW]
AddReg=CYUSB.AddReg.Guid

[CYUSB.NT.Services]
Addservice = CYUSB, 0x00000002, CYUSB.AddService

[CYUSB.AddReg]
HKR,,DevLoader,,*ntkern
HKR,,NTMPDriver,,CyUsb.sys

[CYUSB.AddReg.Guid]
HKR,,DriverGUID,,%CYUSB.GUID%

;=======================================

[CYUSB.AddService]
DisplayName = %CYUSB.SvcDesc%
ServiceType = 1 ; SERVICE_KERNEL_DRIVER
StartType = 3 ; SERVICE_DEMAND_START
ErrorControl = 1 ; SERVICE_ERROR_NORMAL
ServiceBinary = %10%\System32\Drivers\CYUSB.SYS
LoadOrderGroup = Base

[Strings]
PROVIDER="Cypress"
MFGNAME="Cypress Semiconductor"
CYUSB_INSTALL="Cypress Installation Disk"
VID_04B4&PID_8613.DeviceDesc="My first device"
VID_0547&PID_1002.DeviceDesc="My re-programmed Device"

Cypress CyUsb.sys Programmer's Reference7

© 2003 Cypress Semiconductor

CYUSB.SvcDesc="Cypress USB Device"
CYUSB.GUID="{AE18AA60-7F6A-11d4-97DD-00010229B959}"
MYDEVICE.EXECSCRIPT="\systemroot\system32\MYDEVICE\MYDEVICE.spt"

3 Matching Devices to the Driver

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured.
This configuration consist of two steps.

Step 1 : Add the device's VendorID and ProductID to the CYUSB.INF file.
Step 2 : Force WindowsXP to use the CYUSB.SYS driver with the device.

Though similar, these steps are slightly different for Windows 2000 and WinXP.

3.1 Windows 2000

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured.
This configuration consist of two steps.

Step 1 : Add the device's VendorID and ProductID to the CYUSB.INF file.

After installation of the Developer Studio files, the driver is located in a Driver subdirectory of the
install directory. (Default is C:\Program Files\Cypress\DevStudio\Driver.)

Open the file CYUSB.INF with a text editor (notepad.exe, for instance)

Locate the [Cypress] section and duplicate the line
; %VID_VVVV &PID_PPPP .DeviceDesc%=CyUSB, USB\VID_VVVV &PID_PPPP

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDE01 would have a new entry in the
[Cypress] section like the following:
%VID_04B4&PID_DE01.DeviceDesc%=CyUSB, USB\VID_04B4&PID_DE01

Now, move to the bottom of the CyUSB.inf file and locate the [Strings] section and duplicate the
line.
; VID_VVVV &PID_PPPP .DeviceDesc="My Device Description "

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDE01 would have a new entry in the

Matching Devices to the Driver 8

© 2003 Cypress Semiconductor

[Strings] section like the following
VID_04B4&PID_DE01.DeviceDesc="Cypress OTG DE1 DevBoard"

Save the file.

Step 2 : Force Windows2000 to use the CYUSB.SYS driver with the device.

Connect the device to the PC

If Windows prompts for a driver or indicates that it needs a driver, direct the PC to use the
CYUSB.SYS driver by steering it to the CYUSB.INF file in the [InstallDir]\Driver directory.

If Windows does not prompt for a driver, it has already matched the device to a driver itself. In this
case, you will need to see if the CYUSB.SYS driver was selected and, if not, manually instruct
Windows to use that driver.

Right-click My Computer and select the Manage menu item.

In the Computer Management window, select Device Manager

In the right window pane, click the + icon next to Universal Serial Bus controllers

Locate your device in the list and double click on it

Select the Driver tab in the Properties dialog that comes up

Click on the Driver Details button.

If the displayed driver file is CYUSB.SYS, Windows has already matched the device to this driver
and you should click OK and Cancel . If not, proceed with the remaining steps.

Click OK

Select Update Driver

Click Next

Select Search for a suitable driver for my device (recommended)

Click Next

Select Specify a location

Click Next

Navigate to the directory containing CYUSB.SYS

CYUSB.INF should be automatically placed in the File name field

Click Open

Click OK

Cypress CyUsb.sys Programmer's Reference9

© 2003 Cypress Semiconductor

Click Next

Click Finish

Don't re-boot your system if Windows suggests that you must. You may need to unplug and re-plug
your device, however.

3.2 Windows XP

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured.
This configuration consist of two steps.

Step 1 : Add the device's VendorID and ProductID to the CYUSB.INF file.

After installation of the Developer Studio files, the driver is located in a Driver subdirectory of the
install directory. (Default is C:\Program Files\Cypress\DevStudio\Driver.)

Open the file CYUSB.INF with a text editor (notepad.exe, for instance)

Locate the [Cypress] section and duplicate the line
; %VID_VVVV &PID_PPPP .DeviceDesc%=CyUSB, USB\VID_VVVV &PID_PPPP

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDE01 would have a new entry in the
[Cypress] section like the following
%VID_04B4&PID_DE01.DeviceDesc%=CyUSB, USB\VID_04B4&PID_DE01

Now, move to the bottom of the CyUSB.inf file and locate the [Strings] section and duplicate the
line.
; VID_VVVV &PID_PPPP .DeviceDesc="My Device Description "

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDE01 would have a new entry in the
[Strings] section like the following
VID_04B4&PID_DE01.DeviceDesc="Cypress OTG DE1 DevBoard"

Save the file.

Step 2 : Force WindowsXP to use the CYUSB.SYS driver with the device.

Matching Devices to the Driver 10

© 2003 Cypress Semiconductor

Connect the device to the PC

If Windows prompts for a driver or indicates that it needs a driver, direct the PC to use the
CYUSB.SYS driver by steering it to the CYUSB.INF file in the [InstallDir]\Driver directory.

If Windows does not prompt for a driver, it has already matched the device to a driver itself. In this
case, you will need to see if the CYUSB.SYS driver was selected and, if not, manually instruct
Windows to use that driver.

Right-click My Computer and select the Manage menu item.

In the Computer Management window, select Device Manager

In the right window pane, click the + icon next to Universal Serial Bus controllers

Locate your device in the list and double click on it

Select the Driver tab in the Properties dialog that comes up

Click on the Driver Details button.

If the displayed driver file is CYUSB.SYS, Windows has already matched the device to this driver
and you should click OK and Cancel . If not, proceed with the remaining steps.

Click OK

Click Update Driver

Select Install from a list or specific location (Advanced)

Click Next

Select Don't search. I will choose the driver to install.

Click Next

Click Have Disk

Click Browse

Navigate to the directory containing CYUSB.SYS

CYUSB.INF should be automatically placed in the File name field

Click Open

Click OK

Click Next

Click Finish

Click Close

Don't re-boot your system if Windows suggests that you must. You may need to unplug and re-plug
your device, however.

Cypress CyUsb.sys Programmer's Reference11

© 2003 Cypress Semiconductor

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured.

This configuration consist of two steps.

Step 1 : Add the device's VendorID and ProductID to the CYUSB.INF file.

After installation of the SuiteUSB files, the driver is located in a Driver subdirectory of the install
directory. (Default is C:\Program Files\Cypress\SuiteUSB\Driver.)

Open the file CYUSB.INF with a text editor (notepad.exe, for instance)

Locate the [Cypress] section and duplicate the line
; %VID_VVVV &PID_PPPP .DeviceDesc%=CyUSB, USB\VID_VVVV &PID_PPPP

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDE01 would have a new entry in the
[Cypress] section like the following
%VID_04B4&PID_DE01.DeviceDesc%=CyUSB, USB\VID_04B4&PID_DE01

Now, move to the bottom of the CyUSB.inf file and locate the [Strings] section and duplicate the
line.
; VID_VVVV &PID_PPPP .DeviceDesc="My Device Description "

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDE01 would have a new entry in the
[Strings] section like the following
VID_04B4&PID_DE01.DeviceDesc="Cypress OTG DE1 DevBoard"

Save the file.

Step 2 : Force WindowsXP to use the CYUSB.SYS driver with the device.

Connect the device to the PC

If Windows prompts for a driver or indicates that it needs a driver, direct the PC to use the
CYUSB.SYS driver by steering it to the CYUSB.INF file in the [InstallDir]\Driver directory.

If Windows does not prompt for a driver, it has already matched the device to a driver itself. In this
case, you will need to see if the CYUSB.SYS driver was selected and, if not, manually instruct
Windows to use that driver.

Right-click My Computer and select the Manage menu item.

In the Computer Management window, select Device Manager

In the right window pane, click the + icon next to Universal Serial Bus controllers

Matching Devices to the Driver 12

© 2003 Cypress Semiconductor

Locate your device in the list and double click on it

Select the Driver tab in the Properties dialog that comes up

Click on the Driver Details button.

If the displayed driver file is CYUSB.SYS, Windows has already matched the device to this driver
and you should click OK and Cancel . If not, proceed with the remaining steps.

Click OK

Click Update Driver

Select Install from a list or specific location (Advanced)

Click Next

Select Don't search. I will choose the driver to install.

Click Next

Click Have Disk

Click Browse

Navigate to the directory containing CYUSB.SYS

CYUSB.INF should be automatically placed in the File name field

Click Open

Click OK

Click Next

Click Finish

Click Close

Don't re-boot your system if Windows suggests that you must. You may need to unplug and re-plug
your device, however.

4 The IOCTL Interface

Applications software communicates with the CYUSB.SYS driver primarily through the
DeviceIoControl() function. (See the Windows SDK documentation for details about
DeviceIoControl.)

Calls to DeviceIoControl require an IO Control (aka IOCTL) code parameter. The IOCTL codes define
the programming interface that a driver supports and are particular to any given driver. The control
code specified in a DeviceIoControl() call determines the values that must be specified for the other
DeviceIoControl parameters.

This help file provides the IOCTL 'dictionary' for the CYUSB.SYS driver.

Cypress CyUsb.sys Programmer's Reference13

© 2003 Cypress Semiconductor

Example

 DWORD dwBytes = 0;
 UCHAR EndptAddress = 0x82;

 DeviceIoControl(hDevice, IOCTL_ADAPT_RESET_PIPE,
 &EndptAddress, sizeof (EndptAddress),
 NULL, 0,
 &dwBytes, NULL);

4.1 Getting a Handle to the Driver

In order to use the IOCTL codes supported by the driver, you will need to obtain a Windows handle to
the driver.

A very simple way to accomplish this is to utilize the CyAPI class library. After creating a
CCyUSBDevice object, a handle to the driver will have been setup automatically. Closing or deleting
the CCyUSBDevice object frees the handle.

Example 1:

CCyUSBDevice *USBDevice = new CCyUSBDevice();
HANDLE hDevice = USBDevice->DeviceHandle();
.
.
.
.
delete USBDevice;

The more typical (and complex) way to obtain a handle is to make a sequence of SetupDi calls,
passing the driver GUID declared in CyAPI.h. The default driver guid is defined as:

// {AE18AA60-7F6A-11d4-97DD-00010229B959}
static GUID CYUSBDRV_GUID = {0xae18aa60, 0x7f6a, 0x11d4, 0x97, 0xdd, 0x0, 0x1, 0x2,
0x29, 0xb9, 0x59};

The CyAPI library uses the following code to obtain a handle, using the GUID.

Example 2:

 SP_DEVINFO_DATA devInfoData;
 SP_DEVICE_INTERFACE_DATA devInterfaceData;
 PSP_INTERFACE_DEVICE_DETAIL_DATA functionClassDeviceData;

 ULONG requiredLength = 0;
 int deviceNumber = 0; // Can be other values if more than 1 device connected to
driver

 HDEVINFO hwDeviceInfo = SetupDiGetClassDevs ((LPGUID) &CYUSBDRV_GUID,
 NULL,
 NULL,
 DIGCF_PRESENT|DIGCF_INTERFACEDEVIC
E);

The IOCTL Interface 14

© 2003 Cypress Semiconductor

 if (hwDeviceInfo != INVALID_HANDLE_VALUE) {

 devInterfaceData.cbSize = sizeof(devInterfaceData);

 if (SetupDiEnumDeviceInterfaces (hwDeviceInfo, 0, (LPGUID) &CYUSBDRV_GUID,
 deviceNumber, &devInterfaceData)) {

 SetupDiGetInterfaceDeviceDetail (hwDeviceInfo, &devInterfaceData, NULL, 0,
 &requiredLength, NULL);

 ULONG predictedLength = requiredLength;

 functionClassDeviceData = (PSP_INTERFACE_DEVICE_DETAIL_DATA) malloc
(predictedLength);
 functionClassDeviceData->cbSize = sizeof (SP_INTERFACE_DEVICE_DETAIL_DATA);

 devInfoData.cbSize = sizeof(devInfoData);

 if (SetupDiGetInterfaceDeviceDetail (hwDeviceInfo,
 &devInterfaceData,
 functionClassDeviceData,
 predictedLength,
 &requiredLength,
 &devInfoData)) {

 hDevice = CreateFile (functionClassDeviceData->DevicePath,
 GENERIC_WRITE | GENERIC_READ,
 FILE_SHARE_WRITE | FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_OVERLAPPED,
 NULL);

 free(functionClassDeviceData);
 SetupDiDestroyDeviceInfoList(hwDeviceInfo);
 }

 }

 }

4.2 IOCTL_ADAPT_ABORT_PIPE

Description

This command is used to cancel pending IO requests on an endpoint.

A pointer to a variable containing the endpoint address is passed as the lpInBuffer parameter to the
DeviceIoControl() function. A null pointer is passed as the lpOutBuffer parameter.

Example

 DWORD dwBytes = 0;
 UCHAR Address = 0x82;

 DeviceIoControl(hDevice, IOCTL_ADAPT_ABORT_PIPE,

Cypress CyUsb.sys Programmer's Reference15

© 2003 Cypress Semiconductor

 &Address, sizeof (UCHAR),
 NULL, 0,
 &dwBytes, NULL);

4.3 IOCTL_ADAPT_CYCLE_PORT

Description

This command causes the USB device to be logically disconnected from the bus and, then, re-
connected.

NULL pointers are passed to DeviceIoControl in the pInBuffer and pOutBuffer parameters.

Example

 DWORD dwBytes = 0;

 DeviceIoControl(hDevice, IOCTL_ADAPT_CYCLE_PORT,
 NULL, 0,
 NULL, 0,
 &dwBytes, NULL);

4.4 IOCTL_ADAPT_GET_ADDRESS

Description

This command retrieves the USB address of the device from the Windows host controller driver.

A pointer to a 1-byte variable is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The size of the variable (1) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

 DWORD dwBytes = 0;
 UCHAR DevAddr;

 DeviceIoControl(hDevice, IOCTL_ADAPT_GET_ADDRESS,
 &DevAddr, sizeof (UCHAR),
 &DevAddr, sizeof (UCHAR),
 &dwBytes, NULL);

4.5 IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING

Description

This command retrieves the alternate interface setting for a particular interface of the attached device.

A pointer to a byte indicating the interface number is passed as the lpInBuffer parameter to the
DeviceIoControl() function.

A pointer to a byte into which the alternate interface setting will be reported is passed as the
lpOutBuffer parameter to the DeviceIoControl() function.

The IOCTL Interface 16

© 2003 Cypress Semiconductor

The length of the variables (1) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

 DWORD dwBytes = 0;
 UCHAR intfc = 0;
 UCHAR alt;

 DeviceIoControl(hDevice, IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING,
 &intfc, sizeof (alt),
 &alt, sizeof (alt),
 &dwBytes, NULL);

4.6 IOCTL_ADAPT_GET_CURRENT_FRAME

Description

This command returns the current frame number from the host controller driver.

A pointer to a 4-byte variable is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The size of the variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
ULONG CurrentFrame;

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_CURRENT_FRAME,
 &CurrentFrame, sizeof (ULONG),
 &CurrentFrame, sizeof (ULONG),
 &dwBytes, NULL);

4.7 IOCTL_ADAPT_GET_DEVICE_NAME

Description

This command retrieves the Product string descriptor value for the attached device.

A pointer to a character buffer is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The length of the buffer is passed in the nInBufferSize and nOutBufferSize parameters.

Example

 DWORD dwBytes = 0;
 ULONG len = 256;
 UCHAR *buf = new UCHAR[len];

 DeviceIoControl(hDevice, IOCTL_ADAPT_GET_DEVICE_NAME,
 buf, len,
 buf, len,
 &dwBytes, NULL);

Cypress CyUsb.sys Programmer's Reference17

© 2003 Cypress Semiconductor

 delete[] buf;

4.8 IOCTL_ADAPT_GET_DEVICE_POWER_STATE

Description

This command retrieves the power state of the device

A pointer to a ULONG variable (pwrState) is passed as both the lpInBuffer and lpOutBuffer
parameters to the DeviceIoControl() function.

The size of the pwrState variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Possible return values for the pwrState are:

1 => Power State D0 (Full On)
2 => Power State D1
3 => Power State D2
4 => Power State D3 (Full Asleep)

Example

 DWORD dwBytes = 0;
 ULONG pwrState;

 DeviceIoControl(hDevice, IOCTL_ADAPT_GET_DEVICE_POWER_STATE,
 &pwrState, sizeof (pwrState),
 &pwrState, sizeof (pwrState),
 &dwBytes, NULL);

4.9 IOCTL_ADAPT_GET_DEVICE_SPEED

Description

This command attempts to report the current operating speed of the USB device. It will return
DEVICE_SPEED_HIGH, DEVICE_SPEED_LOW_FULL, or DEVICE_SPEED_UNKNOWN. It uses
the IsDeviceHighSpeed routine, but this routine is only supported in Version 1 of the USBD interface.
Windows 2K SP4, Windows XP and later all support Version 1 of the USBD interface. If the
IsDeviceHighSpeed routine is not available, DEVICE_SPEED_UNKNOWN is returned.

A pointer to a 4-byte variable is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The size of the variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Defines (cyioctl.h)

#define DEVICE_SPEED_UNKNOWN 0x00000000
#define DEVICE_SPEED_LOW_FULL 0x00000001
#define DEVICE_SPEED_HIGH 0x00000002

Example

DWORD dwBytes = 0;
ULONG DevSpeed;

The IOCTL Interface 18

© 2003 Cypress Semiconductor

DeviceIoControl(hDevice, IOCTL_ADAPT_GET_DEVICE_SPEED,
 &DevSpeed, sizeof (ULONG),
 &DevSpeed, sizeof (ULONG),
 &dwBytes, NULL);

4.10 IOCTL_ADAPT_GET_DRIVER_VERSION

Description

This command retrieves the version of the driver.

A pointer to a 4-byte variable is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The size of the variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

 DWORD dwBytes = 0;
 ULONG ver;

 DeviceIoControl(hDevice, IOCTL_ADAPT_GET_DRIVER_VERSION,
 &ver, sizeof (ver),
 &ver, sizeof (ver),
 &dwBytes, NULL);

4.11 IOCTL_ADAPT_GET_FRIENDLY_NAME

Description

This command retrieves the string associated with the device in the [Strings] section of the CyUSB.inf
file.

A pointer to an array of unsigned characters is passed as both the lpInBuffer and lpOutBuffer
parameters to the DeviceIoControl() function.

The size of the array is passed in the nInBufferSize and nOutBufferSize parameters.

Example

 DWORD dwBytes = 0;
 PUCHAR FriendlyName = new UCHAR[256];

 DeviceIoControl(hDevice, IOCTL_ADAPT_GET_FRIENDLY_NAME,
 FriendlyName, 256,
 FriendlyName, 256,
 &dwBytes, NULL);

 delete[] FriendlyName;

Cypress CyUsb.sys Programmer's Reference19

© 2003 Cypress Semiconductor

4.12 IOCTL_ADAPT_GET_NUMBER_ENDPOINTS

Description

This command retrieves the number of endpoints enumerated by the current interface / alternate
interface setting.

A null pointer is passed as the lpInBuffer parameter to the DeviceIoControl() function. Zero is
passed as the nInBufferSize parameter.

The address of an unsigned character is passed as the lpOutBuffer parameter to the
DeviceIoControl() function. The size of the variable (1) is passed in the nOutBufferSize parameter.

Example

 DWORD dwBytes = 0;
 UCHAR endPts;

 DeviceIoControl(hDevice, IOCTL_ADAPT_GET_NUMBER_ENDPOINTS,
 NULL, 0,
 &endPts, sizeof (endPts),
 &dwBytes, NULL);

4.13 IOCTL_ADAPT_GET_TRANSFER_SIZE

Description

This command retrieves the current transfer size for a given endpoint. The transfer size is not the
same as the MaxPacketSize for the endpoint. Rather, the transfer size is always an integral multiple
of the endpoint's MaxPacketSize.

A pointer to a SET_TRANSFER_SIZE_INFO structure is passed as both the lpInBuffer and
lpOutBuffer parameters to the DeviceIoControl() function. This structure must be pre-loaded with the
address of the endpoint of interest. Upon return, the structure will contain the transfer size of
endpoint.

The size of the structure is passed in the nInBufferSize and nOutBufferSize parameters.

Example

 DWORD BytesXfered;
 SET_TRANSFER_SIZE_INFO SetTransferInfo;
 SetTransferInfo.EndpointAddress = Address;

 DeviceIoControl(hDevice, IOCTL_ADAPT_GET_TRANSFER_SIZE,
 &SetTransferInfo, sizeof (SET_TRANSFER_SIZE_INFO),
 &SetTransferInfo, sizeof (SET_TRANSFER_SIZE_INFO),
 &BytesXfered, NULL);

 LONG transferSz = SetTransferInfo.TransferSize;

4.14 IOCTL_ADAPT_GET_USBDI_VERSION

Description

The IOCTL Interface 20

© 2003 Cypress Semiconductor

This command retrieves the version of the USB Host Controller Driver in BCD format.

A pointer to a 4-byte variable is passed as both the lpInBuffer and lpOutBuffer parameters to the
DeviceIoControl() function.

The size of the variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

 DWORD dwBytes = 0;
 ULONG ver;

 DeviceIoControl(hDevice, IOCTL_ADAPT_GET_USBDI_VERSION,
 &ver, sizeof (ver),
 &ver, sizeof (ver),
 &dwBytes, NULL);

4.15 IOCTL_ADAPT_RESET_PARENT_PORT

Description

This command resets the device, clearing any error or stall conditions. Pending data transfers are
not cancelled by this command.

A null pointer is passed as both the lpInBuffer and lpOutBuffer parameters to the DeviceIoControl()
function.

Example

 DWORD dwBytes;

 DeviceIoControl(hDevice, IOCTL_ADAPT_RESET_PARENT_PORT,
 NULL, 0,
 NULL, 0,
 &dwBytes, NULL);

4.16 IOCTL_ADAPT_RESET_PIPE

Description

This command resets an endpoint of the device, clearing any error or stall conditions on that endpoint.
Pending data transfers are not cancelled by this command.

The address of a single byte is passed as the lpInBuffer parameter to the DeviceIoControl() function.

A null pointer is passed as the lpOutBuffer parameter.

Example

 DWORD dwBytes;
 UCHAR Address = 0x82;

 DeviceIoControl(hDevice, IOCTL_ADAPT_RESET_PIPE,
 &Address, sizeof (Address)
 NULL, 0,
 &dwBytes, NULL);

Cypress CyUsb.sys Programmer's Reference21

© 2003 Cypress Semiconductor

4.17 IOCTL_ADAPT_SELECT_INTERFACE

Description

This command sets the alternate interface setting for the primary interface of the attached device.

A pointer to a byte indicating the alternate interface setting is passed as both the lpInBuffer and
lpOutBuffer parameters to the DeviceIoControl() function.

The length of the variable (1) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

 DWORD dwBytes = 0;
 UCHAR alt = 2;

 DeviceIoControl (hDevice, IOCTL_ADAPT_SELECT_INTERFACE,
 &alt, sizeof (alt),
 &alt, sizeof (alt),
 &dwBytes, NULL);

4.18 IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER

Description

This command sends a control request to the default Control endpoint, endpoint zero.

DeviceIoControl() is passed a pointer to a two-part structure as both the lpInBuffer and lpOutBuffer
parameters. This two-part structure contains a SINGLE_TRANSFER structure followed by a data
buffer.

The SINGLE_TRANSFER structure contains all the parameters for the control request.

The buffer contains the transfer data.

Example

 union {
 struct {
 UCHAR Recipient:5;
 UCHAR Type:2;
 UCHAR Direction:1;
 } bmRequest;

 UCHAR bmReq;
 };

 bmRequest.Recipient = 0; // Device
 bmRequest.Type = 2; // Vendor
 bmRequest.Direction = 1; // IN command (from Device to Host)

 int iXmitBufSize = sizeof(SINGLE_TRANSFER) + bufLen; // The size of the two-
part structure
 UCHAR *pXmitBuf = new UCHAR[iXmitBufSize]; // Allocate the memory
 ZeroMemory(pXmitBuf, iXmitBufSize);

 PSINGLE_TRANSFER pTransfer = (PSINGLE_TRANSFER)pXmitBuf; // The SINGLE_TRANSFER

The IOCTL Interface 22

© 2003 Cypress Semiconductor

comes first
 pTransfer->SetupPacket.bmRequest = bmReq;
 pTransfer->SetupPacket.bRequest = ReqCode;
 pTransfer->SetupPacket.wValue = Value;
 pTransfer->SetupPacket.wIndex = Index;
 pTransfer->SetupPacket.wLength = bufLen;
 pTransfer->SetupPacket.ulTimeOut = TimeOut / 1000;
 pTransfer->WaitForever = false;
 pTransfer->ucEndpointAddress = 0x00; // Control pipe
 pTransfer->IsoPacketLength = 0;
 pTransfer->BufferOffset = sizeof (SINGLE_TRANSFER);
 pTransfer->BufferLength = bufLen;
 DWORD dwReturnBytes;

 DeviceIoControl (hDevice, IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER,
 pXmitBuf, iXmitBufSize,
 pXmitBuf, iXmitBufSize,
 &dwReturnBytes, NULL);

 // Copy data into buf
 UCHAR *ptr = pXmitBuf + sizeof (SINGLE_TRANSFER);
 memcpy(buf, ptr, dwReturnBytes);

4.19 IOCTL_ADAPT_SEND_NON_EP0_TRANSFER

Description

NOTE:
With the release of CyUSB.sys version 1.5.503.0, the faster
IOCTL_ADAPT_SEND_NON_EP0_DIRECT should be used instead of this command.
IOCTL_ADAPT_SEND_NON_EP0_TRANSFER remains supported only to provide driver
compatibility to existing applications that use it.

This IOCTL command is used to request Bulk, Interrupt or Isochronous data transfers across
corresponding USB device endpoints.

Regardless of whether the endpoint is an IN or an OUT endpoint, a pointer to a single data structure is
passed to DeviceIoControl() as both the lpInBuffer and lpOutBuffer parameters. The driver expects
that the pointer references a SINGLE_TRANSFER structure, followed by a data buffer. In the case of
OUT endpoints, the buffer is expected to contain the data bytes to be transmitted. In the case of an IN
endpoint, the buffer is expected to be the writeable memory for received data bytes.

Example

PUCHAR CCyBulkEndPoint::BeginDataXfer(PCHAR buf, LONG bufLen, OVERLAPPED *ov)
{
 if (hDevice == INVALID_HANDLE_VALUE) return NULL;

 int iXmitBufSize = sizeof (SINGLE_TRANSFER) + bufLen;
 PUCHAR pXmitBuf = new UCHAR[iXmitBufSize];
 ZeroMemory(pXmitBuf, iXmitBufSize);

 PSINGLE_TRANSFER pTransfer = (PSINGLE_TRANSFER)pXmitBuf;
 pTransfer->WaitForever = false;
 pTransfer->ucEndpointAddress = Address;
 pTransfer->IsoPacketLength = 0;
 pTransfer->BufferOffset = sizeof (SINGLE_TRANSFER);
 pTransfer->BufferLength = bufLen;

Cypress CyUsb.sys Programmer's Reference23

© 2003 Cypress Semiconductor

 // Copy buf into pXmitBuf
 UCHAR *ptr = (PUCHAR) pTransfer + pTransfer->BufferOffset;
 memcpy(ptr, buf, bufLen);

 DWORD dwReturnBytes;
 DeviceIoControl(hDevice, IOCTL_ADAPT_SEND_NON_EP0_TRANSFER,
 pXmitBuf, iXmitBufSize,
 pXmitBuf, iXmitBufSize,
 &dwReturnBytes, ov);

 return pXmitBuf;
}

4.20 IOCTL_ADAPT_SEND_NON_EP0_DIRECT

Description

This IOCTL is used to request Bulk, Interrupt or Isochronous data transfers across corresponding USB
device endpoints.

This IOCTL is only exposed by the CyUSB.sys driver version 1.5.503.0 or later. It optimizes throughput
by using separate buffers for the SINGLE_TRANSFER structure and the transfer data. (The CyAPI.lib
class library, version 1.0.5.0, uses this command, instead of the slower
IOCTL_ADAPT_SEND_NON_EP0_TRANSFER, if it detects a capable driver.)
For CyUSB.sys driver version 1.07.000 or later, additional ISOC transfers can be performed such as
the capability to specify the current frame number (plus an optional frame offset) or simply set the
frame number that the transfer should begin on. To use these advanced features, a properly formatted
ISO_ADV_PARAMS must be properly initialized within the SINGLE_TRANSFER structure. See the
definition of ISO_ADV_PARAMS for implementation details.

The DeviceIoControl call requires two buffer parameters. For this command, the first buffer must
contain a properly initialized SINGLE_TRANSFER structure.

The SINGLE_TRANSFER fields of BufferOffset and BufferLength should be set to 0 for this command.

The second buffer is for the actual transfer data. For an OUT endpoint, this will contain the data
headed to the USB device. For an IN endpoint, this buffer will hold the data that is received from the
device.

Special ISOC Constraints

The endpoint maximum transfer size and buffer length parameter must both be a multiple of the
endpoint's MaxPacketSize.

For ISOC transfers on a device operating at High speed, the following constraints apply to this
command:

1) The endpoint transfer size must be a multiple of the endpoint's MaxPacketSize * 8. (See
IOCTL_ADAPT_SET_TRANSFER_SIZE.)

2) The buffer length parameter (bufLen in the below examples) must also be a multiple of the
endpoint's MaxPacketSize * 8.

Note: The above 2 constraints apply to all ISOC transfers, regardless of speed, if using a version of
CyUSB.sys older than 1.7.0.0.

The SINGLE_TRANSFER structure must be followed by additional space sufficient to hold the
PACKET_INFO structures for the transfer (see examples #2 and #3, below).

The IOCTL Interface 24

© 2003 Cypress Semiconductor

Example #1 (Bulk and Interrupt endpoints)

PUCHAR CCyUSBEndPoint::BeginDirectXfer(PUCHAR buf, LONG bufLen, OVERLAPPED *ov)
{
 if (hDevice == INVALID_HANDLE_VALUE) return NULL;

 int iXmitBufSize = sizeof (SINGLE_TRANSFER);
 PUCHAR pXmitBuf = new UCHAR[iXmitBufSize];
 ZeroMemory (pXmitBuf, iXmitBufSize);

 PSINGLE_TRANSFER pTransfer = (PSINGLE_TRANSFER) pXmitBuf;
 pTransfer->ucEndpointAddress = Address;
 pTransfer->IsoPacketLength = 0;
 pTransfer->BufferOffset = 0;
 pTransfer->BufferLength = 0;

 DWORD dwReturnBytes;
 DeviceIoControl (hDevice,
 IOCTL_ADAPT_SEND_NON_EP0_DIRECT,
 pXmitBuf, iXmitBufSize,
 buf, bufLen,
 &dwReturnBytes, ov);

 // Note that this method leaves pXmitBuf allocated. It will get deleted in
 // FinishDataXfer.

 LastError = GetLastError();
 return pXmitBuf;
}

Example #2 (ISOC endpoints)

PUCHAR CCyIsocEndPoint::BeginDirectXfer(PUCHAR buf, LONG bufLen, OVERLAPPED *ov)
{
 if (hDevice == INVALID_HANDLE_VALUE) return NULL;

 int pkts = bufLen / MaxPktSize; // Number of packets implied by bufLen &
pktSize
 if (bufLen % MaxPktSize) pkts++;

 if (pkts == 0) return NULL;

 int iXmitBufSize = sizeof (SINGLE_TRANSFER) + (pkts *
sizeof(ISO_PACKET_INFO));
 UCHAR *pXmitBuf = new UCHAR[iXmitBufSize];
 ZeroMemory (pXmitBuf, iXmitBufSize);

 PSINGLE_TRANSFER pTransfer = (PSINGLE_TRANSFER) pXmitBuf;
 pTransfer->ucEndpointAddress = Address;
 pTransfer->IsoPacketOffset = sizeof (SINGLE_TRANSFER);
 pTransfer->IsoPacketLength = pkts * sizeof(ISO_PACKET_INFO);
 pTransfer->BufferOffset = 0;
 pTransfer->BufferLength = 0;

 DWORD dwReturnBytes = 0;
 DeviceIoControl (hDevice,
 IOCTL_ADAPT_SEND_NON_EP0_DIRECT,
 pXmitBuf, iXmitBufSize,
 buf, bufLen,
 &dwReturnBytes, ov);

Cypress CyUsb.sys Programmer's Reference25

© 2003 Cypress Semiconductor

 // Note that this method leaves pXmitBuf allocated. It will get deleted in
 // FinishDataXfer.

 LastError = GetLastError();
 return pXmitBuf;
}

Example #3 (ISOC endpoints – advanced / driver version >= 1.07.000)

PUCHAR CCyIsocEndPoint::BeginDirectXfer(PUCHAR buf, LONG bufLen, OVERLAPPED *ov)

{
 if (hDevice == INVALID_HANDLE_VALUE) return NULL;

 int pkts = bufLen / MaxPktSize; // Number of packets implied by bufLen & pktSize

 if (bufLen % MaxPktSize) pkts++;

 if (pkts == 0) return NULL;

 int iXmitBufSize = sizeof (SINGLE_TRANSFER) + (pkts * sizeof(ISO_PACKET_INFO));
 UCHAR *pXmitBuf = new UCHAR[iXmitBufSize];
 ZeroMemory (pXmitBuf, iXmitBufSize);

 PSINGLE_TRANSFER pTransfer = (PSINGLE_TRANSFER) pXmitBuf;

 pTransfer->ucEndpointAddress = Address;
 pTransfer->IsoPacketOffset = sizeof (SINGLE_TRANSFER);
 pTransfer->IsoPacketLength = pkts * sizeof(ISO_PACKET_INFO);
 pTransfer->IsoParams.isoId = USB_ISO_ID;
pTransfer->IsoParams.isoCmd = USB_ISO_CMD_ASAP;
pTransfer->IsoParams.ulParam1 = 0;

 DWORD dwReturnBytes = 0;

 DeviceIoControl (hDevice,
 IOCTL_ADAPT_SEND_NON_EP0_DIRECT,
 pXmitBuf, iXmitBufSize,
 buf, bufLen,
 &dwReturnBytes, ov);

 // Note that this method leaves pXmitBuf allocated. It will get deleted in

 // FinishDataXfer.

 LastError = GetLastError();

 return pXmitBuf;
}

4.21 IOCTL_ADAPT_SET_DEVICE_POWER_STATE

Description

This command sets the power state of the device.

The IOCTL Interface 26

© 2003 Cypress Semiconductor

A pointer to a ULONG variable (pwrState) is passed as both the lpInBuffer and lpOutBuffer
parameters to the DeviceIoControl() function.

The size of the pwrState variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Valid values for the pwrState are:

1 => Power State D0 (Full On)
2 => Power State D1
3 => Power State D2
4 => Power State D3 (Full Asleep)

Example

 // Put the device into full asleep (Device Power State D3)
 DWORD dwBytes = 0;
 ULONG pwrState = 4;

 DeviceIoControl(hDevice, IOCTL_ADAPT_SET_DEVICE_POWER_STATE,
 &pwrState, sizeof (pwrState),
 &pwrState, sizeof (pwrState),
 &dwBytes, NULL);

4.22 IOCTL_ADAPT_SET_TRANSFER_SIZE

Description

This command sets the transfer size for a given endpoint. The transfer size is not the same as the
MaxPacketSize for the endpoint. Rather, the transfer size is always an integral multiple of the
endpoint's MaxPacketSize.

Small transfer sizes are memory efficient but result in multiple operations to effect a data transfer.
Larger transfer sizes are more wasteful of memory, but accomplish larger data transfers with fewer IO
transactions.

A pointer to a SET_TRANSFER_SIZE_INFO structure is passed as both the lpInBuffer and
lpOutBuffer parameters to the DeviceIoControl() function. This structure contains the address of the
endpoint that is to be changed and the new transfer size.

The size of the structure is passed in the nInBufferSize and nOutBufferSize parameters.

Example

 DWORD BytesXfered;
 SET_TRANSFER_SIZE_INFO SetTransferInfo;
 SetTransferInfo.EndpointAddress = Address;
 SetTransferInfo.TransferSize = 0x2000; // An 8 KB transfer size

 DeviceIoControl(hDevice, IOCTL_ADAPT_SET_TRANSFER_SIZE,
 &SetTransferInfo, sizeof (SET_TRANSFER_SIZE_INFO),
 &SetTransferInfo, sizeof (SET_TRANSFER_SIZE_INFO),
 &BytesXfered, NULL);

Cypress CyUsb.sys Programmer's Reference27

© 2003 Cypress Semiconductor

5 CYIOCTL.H

Header
 cyioctl.h

Description

A pointer to a SINGLE_TRANSFER structure is passed to the driver for the
IOCTL_ADAPT_SEND_NON_EP0_TRANSFER and
IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER commands.

The structure is defined as:

typedef struct _SINGLE_TRANSFER {
 union {
 SETUP_PACKET SetupPacket;
 ISO_ADV_PARAMS IsoParams;
 };

 UCHAR Reserved;
 UCHAR ucEndpointAddress;
 ULONG NtStatus;
 ULONG UsbdStatus;
 ULONG IsoPacketOffset;
 ULONG IsoPacketLength;
 ULONG BufferOffset;
 ULONG BufferLength;
} SINGLE_TRANSFER, *PSINGLE_TRANSFER;

Members

SetupPacket
Contains required parameters for Control Endpoint transfers,

IsoParams
Contains optional parameters for Isochronous Endpoint transfers.

reserved
Reserved. Should be set to 0.

ucEndpointAddress
Specified the address of the device endpoint in which the transfer will occur.

NtStatus
NTSTATUS values that are returned by the driver.

UsbdStatus
USB_STATUS_XXX codes returned from the host controller driver.

IsoPacketOffset
Specifies the byte offset from the beginning of the structure to an IsoPacket list.

IsoPacketLength
The length, in bytes, of the IsoPacket list specified at offset IsoPacketOffset.

BufferOffset

CYIOCTL.H 28

© 2003 Cypress Semiconductor

Specifies the byte offset from the beginning of the structure to a transfer buffer.

BufferLength
The length, in bytes, of the transfer buffer at offset BufferOffset.

5.1 ISO_ADV_PARAMS

Header
cyioctl.h

Description

ISO_ADV_PARAMS is part of the a SINGLE_TRANSFER structure. It contains advanced parameters
for Isochronous endpoint transfers when sending the IOCTL_ADAPT_SEND_NON_EP0_TRANSFER
and IOCTL_ADAPT_SEND_NON_EP0_DIRECT commands.

The structure is defined as:

typedef struct _ISO_ADV_PARAMS {
 USHORT isoId;
 USHORT isoCmd;
 ULONG ulParam1;
 ULONG ulParam2;
} ISO_ADV_PARAMS, *PISO_ADV_PARAMS;

Defines

#define USB_ISO_ID 0x4945
#define USB_ISO_CMD_ASAP 0x8000
#define USB_ISO_CMD_CURRENT_FRAME 0x8001
#define USB_ISO_CMD_SET_FRAME 0x8002

Members

isoId
ISO_ADV_PARAMS structure identifier must be set to USB_ISO_ID.

isoCmd
Specifies one of the following types of Isoch transfers:

USB_ISO_CMD_ASAP
If no transfers have been submitted to the pipe since the pipe was opened or
last reset, the transfer to begin on the next frame. Otherwise, the transfer will
begin on the first frame following all currently queued requests for the pipe.

USB_ISO_CMD_CURRENT_FRAME
Causes the transfer to begin on the current frame number obtained from the
host controller driver, plus an optional offset specified in the ulParam1 field.

USB_ISO_CMD_SET_FRAME
Causes the transfer to begin on the frame number specified in the ulParam1
field.

ulParam1

Cypress CyUsb.sys Programmer's Reference29

© 2003 Cypress Semiconductor

If isoCMD is set to USB_ISO_CMD_ASAP, when the request is returned by the driver
this field will contain the frame number that the transfer began on.

If isoCMD is set to USB_ISO_CMD_CURRENT_FRAME, this field contains the offset
from the current frame number that this transfer will begin on.

If isoCMD is set to USB_ISO_CMD_SET_FRAME, this field contains the frame
number that this transfer will begin on.

ulParam2
Reserved. Must be set to 0.

5.2 SINGLE_TRANSFER

Header
 cyioctl.h

Description

A pointer to a SINGLE_TRANSFER structure is passed to the driver for the
IOCTL_ADAPT_SEND_NON_EP0_TRANSFER and
IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER commands.

The structure is defined as:

typedef struct _SINGLE_TRANSFER {
 union {
 SETUP_PACKET SetupPacket;
 ISO_ADV_PARAMS IsoParams;
 };

 UCHAR Reserved;
 UCHAR ucEndpointAddress;
 ULONG NtStatus;
 ULONG UsbdStatus;
 ULONG IsoPacketOffset;
 ULONG IsoPacketLength;
 ULONG BufferOffset;
 ULONG BufferLength;
} SINGLE_TRANSFER, *PSINGLE_TRANSFER;

Members

SetupPacket
Contains required parameters for Control Endpoint transfers,

IsoParams
Contains optional parameters for Isochronous Endpoint transfers.

reserved
Reserved. Should be set to 0.

ucEndpointAddress
Specified the address of the device endpoint in which the transfer will occur.

CYIOCTL.H 30

© 2003 Cypress Semiconductor

NtStatus
NTSTATUS values that are returned by the driver.

UsbdStatus
USB_STATUS_XXX codes returned from the host controller driver.

IsoPacketOffset
Specifies the byte offset from the beginning of the structure to an IsoPacket list.

IsoPacketLength
The length, in bytes, of the IsoPacket list specified at offset IsoPacketOffset.

BufferOffset
Specifies the byte offset from the beginning of the structure to a transfer buffer.

BufferLength
The length, in bytes, of the transfer buffer at offset BufferOffset.

5.3 SETUP_PACKET

Header
 cyioctl.h

Description

A SETUP_PACKET is part of the a SINGLE_TRANSFER structure. It contains important parameters
for Control Endpoint transfers when sending the IOCTL_ADAPT_SEND_EP0_TRANSFER
command.

The structure is defined as:

typedef struct _SETUP_PACKET {

 union {
 BM_REQ_TYPE bmReqType;
 UCHAR bmRequest;
 };

 UCHAR bRequest;

 union {
 WORD_SPLIT wVal;
 USHORT wValue;
 };

 union {
 WORD_SPLIT wIndx;
 USHORT wIndex;
 };

 union {
 WORD_SPLIT wLen;
 USHORT wLength;
 };

 ULONG ulTimeOut;

} SETUP_PACKET, *PSETUP_PACKET;

Cypress CyUsb.sys Programmer's Reference31

© 2003 Cypress Semiconductor

5.4 SET_TRANSFER_SIZE_INFO

Header
 cyioctl.h

Description

A pointer to a SET_TRANSFER_SIZE_INFO structure is passed to the driver for the
IOCTL_ADAPT_GET_TRANSFER_SIZE and IOCTL_ADAPT_SET_TRANSFER_SIZE commands.

The structure is defined as:

typedef struct _SET_TRANSFER_SIZE_INFO {
 UCHAR EndpointAddress;
 ULONG TransferSize;
} SET_TRANSFER_SIZE_INFO, *PSET_TRANSFER_SIZE_INFO;

	Driver Overview
	Modifying CyUSB.INF
	Matching Devices to the Driver
	Windows 2000
	Windows XP

	The IOCTL Interface
	Getting a Handle to the Driver
	IOCTL_ADAPT_ABORT_PIPE
	IOCTL_ADAPT_CYCLE_PORT
	IOCTL_ADAPT_GET_ADDRESS
	IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING
	IOCTL_ADAPT_GET_CURRENT_FRAME
	IOCTL_ADAPT_GET_DEVICE_NAME
	IOCTL_ADAPT_GET_DEVICE_POWER_STATE
	IOCTL_ADAPT_GET_DEVICE_SPEED
	IOCTL_ADAPT_GET_DRIVER_VERSION
	IOCTL_ADAPT_GET_FRIENDLY_NAME
	IOCTL_ADAPT_GET_NUMBER_ENDPOINTS
	IOCTL_ADAPT_GET_TRANSFER_SIZE
	IOCTL_ADAPT_GET_USBDI_VERSION
	IOCTL_ADAPT_RESET_PARENT_PORT
	IOCTL_ADAPT_RESET_PIPE
	IOCTL_ADAPT_SELECT_INTERFACE
	IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER
	IOCTL_ADAPT_SEND_NON_EP0_TRANSFER
	IOCTL_ADAPT_SEND_NON_EP0_DIRECT
	IOCTL_ADAPT_SET_DEVICE_POWER_STATE
	IOCTL_ADAPT_SET_TRANSFER_SIZE

	CYIOCTL.H
	ISO_ADV_PARAMS
	SINGLE_TRANSFER
	SETUP_PACKET
	SET_TRANSFER_SIZE_INFO

