Cypress CyUsb.sys Programmer's Reference

© 2003 Cypress Semiconductor

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or

mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this document
or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be
liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or
indirectly by this document.

Cypress CyUsb.sys Programmer's Reference

Table of Contents

Part |
Part Il

Part Il

1
2

Part IV

© 0O N o o~ W N P

N NN P R R R R R R R R
N B O © 0 N O 0 M W N R O

Part V

Driver Overview
Modifying CyUSB.INF

Matching Devices to the Driver

WiINAOWS 2000ooeviiiieeiieiieeeie e e e e e e e eeaaaaas
WINAOWS XP oot e e e e eeaaaaas

The IOCTL Interface

Getting a Handle to the Drivercccccoiiiiiiiiiiiieiiieeee
IOCTL_ADAPT_ABORT_PIPE ...oiiiiiiie e
IOCTL_ADAPT_CYCLE_PORT ...ttt
IOCTL_ADAPT_GET_ADDRESScooiiiiiiiieeiee e
IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING
IOCTL_ADAPT_GET_CURRENT_FRAMEcccceeviiiiirienneen
IOCTL_ADAPT_GET_DEVICE_NAMEcococviiiirieiieenee
IOCTL_ADAPT_GET_DEVICE_POWER_STATEccceevunene.
IOCTL_ADAPT_GET_DEVICE_SPEEDcccccociiiiiieiieeie
IOCTL_ADAPT_GET_DRIVER_VERSIONcccccciiiiiiiicnneen
IOCTL_ADAPT_GET_FRIENDLY_NAMEcccocviiiiiiricieeee
IOCTL_ADAPT_GET_NUMBER_ENDPOINTScccceiiieiiennne
IOCTL_ADAPT_GET_TRANSFER_SIZEccccocviiiiiiiiciiee
IOCTL_ADAPT_GET_USBDI_VERSIONcccoviiiriieiiienree
IOCTL_ADAPT_RESET_PARENT_PORT ..ccecoviierieeiieeenreen
IOCTL_ADAPT_RESET_PIPEcctiiiiiiiieceieeee e
IOCTL_ADAPT_SELECT_INTERFACEccoeeiiiiiiieiee e

IOCTL_ADAPT_SEND_EPO_CONTROL_TRANSFER

IOCTL_ADAPT_SEND_NON_EPO_TRANSFERc..cecrvvrnen...
IOCTL_ADAPT_SEND_NON_EPO_DIRECT ...ovvreverererrrrrererenne.
IOCTL_ADAPT_SET_DEVICE_POWER_STATE ...ovvovvveveerenne.
IOCTL_ADAPT_SET_TRANSFER_SIZEcvvvvvereereesreereerenne.

CYIOCTL.H

ISO_ADV_PARAMS ..o eeeeeesee s eseeseeeseeseeeseeeseens
SINGLE_TRANSFERooieeeeeeeeeeeeeeeeeeeeeeeeesees e eeseesseseeeneen
SETUP_PACKET .ot eeesee e ees s

© 2003 Cypress Semiconductor

Contents Il

4 SET_TRANSFER_SIZE_INFO

© 2003 Cypress Semiconductor

Cypress CyUsb.sys Programmer's Reference

Driver Overview

The CYUSB.SYS driver is licensed for distribution ONLY with Cypress USB products and
products that employ Cypress USB chips.

CYUSB.SYS is a USB device driver for Windows 2000 and Windows XP that is capable of
communicating with any USB 2.0 compliant device. The driver is general-purpose, understanding
primitive USB commands, but not implementing higher-level, USB device-class specific commands.
For this reason, the driver is not capable, for instance, of interfacing a USB mass storage class device
to the Windows file system.

However, the driver would be ideal for communicating with a vendor-specific device from a custom
USB application. Or, it might be used to send low-level USB requests to any USB device for
experimental or diagnostic applications.

In order to use the driver to communicate with a device, Windows must match the device to the driver.

The class library, CyAPL.lib, provides a high-level programming interface to the driver. This help file
documents the low-level, more cumbersome and explicit, programming interface.

Features

Windows Driver Model (WDM) compliant

WHQL Certified (not signed)

Compatible with any USB 2.0 compliant device

Supports Windows PnP and Power Management level S4

Supports USB Remote Wake-up

Supports Control, Bulk, Interrupt and Isochronous endpoints

Supports multiple USB devices connected at once

Supports customizable driver GUID without re-building the driver

Supports high bandwidth data transfers passing multiple packets per uframe
Supports automatic play-back of control transfer scripts at device startup

Modifying CyUSB.INF

The CYUSB.INF file can be modified to accomplish several different objectives. These are:

1. Add a device's identifiers to the driver

2. Replace Cypress strings that are displayed during driver installation
3. Implement a custom GUID for the driver

4. Execute a saved script of commands at driver load time

Add a device's identifiers to the driver

To make the driver match to a specific device, the device's vendor ID and product ID need to be added
to the .inf file.

Locate the [Cypress] section and duplicate the line
;%VID_VVVV&PID_PPPP.DeviceDesc%=CyUSB, USB\VID_VVVV&PID_PPPP

Remove the semicolon from the duplicate line

© 2003 Cypress Semiconductor

Modifying CyUSB.INF 4

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID OxDEO1 would have a new entry in the
[Cypress] section like the

following
%VID_04B4&PID_DEO01.DeviceDesc%=CyUSB, USB\VID_04B4&PID_DEO1

~ Now, move to the bottom of the CYUSB.INF file and locate the [Strings] section and duplicate the
IIn(;a\'/lD_VVVV&PID_PPPP.DeviceDesc:" My Device Description”

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID OxDEO1 would have a new entry in the
[Strings] section like the

following
VID_04B4&PID_DEOQO1.DeviceDesc="Cypress OTG DE1 DevBoard"

Replace Cypress strings

If you plan to do more than just add your device's VID/PID to the CYUSB.INF file, it is strongly
recommended that you create your own .INF file and a copy of CYUSB.SYS that you have re-named.
The remaining instructions assume that you have created your own .INF file to match your newly
named copy of CYUSB.SYS.

The driver can be customized to report a company other than Cypress as its manufacturer and
provider.

Locate the [Strings] section at the bottom of the CYUSB.INF file.

Change the quoted PROVIDER string.

Change the quoted MFGNAME string.

Change the quoted CyUSB.SvcDesc string.

There is also an identifier named Cypress that is used in the file. This can be modified if you want
no mention of Cypress in the .inf file.

Locate the [Manufacturer] section near the top of the file.

Change the symbolic name, Cypress, in the line

%MFGNAME%=Cypress

Change the section name, [Cypress] in the next line to match the symbolic name used in the
%MFGNAME%= assignment.

© 2003 Cypress Semiconductor

Cypress CyUsb.sys Programmer's Reference

Implement a custom GUID

Applications software usually accesses the driver using the driver's Global Unique IDentifier (GUID).
Each driver in the Windows system should have a unique GUID. By employing distinct GUIDs,
multiple instances of CYUSB.SYS from different hardware vendors can exist on a given system without
colliding.
To change the driver's GUID,

Use the GUIDGEN.EXE utility (distributed with Microsoft Visual Studio) to get a new GUID.

Locate the [Strings] section in the CyUSB.inf file

Locate the line
CyUSB.GUID="{AE18AA60-7F6A-11d4-97DD-00010229B959}"

and replace the quoted GUID string with the new one you created. (Retain the curly braces.)

Execute a script at start-up

The CYUSB.SYS driver can be used to perform transfers to the default control endpoint (endpoint
address 0) when the device is started.

To configure the driver to perform a control transfer at startup
Use the CyConsole.exe application to create a script file containing the control transfer commands.
Save the script as a file named CYUSB.SPT
Place that script file in the same directory as the the driver's .INF file
Locate and uncomment the 6 lines in the .inf file that are preceeded by the comment

----- Uncomment below to support script file processing----

A common use of this feature is to have the driver play a script which downloads a firmware image to
the USB device, thereby modifying its "personality” and usually causing it to re-enumerate on the bus.
If this re-enumeration occurs with the same VID/PID as the original "personality”, the script will be
executed again and again in an un-ending loop.

To avoid this endless loop scenario, the second personality should enumerate with a different VID/PID
than the one which caused the script to play.

The .inf file can be modified to play a script when one VID/PID is enumerated and to simply load the
driver when a different VID/PID is detected.

The following is an excerpt from a .inf file that plays a script called MyDevice.spt when VID/PID of
04B4/8613 is enumerated. If VID/PID 0547/1002 enumerates, the script is not played. (This .infis
compatible with WinXP and Win2k.)

Note the separate blocks of declarations for MYDEVICE and CYUSB.

© 2003 Cypress Semiconductor

Modifying CyUSB.INF

[Cypress]
%W/ D_04B4&PI D 8613. Devi ceDesc%MYDEVI CE, USB\ VI D _04B4&PI D 8613

W/ D _0547&PI D_1002. Devi ceDesc%CYUSB, USB\VI D 0547&PI D 1002

[DestinationDirs]
CYUSB. Fil es = 10, SystenB2\Dri vers
MYDEVI CE. Fi |l es = 10, Syst enB2\ MYDEVI CE

[MYDEVI CE. Fi | es]
MYDEVI CE. SPT

[MYDEVI CE. NT]
CopyFi | es=CYUSB. Fi | es, MYDEVI CE. Fi | es
AddReg=CYUSB. AddReg

[MYDEVI CE. NT. HW
AddReg=MYDEVI CE. AddReg. Gui d

[MYDEVI CE. NT. Ser vi ces]
Addservi ce = CYUSB, 0x00000002, CYUSB. AddServi ce

[MYDEVI CE. AddReg. Gui d]
HKR, , Dri ver GUI D, , %CYUSB. GUI D
HKR, , Dr i ver EXECSCRI PT, , %WDEVI CE. EXECSCRI PT¥

[CYUSB. Fi | es]
CYUSB. SYS

[CYUSB. NT]
CopyFi | es=CYUSB. Fi | es
AddReg=CYUSB. AddReg

[CYUSB. NT. HW
AddReg=CYUSB. AddReg. Gui d

[CYUSB. NT. Ser vi ces]
Addservi ce = CYUSB, 0x00000002, CYUSB. AddServi ce

[CYUSB. AddReg]
HKR, , DevLoader, , *nt kern
HKR, , NTMPDx i ver, , CyUsb. sys

[CYUSB. AddReg. Gui d]
HKR, , Dri ver GUI D, , %CYUSB. GUI DY

[CYUSB. AddSer vi ce]

Di spl ayNane = %CYUSB. SvcDesc¥

Servi ceType =1 : SERVI CE_KERNEL_DRI VER
Start Type =3 : SERVI CE_DEMAND_START
Error Contr ol =1 ; SERVI CE_ERROR_NORMAL
ServiceBinary = %10% SystenB2\Dri vers\ CYUSB. SYS

LoadOr der Group = Base

[Strings]

PROVI DER=" Cypr ess"

MFGNAME=" Cypr ess Semi conduct or"

CYUSB_| NSTALL="Cypress Installation Di sk"

VI D_04B4&PI D_8613. Devi ceDesc="My first device"

VI D_0547&PI D_1002. Devi ceDesc="M re-programed Device"

© 2003 Cypress Semiconductor

Cypress CyUsb.sys Programmer's Reference

3.1

CYUSB. SvcDesc="Cypress USB Devi ce"
CYUSB. GUI D="{ AE18AA60- 7F6A- 11d4- 97DD- 00010229B959} "
MYDEVI CE. EXECSCRI PT="\ syst enr oot \ syst en82\ MYDEVI CE\ MYDEVI CE. spt "

Matching Devices to the Driver

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured.
This configuration consist of two steps.

Step 1: Add the device's VendorID and ProductID to the CYUSB.INF file.
Step 2: Force WindowsXP to use the CYUSB.SYS driver with the device.

Though similar, these steps are slightly different for Windows 2000 and WinXP.

Windows 2000

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured.
This configuration consist of two steps.

Step 1: Add the device's VendorID and ProductID to the CYUSB.INF file.

After installation of the Developer Studio files, the driver is located in a Driver subdirectory of the
install directory. (Default is C:\Program Files\Cypress\DevStudio\Driver.)

Open the file CYUSB.INF with a text editor (notepad.exe, for instance)

Locate the [Cypress] section and duplicate the line
; %VID_VVVV &PID_PPPP .DeviceDesc%=CyUSB, USB\VID_VVVV &PID_PPPP

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDEO1 would have a new entry in the

[Cypress] section like the following:
%VID_04B4&PID_DEO1.DeviceDesc%=CyUSB, USB\VID_04B4&PID_DEO1

Now, move to the bottom of the CyUSB.inf file and locate the [Strings] section and duplicate the
I;”:/Eib_VWV &PID_PPPP .DeviceDesc="My Device Description "

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDEO1 would have a new entry in the

© 2003 Cypress Semiconductor

Matching Devices to the Driver 8

[Strings] section like the following
VID_04B4&PID_DEOQ01.DeviceDesc="Cypress OTG DE1 DevBoard"

Save the file.

Step 2: Force Windows2000 to use the CYUSB.SYS driver with the device.
Connect the device to the PC

If Windows prompts for a driver or indicates that it needs a driver, direct the PC to use the
CYUSB.SYS driver by steering it to the CYUSB.INF file in the [InstallDir\Driver directory.

If Windows does not prompt for a driver, it has already matched the device to a driver itself. In this
case, you will need to see if the CYUSB.SYS driver was selected and, if not, manually instruct
Windows to use that driver.

Right-click My Computer and select the Manage menu item.

In the Computer Management window, select Device Manager

In the right window pane, click the + icon next to Universal Serial Bus controllers

Locate your device in the list and double click on it

Select the Driver tab in the Properties dialog that comes up

Click on the Driver Details button.

If the displayed driver file is CYUSB.SYS, Windows has already matched the device to this driver
and you should click OK and Cancel . If not, proceed with the remaining steps.

Click OK

Select Update Driver

Click Next

Select Search for a suitable driver for my device (recommended)
Click Next

Select Specify a location

Click Next

Navigate to the directory containing CYUSB.SYS

CYUSB.INF should be automatically placed in the File name field
Click Open

Click OK

© 2003 Cypress Semiconductor

Cypress CyUsb.sys Programmer's Reference

Click Next
Click Finish

Don't re-boot your system if Windows suggests that you must. You may need to unplug and re-plug
your device, however.

Windows XP

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured.
This configuration consist of two steps.

Step 1: Add the device's VendorID and ProductID to the CYUSB.INF file.

After installation of the Developer Studio files, the driver is located in a Driver subdirectory of the
install directory. (Default is C:\Program Files\Cypress\DevStudio\Driver.)

Open the file CYUSB.INF with a text editor (notepad.exe, for instance)

Locate the [Cypress] section and duplicate the line
; %VID_VVVV &PID_PPPP .DeviceDesc%=CyUSB, USB\VID_VVVV &PID_PPPP

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDEO1 would have a new entry in the

[Cypress] section like the following
%VID_04B4&PID_DEO1.DeviceDesc%=CyUSB, USB\VID_04B4&PID_DEO1

Now, move to the bottom of the CyUSB.inf file and locate the [Strings] section and duplicate the
I;”:/Eib_VWV &PID_PPPP .DeviceDesc="My Device Description "

Remove the semicolon from the duplicate line

Change the VVVV to contain the hexadecimal value of the VendorID for the device

Change the PPPP to contain the hexadecimal value of the ProductID for the device

For example, a device with vendorID 0x04B4 and productID 0xDEO1 would have a new entry in the

[Strings] section like the following
VID_04B4&PID_DEOQO1.DeviceDesc="Cypress OTG DE1 DevBoard"

Save the file.

Step 2: Force WindowsXP to use the CYUSB.SYS driver with the device.

© 2003 Cypress Semiconductor

Matching Devices to the Driver 10

Connect the device to the PC

If Windows prompts for a driver or indicates that it needs a driver, direct the PC to use the
CYUSB.SYS driver by steering it to the CYUSB.INF file in the [InstallDir\Driver directory.

If Windows does not prompt for a driver, it has already matched the device to a driver itself. In this
case, you will need to see if the CYUSB.SYS driver was selected and, if not, manually instruct
Windows to use that driver.

Right-click My Computer and select the Manage menu item.

In the Computer Management window, select Device Manager

In the right window pane, click the + icon next to Universal Serial Bus controllers

Locate your device in the list and double click on it

Select the Driver tab in the Properties dialog that comes up

Click on the Driver Details button.

If the displayed driver file is CYUSB.SYS, Windows has already matched the device to this driver
and you should click OK and Cancel . If not, proceed with the remaining steps.

Click OK

Click Update Driver

Select Install from a list or specific location (Advanced)
Click Next

Select Don't search. | will choose the driver to install.
Click Next

Click Have Disk

Click Browse

Navigate to the directory containing CYUSB.SYS
CYUSB.INF should be automatically placed in the File name field
Click Open

Click OK

Click Next

Click Finish

Click Close

Don't re-boot your system if Windows suggests that you must. You may need to unplug and re-plug
your device, however.

© 2003 Cypress Semiconductor

Cypress CyUsb.sys Programmer's Reference

Usually, matching of a USB device to the CYUSB.SYS driver will need to be manually configured.
This configuration consist of two steps.
Step 1: Add the device's VendorID and ProductID to the CYUSB.INF file.

After installation of the SuiteUSB files, the driver is located in a Driver subdirectory of the install
directory. (Default is C:\Program Files\Cypress\SuiteUSB\Driver.)

Open the file CYUSB.INF with a text editor (notepad.exe, for instance)

Locate the [Cypress] section and duplicate the line
; %VID_VVVV &PID_PPPP .DeviceDesc%=CyUSB, USB\VID_VVVV &PID_PPPP

Remove the semicolon from the duplicate line
Change the VVVV to contain the hexadecimal value of the VendorID for the device
Change the PPPP to contain the hexadecimal value of the ProductID for the device
For example, a device with vendorID 0x04B4 and productID 0xDEO1 would have a new entry in the
[Cypress] section like the following
%VID_04B4&PID_DEO1.DeviceDesc%=CyUSB, USB\VID_04B4&PID_DEO1
Now, move to the bottom of the CyUSB.inf file and locate the [Strings] section and duplicate the
line.
; VID_VVVV &PID_PPPP .DeviceDesc="My Device Description "
Remove the semicolon from the duplicate line
Change the VVVV to contain the hexadecimal value of the VendorID for the device
Change the PPPP to contain the hexadecimal value of the ProductID for the device
For example, a device with vendorID 0x04B4 and productID OxDEO1 would have a new entry in the
[Strings] section like the following
VID_04B4&PID_DEOQO1.DeviceDesc="Cypress = OTG DE1 DevBoard"
Save the file.
Step 2: Force WindowsXP to use the CYUSB.SYS driver with the device.

Connect the device to the PC

If Windows prompts for a driver or indicates that it needs a driver, direct the PC to use the
CYUSB.SYS driver by steering it to the CYUSB.INF file in the [InstallDir\Driver directory.

If Windows does not prompt for a driver, it has already matched the device to a driver itself. In this
case, you will need to see if the CYUSB.SYS driver was selected and, if not, manually instruct
Windows to use that driver.

Right-click My Computer and select the Manage menu item.

In the Computer Management window, select Device Manager

In the right window pane, click the + icon next to Universal Serial Bus controllers

© 2003 Cypress Semiconductor

Matching Devices to the Driver 12

Locate your device in the list and double click on it
Select the Driver tab in the Properties dialog that comes up
Click on the Driver Details button.

If the displayed driver file is CYUSB.SYS, Windows has already matched the device to this driver
and you should click OK and Cancel . If not, proceed with the remaining steps.

Click OK

Click Update Driver

Select Install from a list or specific location (Advanced)
Click Next

Select Don't search. | will choose the driver to install.
Click Next

Click Have Disk

Click Browse

Navigate to the directory containing CYUSB.SYS
CYUSB.INF should be automatically placed in the File name field
Click Open

Click OK

Click Next

Click Finish

Click Close

Don't re-boot your system if Windows suggests that you must. You may need to unplug and re-plug
your device, however.

4 The IOCTL Interface

Applications software communicates with the CYUSB.SYS driver primarily through the
DeviceloControl() function. (See the Windows SDK documentation for details about
DeviceloControl.)

Calls to DeviceloControl require an IO Control (aka IOCTL) code parameter. The IOCTL codes define
the programming interface that a driver supports and are particular to any given driver. The control
code specified in a DeviceloControl() call determines the values that must be specified for the other
DeviceloControl parameters.

This help file provides the IOCTL 'dictionary' for the CYUSB.SYS driver.

© 2003 Cypress Semiconductor

13

Cypress CyUsb.sys Programmer's Reference

4.1

Example

DWORD dwBytes = O;
UCHAR Endpt Address = 0x82;

Devi cel oCont r ol (hDevi ce, | OCTL_ADAPT_RESET_PI PE,
&Endpt Address, sizeof (EndptAddress),
NULL, O,
&dwByt es, NULL);

Getting a Handle to the Driver

In order to use the IOCTL codes supported by the driver, you will need to obtain a Windows handle to
the driver.

A very simple way to accomplish this is to utilize the CyAPI class library. After creating a
CCyUSBDevice object, a handle to the driver will have been setup automatically. Closing or deleting
the CCyUSBDevice object frees the handle.

Example 1:

CCyUSBDevi ce *USBDevi ce = new CCyUSBDevi ce();
HANDLE hDevi ce = USBDevi ce->Devi ceHandl e();

del et e USBDevi ce;

The more typical (and complex) way to obtain a handle is to make a sequence of SetupDi calls,
passing the driver GUID declared in CyAPI.h. The default driver guid is defined as:

/'l { AE18AA60- 7F6A- 11d4- 97DD- 00010229B959}
static GUI D CYUSBDRV_GUI D = {Oxael8aa60, Ox7f6a, 0x11d4, 0x97, Oxdd, Ox0, Ox1, 0x2,
0x29, O0xb9, 0x59};

The CyAPI library uses the following code to obtain a handle, using the GUID.

Example 2:

SP_DEVI NFO_DATA devl nf oDat a;
SP_DEVI CE_| NTERFACE_DATA devl nt er f aceDat a;
PSP_| NTERFACE_DEVI CE_DETAI L_DATA functi onCl assDevi ceDat a;

ULONG r equi redLength = 0;
int deviceNunber = 0; // Can be other values if nore than 1 device connected to
driver

HDEVI NFO hwDevi cel nfo = SetupDi Get O assDevs ((LPGUI D) &CYUSBDRV_GUI D,
NULL,
NULL,
DI GCF_PRESENT| DI GCF_I NTERFACEDEVI C

© 2003 Cypress Semiconductor

The IOCTL Interface 14

i f (hwDevicelnfo != | NVALI D HANDLE _VALUE) ({
devl nterfaceDat a. chSi ze = si zeof (devl nterfaceDat a);

i f (SetupDi EnunDevi cel nterfaces (hwbevicelnfo, 0, (LPGU D) &CYUSBDRV_GU D,
devi ceNurmber, &devlnterfaceData)) {

Set upDi Get I nterfaceDevi ceDetail (hwDevicelnfo, &devlnterfaceData, NULL, O,
& equi redLengt h, NULL);

ULONG predi ctedLength = requiredLengt h;

functiond assDevi ceData = (PSP_| NTERFACE_DEVI CE_DETAI L_DATA) mal | oc
(predictedLength);
functiond assDevi ceDat a- >cbSi ze = sizeof (SP_|I NTERFACE_DEVI CE_DETAI L_DATA) ;

devl nf oDat a. cbSi ze = si zeof (devl nfoDat a) ;

if (SetupDi GetlnterfaceDeviceDetail (hwbDevicelnfo,
&devl nt er f aceDat a,
functi ond assDevi ceDat a,
predi ct edLengt h,
&r equi redLengt h,
&devl nfoData)) {

hDevi ce = CreateFil e (functionC assDevi ceDat a- >Devi cePat h,
GENERI C_WRI TE | GENERI C_READ,
FI LE_SHARE WRI TE | FI LE_SHARE_READ,
NULL,
OPEN_EXI STI NG,
FI LE_FLAG OVERLAPPED,
NULL) ;

free(functionC assDevi ceDat a) ;
Set upDi Dest r oyDevi cel nf oLi st (hwDevi cel nf 0) ;

}

42 |OCTL_ADAPT_ABORT_PIPE

Description
This command is used to cancel pending IO requests on an endpoint.

A pointer to a variable containing the endpoint address is passed as the IpInBuffer parameter to the
DeviceloControl() function. A null pointer is passed as the IpOutBuffer parameter.

Example
DWORD dwBytes = O;
UCHAR Address = 0x82;

Devi cel oCont r ol (hDevi ce, | OCTL_ADAPT_ABORT_PI PE,

© 2003 Cypress Semiconductor

15

Cypress CyUsb.sys Programmer's Reference

4.3

4.4

4.5

&Addr ess, sizeof (UCHAR),
NULL, O,
&dwByt es, NULL);

IOCTL_ADAPT _CYCLE_PORT

Description

This command causes the USB device to be logically disconnected from the bus and, then, re-
connected.

NULL pointers are passed to DeviceloControl in the pinBuffer and pOutBuffer parameters.

Example
DWORD dwBytes = O;
Devi cel oCont r ol (hDevi ce, | OCTL_ADAPT_CYCLE_PORT,
NULL, O,

NULL, O,
&dwByt es, NULL);

IOCTL_ADAPT_GET_ADDRESS

Description
This command retrieves the USB address of the device from the Windows host controller driver.

A pointer to a 1-byte variable is passed as both the IpIinBuffer and IpOutBuffer parameters to the
DeviceloControl() function.

The size of the variable (1) is passed in the ninBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = O;
UCHAR DevAddr ;

Devi cel oCont r ol (hDevi ce, | OCTL_ADAPT_GET_ADDRESS,
&DevAddr, sizeof (UCHAR),
&DevAddr, sizeof (UCHAR),
&dwByt es, NULL) ;

IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING

Description
This command retrieves the alternate interface setting for a particular interface of the attached device.

A pointer to a byte indicating the interface number is passed as the IpInBuffer parameter to the
DeviceloControl() function.

A pointer to a byte into which the alternate interface setting will be reported is passed as the
IpOutBuffer parameter to the DeviceloControl() function.

© 2003 Cypress Semiconductor

The IOCTL Interface 16

4.6

4.7

The length of the variables (1) is passed in the ninBufferSize and nOutBufferSize parameters.

Example

DWORD dwByt es 0;
UCHAR intfc =
UCHAR al t;

0;
Devi cel oCont r ol (hDevi ce, | OCTL_ADAPT_GET_ALT_I NTERFACE_SETTI NG,
& ntfc, sizeof (alt),

&alt, sizeof (alt),
&dwByt es, NULL);

IOCTL_ADAPT_GET_CURRENT_FRAME

Description
This command returns the current frame number from the host controller driver.

A pointer to a 4-byte variable is passed as both the IpInBuffer and IpOutBuffer parameters to the
DeviceloControl() function.

The size of the variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
ULONG Current Frane;

Devi cel oControl (hDevi ce, | OCTL_ADAPT_GET_CURRENT_FRAME,
&Current Frame, sizeof (ULONG),
&Current Frame, sizeof (ULONG),
&dwByt es, NULL);

IOCTL_ADAPT_GET_DEVICE_NAME

Description
This command retrieves the Product string descriptor value for the attached device.

A pointer to a character buffer is passed as both the IpInBuffer and IpOutBuffer parameters to the
DeviceloControl() function.

The length of the buffer is passed in the ninBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = O;
ULONG | en = 256;
UCHAR *buf = new UCHAR[I en];

Devi cel oCont r ol (hDevi ce, | OCTL_ADAPT_GET_DEVI CE_NAME,
buf, |en,
buf, |en,
&dwByt es, NULL);

© 2003 Cypress Semiconductor

17

Cypress CyUsb.sys Programmer's Reference

4.8

4.9

del ete[] buf;

IOCTL_ADAPT_GET DEVICE_POWER_STATE

Description
This command retrieves the power state of the device

A pointer to a ULONG variable (pwrState) is passed as both the IpinBuffer and IpOutBuffer
parameters to the DeviceloControl() function.

The size of the pwrState variable (4) is passed in the ninBufferSize and nOutBufferSize parameters.
Possible return values for the pwrState are:

1 => Power State DO (Full On)

2 => Power State D1

3 => Power State D2

4 => Power State D3 (Full Asleep)

Example

DWORD dwBytes = O;
ULONG pwr St at e;

Devi cel oControl (hDevi ce, | OCTL_ADAPT_GET_DEVI CE_PONER_STATE,
&wr St ate, sizeof (pwState),
&wr St at e, sizeof (pw State),
&dwByt es, NULL) ;

IOCTL_ADAPT_GET_DEVICE_SPEED

Description

This command attempts to report the current operating speed of the USB device. It will return
DEVICE_SPEED_HIGH, DEVICE_SPEED_LOW_FULL, or DEVICE_SPEED_UNKNOWN. |t uses
the IsDeviceHighSpeed routine, but this routine is only supported in Version 1 of the USBD interface.
Windows 2K SP4, Windows XP and later all support Version 1 of the USBD interface. If the
IsDeviceHighSpeed routine is not available, DEVICE_SPEED_UNKNOWN is returned.

A pointer to a 4-byte variable is passed as both the IpInBuffer and IpOutBuffer parameters to the
DeviceloControl() function.

The size of the variable (4) is passed in the nInBufferSize and nOutBufferSize parameters.

Defines (cyioctl.h)

#def i ne DEVI CE_SPEED UNKNOWN 0x00000000

#defi ne DEVI CE_SPEED LOW FULL 0x00000001

#defi ne DEVI CE_SPEED H GH 0x00000002
Example

DWORD dwBytes = 0;
ULONG Dev Speed,;

© 2003 Cypress Semiconductor

The IOCTL Interface 18

Devi cel oCont rol (hDevi ce, | OCTL_ADAPT_GET_DEVI CE_SPEED,
&DevSpeed, sizeof (ULONG,
&DevSpeed, sizeof (ULONG,
&dwByt es, NULL);

410 IOCTL_ADAPT_GET_DRIVER_VERSION

Description
This command retrieves the version of the driver.

A pointer to a 4-byte variable is passed as both the IpInBuffer and IpOutBuffer parameters to the
DeviceloControl() function.

The size of the variable (4) is passed in the ninBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = O;
ULONG ver;

Devi cel oCont r ol (hDevi ce, | OCTL_ADAPT_CGET_DRI VER VERSI ON,
&ver, sizeof (ver),
&ver, sizeof (ver),
&dwByt es, NULL);

411 IOCTL_ADAPT_GET_FRIENDLY_NAME

Description

This command retrieves the string associated with the device in the [Strings] section of the CyUSB.inf
file.

A pointer to an array of unsigned characters is passed as both the IpIinBuffer and IpOutBuffer
parameters to the DeviceloControl() function.

The size of the array is passed in the ninBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
PUCHAR Fri endl yNane = new UCHAR[256] ;

Devi cel oCont rol (hDevi ce, | OCTL_ADAPT_GET_FRI ENDLY_NAME,
Fri endl yNane, 256,
Fri endl yNane, 256,
&dwByt es, NULL);

del ete[] Friendl yNane;

© 2003 Cypress Semiconductor

19

Cypress CyUsb.sys Programmer's Reference

4.12

4.13

4.14

IOCTL_ADAPT_GET_NUMBER_ENDPOINTS

Description

This command retrieves the number of endpoints enumerated by the current interface / alternate
interface setting.

A null pointer is passed as the IpInBuffer parameter to the DeviceloControl() function. Zero is
passed as the ninBufferSize parameter.

The address of an unsigned character is passed as the |pOutBuffer parameter to the
DeviceloControl() function. The size of the variable (1) is passed in the nOutBufferSize parameter.

Example

DWORD dwBytes = O;
UCHAR endPt s;

Devi cel oControl (hDevi ce, | OCTL_ADAPT_GET_NUVBER_ENDPQO NTS,
NULL, O,
&endPt s, sizeof (endPts),
&dwByt es, NULL);

IOCTL_ADAPT _GET_TRANSFER_SIZE

Description

This command retrieves the current transfer size for a given endpoint. The transfer size is not the
same as the MaxPacketSize for the endpoint. Rather, the transfer size is always an integral multiple
of the endpoint's MaxPacketSize.

A pointer to a SET_TRANSFER_SIZE_INFO structure is passed as both the IpInBuffer and
IpOutBuffer parameters to the DeviceloControl() function. This structure must be pre-loaded with the
address of the endpoint of interest. Upon return, the structure will contain the transfer size of
endpoint.

The size of the structure is passed in the ninBufferSize and nOutBufferSize parameters.

Example

DWORD Byt esXf er ed;
SET_TRANSFER_SI ZE_| NFO Set Tr ansfer | nfo;
Set Tr ansf er | nf 0. Endpoi nt Addr ess = Addr ess;

Devi cel oControl (hDevi ce, | OCTL_ADAPT_GET_TRANSFER_SI ZE,
&Set Transferinfo, sizeof (SET_TRANSFER_SI ZE | NFO),

&Set Transferinfo, sizeof (SET_TRANSFER SIZE | NFO),
&Byt esXfered, NULL);

LONG transferSz = Set Transferlnfo. TransferSi ze;

IOCTL_ADAPT_GET_USBDI_VERSION

Description

© 2003 Cypress Semiconductor

The IOCTL Interface 20

This command retrieves the version of the USB Host Controller Driver in BCD format.

A pointer to a 4-byte variable is passed as both the IpInBuffer and IpOutBuffer parameters to the
DeviceloControl() function.

The size of the variable (4) is passed in the ninBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = O;
ULONG ver;

Devi cel oCont r ol (hDevi ce, | OCTL_ADAPT_GET_USBDI _VERSI ON,
&ver, sizeof (ver),

&ver, sizeof (ver),
&dwByt es, NULL) ;

4.15 IOCTL_ADAPT_RESET_PARENT_PORT

Description

This command resets the device, clearing any error or stall conditions. Pending data transfers are
not cancelled by this command.

A null pointer is passed as both the IpInBuffer and IpOutBuffer parameters to the DeviceloControl()
function.

Example

DWORD dwByt es;
Devi cel oControl (hDevi ce, | OCTL_ADAPT_RESET_PARENT_PORT,
NULL, O,

NULL, O,
&dwByt es, NULL);

4.16 1OCTL_ADAPT RESET PIPE

Description

This command resets an endpoint of the device, clearing any error or stall conditions on that endpoint.
Pending data transfers are not cancelled by this command.

The address of a single byte is passed as the IpInBuffer parameter to the DeviceloControl() function.

A null pointer is passed as the IpOutBuffer parameter.

Example

DWORD dwByt es;
UCHAR Address = 0x82;

Devi cel oCont r ol (hDevi ce, | OCTL_ADAPT_RESET_PI PE,
&Addr ess, sizeof (Address)
NULL, O,
&dwByt es, NULL);

© 2003 Cypress Semiconductor

21

Cypress CyUsb.sys Programmer's Reference

4.17

4.18

IOCTL_ADAPT_SELECT_INTERFACE

Description
This command sets the alternate interface setting for the primary interface of the attached device.

A pointer to a byte indicating the alternate interface setting is passed as both the IpIinBuffer and
IpOutBuffer parameters to the DeviceloControl() function.

The length of the variable (1) is passed in the ninBufferSize and nOutBufferSize parameters.

Example

DWORD dwBytes = 0;
UCHAR alt = 2;

Devi cel oControl (hDevice, |OCTL_ADAPT_SELECT | NTERFACE,
&alt, sizeof (alt),
&l t, sizeof (alt),
&dwByt es, NULL);

IOCTL_ADAPT_SEND_EPO_CONTROL_TRANSFER

Description

This command sends a control request to the default Control endpoint, endpoint zero.
DeviceloControl() is passed a pointer to a two-part structure as both the IpInBuffer and IpOutBuffer
parameters. This two-part structure contains a SINGLE_TRANSFER structure followed by a data
buffer.

The SINGLE_TRANSFER structure contains all the parameters for the control request.

The buffer contains the transfer data.

Example
uni on {
struct {

UCHAR Reci pi ent: 5;

UCHAR Type: 2;

UCHAR Direction: 1;
} bnRequest;

UCHAR bnReq;
}s

bnRequest . Reci pi ent
bnRequest . Type
bnRequest . Di rection

0; // Device
2; Il Vendor
1; // IN command (from Device to Host)

int i XmtBufSize = sizeof (SINGLE_TRANSFER) + buflen; // The size of the two-

part structure
UCHAR *pXmi t Buf = new UCHAR[i Xmi t Buf Si ze] ; /1 Alocate the nmenory
Zer oMenor y(pXnmi t Buf, i Xm t Buf Si ze);

PSI NGLE_TRANSFER pTransfer = (PSI NGLE TRANSFER) pXni tBuf; // The SI NGLE TRANSFER

© 2003 Cypress Semiconductor

The IOCTL Interface

cones first

pTransf er - >Set upPacket . bnRequest = bnReq;

pTransf er - >Set upPacket . bRequest = ReqCode;

pTransf er - >Set upPacket . wal ue = Val ue;

pTransf er - >Set upPacket . W ndex = | ndex

pTransf er - >Set upPacket . wLengt h = buf Len;

pTransf er - >Set upPacket . ul Ti mreQut = Ti neQut / 1000;
pTransfer->Wiit Forever = fal se;

22

4.19

pTransf er - >ucEndpoi nt Addr ess = 0x00; /1 Control
pTransf er- >l soPacket Length = 0;

pTransfer->Buf ferOfset = sizeof (SINGLE_TRANSFER);
pTransfer->Buf ferLength = bufLen;

DWORD dwRet ur nByt es;

pi pe

Devi cel oControl (hDevice, | OCTL_ADAPT_SEND EPO_CONTROL_TRANSFER,
pXm t Buf, i XmtBufSize,
pXm t Buf, i XmtBufSize,

&dwRet ur nByt es, NULL);

/1 Copy data into buf
UCHAR *ptr = pXm tBuf + sizeof (SINGLE_TRANSFER);
mencpy(buf, ptr, dwReturnBytes);

IOCTL_ADAPT_SEND_NON_EPO_TRANSFER

Description

NOTE:
With the release of CyUSB.sys version 1.5.503.0, the faster
IOCTL_ADAPT_SEND_NON_EPO_DIRECT should be used instead of this command.
IOCTL_ADAPT_SEND_NON_EPO_TRANSFER remains supported only to provide driver
compatibility to existing applications that use it.

This IOCTL command is used to request Bulk, Interrupt or Isochronous data transfers across
corresponding USB device endpoints.

Regardless of whether the endpoint is an IN or an OUT endpoint, a pointer to a single data structure is
passed to DeviceloControl() as both the IpinBuffer and IpOutBuffer parameters. The driver expects

that the pointer references a SINGLE_TRANSFER structure, followed by a data buffer. In the case of
OUT endpoints, the buffer is expected to contain the data bytes to be transmitted. In the case of an IN

endpoint, the buffer is expected to be the writeable memory for received data bytes.

Example

PUCHAR CCyBul kEndPoi nt : : Begi nDat aXf er (PCHAR buf, LONG bufLen,

if (hDevice == | NVALI D HANDLE VALUE) return NULL;

int i Xm tBufSize = sizeof (SINGLE_TRANSFER) + bufLen;
PUCHAR pXmi t Buf = new UCHAR[i Xm t Buf Si ze] ;

Zer oMenor y(pXnmi t Buf, i Xm t Buf Si ze);

PSI NGLE_TRANSFER pTransfer = (PSI NGLE_TRANSFER) pXmi t Buf ;
pTransfer->WitForever = fal se;

pTransf er - >ucEndpoi nt Addr ess = Address;

pTransf er->l soPacket Length = 0;

pTransfer->Buf ferOfset = sizeof (SINGE_TRANSFER);
pTransf er->Buf f erLengt h = buf Len;

OVERLAPPED *ov)

© 2003 Cypress Semiconductor

23

Cypress CyUsb.sys Programmer's Reference

4.20

/1 Copy buf into pXmtBuf
UCHAR *ptr = (PUCHAR) pTransfer + pTransfer->BufferOfset;
mencpy(ptr, buf, bufLen);

DWORD dwRet ur nByt es;

Devi cel oCont rol (hDevi ce, | OCTL_ADAPT_SEND NON_EPO_TRANSFER,
pXm t Buf, i Xm tBufSi ze,
pXm t Buf, i Xm tBufSize,
&dwRet ur nByt es, ov);

return pXmtBuf;
}

IOCTL_ADAPT_SEND_NON_EPO DIRECT

Description

This IOCTL is used to request Bulk, Interrupt or Isochronous data transfers across corresponding USB
device endpoints.

This IOCTL is only exposed by the CyUSB.sys driver version 1.5.503.0 or later. It optimizes throughput
by using separate buffers for the SINGLE_TRANSFER structure and the transfer data. (The CyAPIl.lib
class library, version 1.0.5.0, uses this command, instead of the slower
IOCTL_ADAPT_SEND_NON_EPO_TRANSFER, if it detects a capable driver.)

For CyUSB.sys driver version 1.07.000 or later, additional ISOC transfers can be performed such as
the capability to specify the current frame number (plus an optional frame offset) or simply set the
frame number that the transfer should begin on. To use these advanced features, a properly formatted
ISO_ADV_PARAMS must be properly initialized within the SINGLE_TRANSFER structure. See the
definition of ISO_ADV_PARAMS for implementation details.

The DeviceloControl call requires two buffer parameters. For this command, the first buffer must
contain a properly initialized SINGLE_TRANSFER structure.

The SINGLE_TRANSFER fields of BufferOffset and BufferLength should be set to 0 for this command.
The second buffer is for the actual transfer data. For an OUT endpoint, this will contain the data
headed to the USB device. For an IN endpoint, this buffer will hold the data that is received from the
device.

Special ISOC Constraints

The endpoint maximum transfer size and buffer length parameter must both be a multiple of the
endpoint's MaxPacketSize.

For ISOC transfers on a device operating at High speed, the following constraints apply to this
command:

1) The endpoint transfer size must be a multiple of the endpoint's MaxPacketSize * 8. (See
IOCTL_ADAPT_SET_TRANSFER_SIZE.)

2) The buffer length parameter (bufLen in the below examples) must also be a multiple of the
endpoint's MaxPacketSize * 8.

Note: The above 2 constraints apply to all ISOC transfers, regardless of speed, if using a version of
CyUSB.sys older than 1.7.0.0.

The SINGLE_TRANSFER structure must be followed by additional space sufficient to hold the
PACKET_INFO structures for the transfer (see examples #2 and #3, below).

© 2003 Cypress Semiconductor

The IOCTL Interface 24

Example #1 (Bulk and Interrupt endpoints)

PUCHAR CCyUSBENndPoi nt : : Begi nDi r ect Xf er (PUCHAR buf, LONG buflLen, OVERLAPPED *ov)
if (hDevice == | NVALI D_HANDLE_VALUE) return NULL;

int i XmtBufSize = sizeof (SINGLE_TRANSFER);
PUCHAR pXmi t Buf = new UCHAR[i Xm t Buf Si ze] ;
ZeroMenory (pXmitBuf, i Xm tBufSize);

PSI NGLE_TRANSFER pTransfer = (PSI NGLE_TRANSFER) pXmi t Buf ;
pTransf er - >ucEndpoi nt Addr ess = Address;
pTransf er->l soPacket Length = 0;

pTransfer->BufferOffset = 0;

pTransfer->BufferlLength = 0;

DWORD dwRet ur nByt es;
Devi cel oControl (hDevi ce,
| OCTL _ADAPT SEND NON EPO DI RECT,
pXm t Buf , i Xm tBufSize,
buf, buflen,
&dwRet ur nByt es, ov);

/1 Note that this nethod | eaves pXmtBuf allocated. It will get deleted in
/'] Fini shDat aXfer.

LastError = GetlLastError();
return pXmtBuf;

Example #2 (ISOC endpoints)

PUCHAR CCyl socEndPoi nt : : Begi nDi r ect Xf er (PUCHAR buf, LONG bufLen, OVERLAPPED *ov)
if (hDevice == | NVALI D_ HANDLE_VALUE) return NULL;

int pkts = bufLen / MaxPktSize; // Nunmber of packets inplied by buflLen &
pkt Si ze
i f (buflLen % MaxPkt Si ze) pkts++;

if (pkts == 0) return NULL;

int i XmtBufSize = sizeof (SINGLE _TRANSFER) + (pkts *
si zeof (1 SO_PACKET_I NFO)) ;

UCHAR *pXmi t Buf = new UCHAR[i Xmi t Buf Si ze] ;

ZeroMenory (pXmitBuf, i Xm tBufSize);

PSI NGLE_TRANSFER pTransfer = (PSI NGLE_TRANSFER) pXmi t Buf;
pTransf er - >ucEndpoi nt Addr ess = Address;

pTransf er->l soPacket Of fset = sizeof (SINGLE_TRANSFER);

pTr ansf er - >l soPacket Length = pkts * sizeof (1 SO PACKET | NFO) ;
pTransfer->BufferOf set
pTr ansfer->BufferLength

0;
0

2

DWORD dwRet ur nBytes = O0;
Devi cel oControl (hDevice,
| OCTL ADAPT SEND NON EPO DI RECT,
pXm t Buf, i Xm t BufSi ze,
buf, buflLen,
&dwRet ur nByt es, ov);

© 2003 Cypress Semiconductor

25 Cypress CyUsb.sys Programmer's Reference

/1 Note that this nethod | eaves pXmitBuf allocated. It will get deleted in
/'l Fini shDat aXfer.

Last Error = GetlLastError();
return pXmtBuf;

Example #3 (ISOC endpoints — advanced / driver version >= 1.07.000)
PUCHAR CCyl socEndPoi nt : : Begi nDi r ect Xf er (PUCHAR buf, LONG buflLen, OVERLAPPED *ov)

{
if (hDevice == I NVALI D_HANDLE VALUE) return NULL;

int pkts = bufLen / MaxPktSize; // Nunmber of packets inplied by bufLen & pktSize

i f (buflLen % MaxPkt Si ze) pkts++;
if (pkts == 0) return NULL;

int i XmtBufSize = sizeof (SINGLE TRANSFER) + (pkts * sizeof (1 SO PACKET_I NFO));
UCHAR *pXmi t Buf = new UCHAR[i Xmi t Buf Si ze] ;
ZeroMenory (pXmitBuf, i Xm tBufSize);

PSI NGLE_TRANSFER pTransfer = (PSI NGLE TRANSFER) pXni t Buf ;

pTransf er - >ucEndpoi nt Addr ess = Addr ess;

pTransf er->l soPacket O f set si zeof (SI NGLE_TRANSFER) ;
pTransf er- >l soPacket Lengt h pkts * sizeof (1 SO PACKET_I NFO);
pTransf er->l soParans.isold USB_I SO_|I b;

pTransfer->| soParans. i soCrd = USB_| SO CVD_ASAP;

pTransfer->| soParans. ul Paranl = 0;

DWORD dwRet ur nBytes = O0;

Devi cel oControl (hDevi ce,
| OCTL_ADAPT_SEND_NON_EPO_DI RECT,
pXm t Buf, i Xm tBufSize,
buf, bufLen,
&dwRet ur nByt es, ov);
/1 Note that this nethod | eaves pXnitBuf allocated. It will get deleted in
/'l Fini shDat aXfer.
LastError = GetlLastError();

return pXmtBuf;

421 IOCTL_ADAPT_SET_DEVICE_POWER_STATE

Description

This command sets the power state of the device.

© 2003 Cypress Semiconductor

The IOCTL Interface 26

4.22

A pointer to a ULONG variable (pwrState) is passed as both the IpinBuffer and IpOutBuffer
parameters to the DeviceloControl() function.

The size of the pwrState variable (4) is passed in the ninBufferSize and nOutBufferSize parameters.
Valid values for the pwrState are:

1 => Power State DO (Full On)

2 => Power State D1

3 => Power State D2

4 => Power State D3 (Full Asleep)

Example

/1 Put the device into full asleep (Device Power State D3)

DWORD dwBytes = O;

ULONG pwr State = 4;

Devi cel oCont r ol (hDevi ce, | OCTL_ADAPT_SET_DEVI CE_PONER_STATE,
&wr St at e, sizeof (pw State),

&wr St ate, sizeof (pw State),
&dwByt es, NULL);

IOCTL_ADAPT_SET TRANSFER_SIZE

Description

This command sets the transfer size for a given endpoint. The transfer size is not the same as the
MaxPacketSize for the endpoint. Rather, the transfer size is always an integral multiple of the
endpoint's MaxPacketSize.

Small transfer sizes are memory efficient but result in multiple operations to effect a data transfer.

Larger transfer sizes are more wasteful of memory, but accomplish larger data transfers with fewer 10

transactions.

A pointer to a SET_TRANSFER_SIZE_INFO structure is passed as both the IpInBuffer and
IpOutBuffer parameters to the DeviceloControl() function. This structure contains the address of the
endpoint that is to be changed and the new transfer size.

The size of the structure is passed in the ninBufferSize and nOutBufferSize parameters.

Example

DWORD Byt esXf er ed;

SET_TRANSFER_SI ZE | NFO Set Tr ansfer | nf o;

Set Tr ansf er | nf 0. Endpoi nt Address = Address;

Set Transf er | nfo. TransferSi ze = 0x2000; /1 An 8 KB transfer size

Devi cel oControl (hDevi ce, | OCTL_ADAPT_SET_TRANSFER SI ZE,
&Set Transferinfo, sizeof (SET_TRANSFER_SI ZE | NFO),
&Set Transferinfo, sizeof (SET_TRANSFER SI ZE | NFO),
&Byt esXfered, NULL);

© 2003 Cypress Semiconductor

27

Cypress CyUsb.sys Programmer's Reference

CYIOCTL.H

Header
cyioctl.h

Description

A pointer to a SINGLE_TRANSFER structure is passed to the driver for the
IOCTL _ADAPT SEND NON EPO TRANSFER and
IOCTL ADAPT SEND EPO CONTROL TRANSFER commands.

The structure is defined as:

typedef struct _SI NGLE_TRANSFER {
uni on {
SETUP_PACKET Set upPacket ;
| SO ADV_PARAMS | soPar ans;

H

UCHAR Reserved;
UCHAR ucEndpoi nt Addr ess;
ULONG Nt St at us;
ULONG UsbdSt at us;
ULONG | soPacket O f set ;
ULONG | soPacket Lengt h;
ULONG BufferOff set ;
ULONG Buf f er Lengt h;
} SI NGLE_TRANSFER, *PSI NGLE_TRANSFER;

Members

Set upPacket
Contains required parameters for Control Endpoint transfers,

| soPar ans
Contains optional parameters for Isochronous Endpoint transfers.

reserved
Reserved. Should be set to 0.

ucEndpoi nt Addr ess
Specified the address of the device endpoint in which the transfer will occur.

Nt St at us
NTSTATUS values that are returned by the driver.

UsbdsSt at us
USB_STATUS_ XXX codes returned from the host controller driver.

| soPacket O f set
Specifies the byte offset from the beginning of the structure to an IsoPacket list.

| soPacket Lengt h
The length, in bytes, of the IsoPacket list specified at offset IsoPacketOffset.

Buf f er O f set

© 2003 Cypress Semiconductor

CYIOCTL.H 28

Specifies the byte offset from the beginning of the structure to a transfer buffer.

Buf f er Lengt h
The length, in bytes, of the transfer buffer at offset BufferOffset.

5.1 ISO_ADV_PARAMS

Header
cyioctl.h

Description

ISO_ADV_PARAMS is part of the a SINGLE TRANSFER structure. It contains advanced parameters
for Isochronous endpoint transfers when sending the IOCTL_ADAPT_SEND_NON_EPO_TRANSFER
and IOCTL_ADAPT_SEND_NON_EPO_DIRECT commands.

The structure is defined as:

typedef struct _| SO ADV_PARAMS {
USHORT i sol d;
USHORT i soCnd;
ULONG ul Par am;
ULONG ul Par an®;
} 1 SO _ADV_PARAMS, *Pl SO ADV_PARAMES;

Defines
#define USB_|I SO I D 0x4945
#def i ne USB_| SO CMD_ASAP 0x8000
#define USB_| SO OMD_CURRENT_FRAVE 0x8001
#def i ne USB_| SO CVMD_SET_FRAME 0x8002
Members
i sold
ISO_ADV_PARAMS structure identifier must be set to USB_ISO_ID.
i soCnd
Specifies one of the following types of Isoch transfers:
USB_ISO_CMD_ASAP
If no transfers have been submitted to the pipe since the pipe was opened or
last reset, the transfer to begin on the next frame. Otherwise, the transfer will
begin on the first frame following all currently queued requests for the pipe.
USB_ISO_CMD_CURRENT_FRAME
Causes the transfer to begin on the current frame number obtained from the
host controller driver, plus an optional offset specified in the ulParam1 field.
USB_ISO_CMD_SET_FRAME
Causes the transfer to begin on the frame number specified in the ulParam1
field.
ul Par anil

© 2003 Cypress Semiconductor

29

Cypress CyUsb.sys Programmer's Reference

5.2

If isoCMD is set to USB_ISO_CMD_ASAP, when the request is returned by the driver
this field will contain the frame number that the transfer began on.

IfisoCMD is set to USB_ISO_CMD_CURRENT_FRAME, this field contains the offset
from the current frame number that this transfer will begin on.

IfisoCMD is set to USB_ISO_CMD_SET_FRAME, this field contains the frame
number that this transfer will begin on.

ul Par an®
Reserved. Must be set to 0.

SINGLE_TRANSFER

Header
cyioctl.h

Description

A pointer to a SINGLE_TRANSFER structure is passed to the driver for the
IOCTL ADAPT SEND NON EPO TRANSFER and
IOCTL ADAPT SEND EPO CONTROL TRANSFER commands.

The structure is defined as:

typedef struct _SI NGLE_TRANSFER {
uni on {
SETUP_PACKET Set upPacket ;
| SO ADV_PARAMS | soPar arns;

h

UCHAR Reserved,;
UCHAR ucEndpoi nt Addr ess;
ULONG Nt St at us;
ULONG UshdsSt at us;
ULONG | soPacket O f set ;
ULONG | soPacket Lengt h;
ULONG BufferOfset;
ULONG Buf f er Lengt h;
} SI NGLE_TRANSFER, *PSI NGLE_TRANSFER;

Members

Set upPacket
Contains required parameters for Control Endpoint transfers,

| soPar ans
Contains optional parameters for Isochronous Endpoint transfers.

reserved
Reserved. Should be set to 0.

ucEndpoi nt Addr ess
Specified the address of the device endpoint in which the transfer will occur.

© 2003 Cypress Semiconductor

CYIOCTL.H 30

Nt St at us
NTSTATUS values that are returned by the driver.

UsbdsSt at us
USB_STATUS_ XXX codes returned from the host controller driver.

| soPacket O f set
Specifies the byte offset from the beginning of the structure to an IsoPacket list.

| soPacket Lengt h
The length, in bytes, of the IsoPacket list specified at offset IsoPacketOffset.

Buf ferOf f set
Specifies the byte offset from the beginning of the structure to a transfer buffer.

Buf f er Lengt h
The length, in bytes, of the transfer buffer at offset BufferOffset.

5.3 SETUP_PACKET

Header
cyioctl.h

Description

A SETUP_PACKET is part of the a SINGLE TRANSFER structure. It contains important parameters
for Control Endpoint transfers when sending the I0CTL ADAPT SEND EPO TRANSFER
command.

The structure is defined as:
typedef struct _SETUP_PACKET ({

union {
BM REQ TYPE bnReqType;
UCHAR bnRequest ;

s

UCHAR bRequest ;
union {

WORD SPLIT wval;
USHORT wVal ue;

}s

union {
WORD SPLIT w ndx;
USHORT W ndex;

}s

union {
WORD SPLIT wLen;
USHORT wiLengt h;

}s

ULONG ul Ti neCut ;

} SETUP_PACKET, *PSETUP_PACKET;

© 2003 Cypress Semiconductor

31 Cypress CyUsb.sys Programmer's Reference

5.4 SET_TRANSFER_SIZE_INFO

Header
cyioctl.h

Description

A pointer to a SET_TRANSFER_SIZE_INFO structure is passed to the driver for the
IOCTL ADAPT GET TRANSFER SIZE and |IOCTL ADAPT SET TRANSFER SIZE commands.

The structure is defined as:

typedef struct _SET_TRANSFER_SI ZE | NFO {
UCHAR Endpoi nt Addr ess;
ULONG TransferSize;
} SET_TRANSFER SI ZE | NFO, *PSET_TRANSFER Sl ZE | NFG,

© 2003 Cypress Semiconductor

	Driver Overview
	Modifying CyUSB.INF
	Matching Devices to the Driver
	Windows 2000
	Windows XP

	The IOCTL Interface
	Getting a Handle to the Driver
	IOCTL_ADAPT_ABORT_PIPE
	IOCTL_ADAPT_CYCLE_PORT
	IOCTL_ADAPT_GET_ADDRESS
	IOCTL_ADAPT_GET_ALT_INTERFACE_SETTING
	IOCTL_ADAPT_GET_CURRENT_FRAME
	IOCTL_ADAPT_GET_DEVICE_NAME
	IOCTL_ADAPT_GET_DEVICE_POWER_STATE
	IOCTL_ADAPT_GET_DEVICE_SPEED
	IOCTL_ADAPT_GET_DRIVER_VERSION
	IOCTL_ADAPT_GET_FRIENDLY_NAME
	IOCTL_ADAPT_GET_NUMBER_ENDPOINTS
	IOCTL_ADAPT_GET_TRANSFER_SIZE
	IOCTL_ADAPT_GET_USBDI_VERSION
	IOCTL_ADAPT_RESET_PARENT_PORT
	IOCTL_ADAPT_RESET_PIPE
	IOCTL_ADAPT_SELECT_INTERFACE
	IOCTL_ADAPT_SEND_EP0_CONTROL_TRANSFER
	IOCTL_ADAPT_SEND_NON_EP0_TRANSFER
	IOCTL_ADAPT_SEND_NON_EP0_DIRECT
	IOCTL_ADAPT_SET_DEVICE_POWER_STATE
	IOCTL_ADAPT_SET_TRANSFER_SIZE

	CYIOCTL.H
	ISO_ADV_PARAMS
	SINGLE_TRANSFER
	SETUP_PACKET
	SET_TRANSFER_SIZE_INFO

