
An Introduction to CAMAC

Alessandro Bravar
Alessandro.Bravar@unige.ch

Université de Genève
Section de Physique

Abstract

This note gives a basic introduction to the CAMAC data acquisition system. In our Lab
we use a system consisting of one CAMAC crate interfaced to a PC by the CAEN C111
CAMAC crate controller. The communication between the controller and the PC (i.e. the data
exchange) is based on the ethernet TCP/IP protocol. All high level CAMAC functions (the
programming language is C) are implemented through the JENET Library, which has been
specifically developed for the C111 controller. Several DAQ examples using different CAMAC
modules are provided.

Before inserting or removing modules always turn off the CAMAC crate!

1 Introduction

Computer Automated Measurement And Control (CAMAC) is a modular system for
data acquisition and control through a digital dataway connected to a data processing
device such as a computer. For a readable introduction to CAMAC see for instance
ch. 18 in Leo’s textbook [1]. The system has been originally defined by the European
Standards on Nuclear Electronics (ESONE) Committee in the late sixties. The current
standard represents the joint specifications of the European ESONE and the US NIM
Committees [2].

The CAMAC standard defines the mechanical, electrical, and logical specifications
for the plug-in modules, crates, and the dataway. The dataway lines include digital data
transfer lines, strobe signal lines, addressing lines, control lines, and power. Mechanically,
a CAMAC crate consists of a crate with 25 stations with 86-way sockets on the backplane
carrying a parallel bus. for data exchange and control. For the detailed pin allocation
chart see Tables 18.3 and 18.4 in [1].

The crate can house a variety of plug-in modular instruments for a wide range of
applications, like ADCs, TDCs, scalers, discriminators, logic modules, etc. to be inter-
faced to the dataway (the standardized backplane). The crate is controlled by a so called
CAMAC crate controller, whose purpose is to issue CAMAC commands to the modules,
check the status of the modules, and exchange data between the host computer and the
CAMAC modules. The first 23 stations (the first station is numbered 1) can be filled with
different plug-in modules, while the two rightmost stations (24 and 25) are reserved for
the crate controller. Additions to a data acquisition and control system may be made by
plugging in additional modules and making suitable software changes. Several crates can
be connected on a data highway ending in a branch driver, which is interfaced directly to
a data acquisition computer. A full scale system can consists of several parallel branches.
Timing and protocol specifications permit up to 1 megaword/second transfers of 16 or
24-bit words. In reality, the data rate is limited by the crate controller, the data transfer
protocol, and the host computer.

Although relatively old, the CAMAC system is still widely used in nuclear and particle
physics experiments and in industry because of its easy handling and because a large
amount of expensive hardware (modules) is still available and functional.

In our Lab we use a system composed of one CAMAC crate interfaced to a PC by
means of the CAEN C111 crate controller [4]. This module allows the PC to control the
CAMAC dataway via ethernet using the TPC/IP protocol for the data exchange. All
basic operations on the CAMAC bus (initialization, data reading and writing, etc.) can
be performed using the high level functions defined in the JENET Library [5], which has
been derived from the ESONE standard.

2 CAMAC Commands

The CAMAC standard uses geographical addressing to identify a specific module and a
channel or register within that module, i.e. the address depends on the module location
and not the module itself. Within the dataway, modules are addressed by branch (B),
crate (C), slot (N) and sub-address (A):

B - branch number;
C - crate number in the branch;

2

N - position of the module in the crate (N = 1 to 23);
there is a dedicated line on the dataway for each station;

A - sub-address (A = 0 to 15, 4 bits and 4 lines on the dataway).
In our implementation, which uses a single crate, we will need only N and A.

One instruction or CAMAC command is specified by an address and a function code
F (i.e. BCNAF). A command is composed of signals on the station number line, the
sub-address lines and the function lines. It is accompanied by a signal on the busy line.
The command signals are maintained on the dataway for the duration of the operation.
In response, the module will generate the command accepted signal (X) and act on the
issued command. In a CAMAC cycle one 24-bits word can be transferred in parallel on
the dataway bus between the controller and the selected module (24 lines on the dataway
are reserved for reading and 24 lines for writing). Status bits (Q and X) indicate the
success of the operation. Note that the terms read and write apply to the controller, not
the module.

During a dataway operation the controller generates a command consisting of signals
on individual station number lines to specify a module, signals on the sub-address bus
lines to specify a sub-section of the module, and signals on the function bus lines to specify
the operation to be performed. The command signals are accompanied by a signal on
the busy bus line, which is available at all stations to indicate that a dataway operation
is in progress.

Each module in a slot provides up to 32 functions (function codes 0 to 31, 5 bits
and 5 lines on the dataway) and defines 16 sub-addresses (address 0 to 15, 4 bits and 4
lines on the dataway). These signals are decoded in the module to select one of the 32
functions and to select one of 16 registers. Not all functions are necessarily implemented
in a specific module and the module might have less registers. The term register is
used for an addressable data source or receiver and not necessarily a memory unit. The
function codes allow the register in a module to be divided into two distinct sets (Group
1 and Group 2), therefore 32 different channels in a single module can be specified and
addressed. Within each module, a certain functionality can be replicated up to 16 times
using sub-addresses.

To find out which functions are supported by a particular module (i.e. which actions
can be performed on/by the module), consult the module’s data sheet or manual. Here
you will find also details on what the module does, how it works, how to use this module,
what kind of input signals it can accept (i.e. signal levels), what kind of signals it
generates, and what kind of control signals it requires (i.e. gate, veto, clear ...).

CAMAC Function Codes

Of these functions, F = 0 to 7 are read functions (F = 00XXX) and will transfer data
from the addressed module to the controller; for instance

F = 0 read Group 1 register;
F = 1 read Group 2 register;
F = 2 read and clear Group 1 register;
F = 3 read complement of Group 1 register.

The functions F = 16 to 23 are write functions (F = 10XXX) and will transfer data
from the controller to the addressed module; for instance

3

F = 16 overwrite Group 1 register;
F = 17 overwrite Group 2 register;
F = 18 overwrite Group 1 register with a mask;

same as F = 16 except that a separate mask defines which bits in the selected
register are set;

The functions F = 8 to 15 and F = 24 to 31 are control or test functions
(F=X1XXX) without data transfer (however information may be conveyed by the Q
bus line in any of these commands); for instance

F = 8 test the Look At Me line (response in Q);
F = 9 clear Group 1 register;
F = 11 clear Group 2 register.

For the full list of function codes see Table 18.5 in [1]. The set of available functions
is specific to a particular module. Not all functions are necessarily implemented in a
specific module. There are also function codes that are not assigned and can be defined
for special applications.

Status Information

The response Q (one dedicated bus line common to all modules) indicates the success of
an operation or the result of a test function.

The response X (one dedicated bus line common to all modules) indicates that
the module has recognized and accepted the combination A and F (i.e. the command).

LAM (Look At Me): any module can require attention by generating a signal on
this line (there is one dedicated line on the bus for each module as for the stations). A
module can generate a LAM for instance at the end of an ADC conversion to signal that
data is ready for transfer. The 23 individual lines are connected to individual pins in the
crate controller and can be connected to the interrupt protocol of the data acquisition
computer. In our implementation we will not use the LAM signal, but rather poll a
flip-flop module to initiate the readout (see Example 4).

The busy signal B (1 dedicated bus line common to all modules) is used to inter-
lock various system activities, which can compete for the use of the dataway. Specifically,
it is generated during dataway operations. Whenever N is present, B is present.

Common Controls

Three common controls are available to all modules in the crate. Each has a dedicated
line on the dataway.

Z - the initialize signal has absolute priority; this signal resets all modules in the
crate to default values and set the inhibit to ON;

I - the inhibit signal inhibits any activity; this line is often used as a veto;

4

C - this command clears all data registers.

An example will help to clarify the CAMAC addressing scheme: let’s suppose that
we want to read the number of pulses acquired by the channel 5 of a scaler module (see
Example 2). A function code (F = 0) is provided to read the scaler module. Each channel
is identified by the corresponding sub-address (A = 0 to 15). The module is installed
in slot 12 of the CAMAC crate. In this case, reading the content of scaler channel 5 is
accomplished by issuing a CAMAC cycle with F = 0, N = 12, and A = 5.

Digital Signal Standards

The potentials for the (binary) digital signals on the dataway lines have been defined
to correspond with those for compatible current sinking logic devices (e.g. TTL). The
signal convention has, however, been inverted to be negative logic. The high state (more
positive potential) corresponds to logic ”0” and the low state (near ground potential)
corresponds to logic ”1”.

Pull-up current sources for all dataway bus lines are located in the crate controller
(that’s why we say that the crate controller reads and writes and not the modules). The
minimum pull-up current when the dataway line is at +3.5 V is defined as 2.5 mA, but
preferably not less than 6 mA.

Before inserting or removing modules always turn off the CAMAC crate!

3 Using the JENET Library

High level functions for the C111 crate controller are derived from the ESONE standard
and are implemented in the JENET Library [5]. The JENET Library has been
specifically developed for the CAEN C111 crate controller and will not work with other
CAMAC controllers. A brief introduction to the most commonly used functions follows.

In order to exchange data between the PC and the C111 create controller, first
the communication between the host PC and the controller itself must be established by
calling the function

short CROPEN(char *address);

The function requires a string parameter with the IP address of the crate con-
troller. All Lab controllers use the IP address “192.168.0.98”. This address can be
changed via the serial RS-232 socket on the controller. The function returns an integer
(short) that identify the connection and has to be used in all subsequent function calls
to identify the established communication channel. A negative value indicates that the
connections failed. In this case you have to exit the DAQ program and retry.

The function

short CSCAN(crate id, &scan result);

scans for slots containing modules in the crate identified by create id The crate id

5

parameter is the value returned by the CROPEN function.
The result is returned in scan result (unsigned int). If a bit is set, the station is
filled with a module.
The initialization of the CAMAC crate is performed by calling the function

short CCCZ(short crate id);

which puts all modules in the crate in their default state and sets the inhibit to
ON (i.e to 1).

The operation of the CAMAC modules can be inhibited or resumed by a call to
the function

short CCCI(short crate id, char data in);

The inhibit is set to ON if data in = 1 or to OFF if data in = 0 (see Example
2). The function

short CTCI(short crate id, char *data out);

returns in data out the status of the inhibit.

A 24-bit CAMAC command is executed by calling the function

short CFSA(short crate id, CRATE OP *cr op);

The data and the result of the operation are returned in the CRATE OP C struc-
ture, which is defined as follows:

typedef struct {
char F;

char N;

char A;

char Q;

char X;

int DATA;

} CRATE OP;

where F is the CAMAC function code to be executed, N is the slot number of
the addressed module, A is the sub-address within the addressed module, DATA is the
data read from or to be transmitted to the module (depending whether a read or write
function has been issued), Q and X are status flags to verify the success of the CAMAC
cycle.

Similarly, a 16-bits command is executed with the function

short CSSA(short crate id, CRATE OP *cr op);

6

The status bits Q and X can be tested with the function

short CTSTAT(short crate id, char *Q, char *X);

The communication with the CAMAC crate should be closed (it is good prac-
tice!) before ending the DAQ program with a call to the function

CRCLOSE (short crate id);

The JENET Library provides also functions specific to the C111 crate controller. For
more details and more functions, consult the JENET Library [5].

Moreover, we use the function kbhit() for instance to exit from the DAQ loop instead
of killing the program with CTRL-C. kbhit() returns 1 if any key on the keyboard has
been hit.

4 How to Install the Crate Controller

In order to use the C111 crate controller a second ethernet card has to be installed in
the host computer (eth1) with IP address ”192.168.0.1” (different IP address than the
controller but on the same local network), mask ”255.255.255.0”, and gateway ”0.0.0.0”
(no DHCP).

5 The WEB Interface

To help setting up the system, the C111 controller comes with a Local Web Server (web
based interface). This interface allows for instance to test the modules and the actions
of different functions, (or the CAMAC controller itself) without the need of setting up
the whole DAQ chain. The interface is almost self explanatory (for details see [4]). To
access the interface, in the browser open the local web server with the IP address of the
controller and the user/password = jenet/jenet.

6 How to Compile Under Linux

To compile under Linux, for instance the program scaler.c which reads out a scaler
module (Example 2), type at the prompt

g++ -o scaler scaler.c crate lib.c -lpthread

create lib.c contains the JENET functions and the system library pthread is required
for multi threading.

Do not forget to include the header

create lib.h

7

at the top of your program. The header includes the declaration of the JENET
functions and of the data structure.

To compile, you can also use a Makefile script (recommended).

Example 1: Using the Dataway Display

This example shows how to use a dataway display module, model BORER 1802, to
monitor the activity on the dataway by writing a variable to the dataway. The dataway
display is usually inserted into the leftmost slot in the crate (N = 1).

First the DAQ program establishes a communication between the host PC and the
crate controller (CROPEN, line 19) and clears the modules in the crate (CCCZ, line 27). The
DAQ loop starts at line 38. The variable to be written to the display is incremented in the
loop at line 39. The data structure cr op including the function code F, module location
N, and data DATA is filled at lines 41 to 43. A CAMAC command is then issued at
line 44 (CFSA). To exit from the DAQ loop, hit the keyboard (function khbit(), line 50).
The connection between the PC and the crate controller is closed at line 57 (CRCLOSE).

After starting the program, have a look at the left column of leds on the dataway
display. If correctly executed, the leds will start blinking.

The source codes are not provided on purpose (only listings). You have to write the
programs yourself!

datawaydisp.c

1 // datawaydisp . c
2 //program to t e s t the dataway
3 #include <iostream>
4 #include ” c r a t e l i b . h” //JENET CAMAC Crate Library
5 #include ” kbhit . c” // d e f i n i t i o n o f f unc t i on k b h i t ()
6
7 using namespace std ;
8
9 // put here the l o c a t i o n (address N) o f each module

10 const int N DWDISP = 1 ;
11
12 int main (int argc , char *argv []) {
13
14 //C111 data s t r u c t u r e F, N, A, Q, X, DATA (char , char , char , char , char , i n t)
15 CRATE OP cr op ;
16 short c r a t e i d , r e s ;
17
18 //open cra t e : d e f a u l t IP address f o r a l l Lab c o n t r o l l e r s 192 .168 .0 .98
19 c r a t e i d = CROPEN(” 1 9 2 . 1 6 8 . 0 . 9 8 ”) ;
20 i f (c r a t e i d <0) {
21 cout << ”ERROR: Unable to connect with s p e c i f i e d IP address ! \n” ;
22 return 0 ;
23 }
24 cout << ” Crate opened ” << c r a t e i d << endl ;
25
26 // c l e a r c ra t e
27 r e s = CCCZ(c r a t e i d) ;
28 i f (res <0) {
29 cout << ” Error execut ing CCCZ operat i on : ” << r e s << endl ;
30 return 0 ;

8

31 }
32
33 cout << ”Have a look at the dataway d i s p l a y ! \n” ;
34 cout << ” Press any key to i n t e r r u p t . . . \n” ;
35
36 // s t a r t the DAQ loop
37 int data = 0 ;
38 while (1) {
39 data++; // increment the v a r i a b l e
40 // wr i t e data to the dataway d i sp l ay , CAMAC func t i on code 16
41 cr op .F = 16 ;
42 cr op .N = N DWDISP;
43 cr op .DATA = data ;
44 r e s = CFSA(c r a t e i d , &cr op) ;
45 i f (res <0) {
46 cout << ” Error execut ing CFSA operat i on : ” << r e s << endl ;
47 break ;
48 }
49
50 i f (kbhit ()) { // to e x i t from the loop use func t i on k b h i t ()
51 cout << endl << ”Ending DAQ loop ” << endl ;
52 break ;
53 }
54 } //end DAQ loop
55
56 // c l o s e c ra t e
57 CRCLOSE(c r a t e i d) ;
58 cout << endl << ”Bye bye ! ” << endl ;
59
60 return 0 ;
61 }

Example 2: Scaler Readout

The following example shows how to read a CAMAC scaler, model LeCroy 2551. First
we open the communication with the CAMAC controller (l. 18), then we set the inhibit
to ON (l. 37, the scaler stops counting) and clear the scaler (l. 45). Next we enable the
scaler (the inhibit is set to OFF, l. 50) and pause the thread (program execution) with
the function sleep(nnn) (l. 6) for a given number of seconds (nnn). During this time
the scaler counts. Once this time has elapsed, we set again the inhibit to ON (l. 59) and
read the content of scaler channel 5 (l. 67). Finally, the count rate is display (l. 71 and
l. 72). Before ending the program, the connection between the host computer and the
crate controller is closed (l. 75).

readscaler.c

1 // r ead s ca l e r . c
2 //program to read a s c a l e r
3 #include <iostream>
4 #include ” c r a t e l i b . h” //JENET CAMAC Crate Library
5
6 using namespace std ;
7
8 // put here the l o c a t i o n (address N) o f each module

9

9 const int N SCALER = 14 ;
10
11 int main (int argc , char *argv []) {
12
13 //C111 data s t r u c t u r e F, N, A, Q, X, DATA (char , char , char , char , char , i n t)
14 CRATE OP cr op ;
15 short c r a t e i d , r e s ;
16
17 //open cra t e : d e f a u l t IP address f o r a l l Lab c o n t r o l l e r s 192 .168 .0 .98
18 c r a t e i d = CROPEN(” 1 9 2 . 1 6 8 . 0 . 9 8 ”) ;
19 i f (c r a t e i d <0) {
20 cout << ”ERROR: Unable to connect with s p e c i f i e d IP address ! \n” ;
21 return 0 ;
22 }
23 cout << ” Crate opened ” << c r a t e i d << endl ;
24
25 // c l e a r c ra t e
26 r e s = CCCZ(c r a t e i d) ;
27 i f (res <0) {
28 cout << ” Error execut ing CCCZ operat i on : ” << r e s << endl ;
29 returno 0 ;
30 }
31
32 cout << ” Enter the durat ion o f the measurement in seconds : ” ;
33 int ntime = 1 ;
34 c in >> ntime ;
35
36 // s e t INHIBIT to ON fo r a l l modules in c ra t e : the s c a l e r s t op s count ing
37 r e s = CCCI(c r a t e i d , 1) ;
38 i f (res <0)
39 cout << ” Error execut ing CCCI opera t i on : ” << r e s << endl ;
40
41 // c l e a r s c a l e r channel 5 , CAMAC func t i on code 9
42 cr op .F = 9 ;
43 cr op .N = N SCALER;
44 cr op .A = 5 ;
45 r e s = CFSA(c r a t e i d , &cr op) ;
46 i f (res <0)
47 cout << ” Error execut ing CFSA operat i on : ” << r e s << endl ;
48
49 // s e t INHIBIT to OFF fo r a l l modules in c ra t e : the s c a l e r resumes count ing
50 r e s = CCCI(c r a t e i d , 0) ;
51 i f (res <0)
52 cout << ” Error execut ing CCCI opera t i on : ” << r e s << endl ;
53
54 // count f o r ntime seconds
55 cout << ”Counting s t a r t s ! Wait ” << ntime << ” seconds . . . ” << endl ;
56 s l e e p (ntime) ;
57
58 // s e t INHIBIT to ON fo r a l l modules in c ra t e : the s c a l e r s t op s count ing
59 r e s = CCCI(c r a t e i d , 1) ;
60 i f (res <0)
61 cout << ” Error execut ing CCCI opera t i on : ” << r e s << endl ;
62
63 // read s c a l e r channel 5 , CAMAC func t i on code 0
64 cr op .F = 0 ;
65 cr op .N = N SCALER;
66 cr op .A = 5 ;

10

67 r e s = CFSA(c r a t e i d , &cr op) ;
68 i f (res <0)
69 cout << ” Error execut ing CFSA operat i on : ” << r e s << endl ;
70
71 cout << ”Number o f counts : ” << cr op .DATA << endl ;
72 cout << ”Counting ra t e : ” << f loat (c r op .DATA) / f loat (ntime) << ” Hz \n” ;
73
74 // c l o s e c ra t e
75 CRCLOSE(c r a t e i d) ;
76 cout << ”Bye bye ! ” << endl ;
77
78 return 0 ;
79 }

Example 3: Using a flip-flop

Usually a flip-flop is used to stop (veto) trigger generation until the current event is not
fully read out: the trigger sets the flip-flop to ”1” and the flip-flop response Q (not the
dataway bus line) is connected to the veto input of the trigger generation circuit to stop
further trigger generation until the flip-flop is not cleared (see Figure 1). At the end of
the event acquisition cycle the host computer resets the flip-flop through a CAMAC cycle
and a new trigger can be generated.

The following example shows how to set, reset, and read a flip-flop module, model
DPNC 750, which houses 8 independent flip-flops. The function F = 18 (l. 40) overwrites
the flip-flop’s register with a mask, i.e. it clears the bit selected by the mask. After
starting the program enter the pattern you want to activate on the module and verify
that the corresponding leds turn on.

flipflop.c

1 // f l i p f l o p . c
2 // sample program to p lay wi th the f l i p f l o p
3 #include <iostream>
4 #include ” c r a t e l i b . h” //JENET CAMAC Crate Library
5
6 using namespace std ;
7
8 // put here the l o c a t i o n (address N) o f each module
9 const int N FF = 8 ; //FF s l o t

10
11 int main (int argc , char *argv []) {
12
13 //C111 data s t r u c t u r e F, N, A, Q, X, DATA (char , char , char , char , char , i n t)
14 CRATE OP cr op ;
15 short c r a t e i d , r e s ;
16
17 //open cra t e : d e f a u l t IP address f o r a l l Lab c o n t r o l l e r s 192 .168 .0 .98
18 c r a t e i d = CROPEN(” 1 9 2 . 1 6 8 . 0 . 9 8 ”) ;
19 i f (c r a t e i d <0) {
20 cout << ”ERROR: Unable to connect with s p e c i f i e d IP address ! \n” ;
21 return 0 ;
22 }
23

11

24 // c l e a r c ra t e
25 r e s = CCCZ(c r a t e i d) ;
26 i f (res <0) {
27 cout << ” Error execut ing CCCZ operat i on : ” << r e s << endl ;
28 return 0 ;
29 }
30
31 // s t a r t the DAQ loop
32 int f f i n ;
33 while (1) {
34 cout << ” Enter FF b i t s you want to a c t i v a t e in hex (0 X) : ” ;
35
36 // c l e a r F l ipF lop (ove rwr i t e FF r e g i s t e r s) f unc t i on code 18
37 cr op .F = 18 ;
38 cr op .N = N FF ;
39 cr op .DATA = 0xFF ;
40 r e s = CFSA(c r a t e i d , &cr op) ;
41 i f (res <0)
42 cout << ” Error c l e a r i n g Fl ipFlop : ” << r e s << endl ;
43
44 // s e t Fl ipFlop , f unc t i on code 16
45 c in >> std : : hex >> f f i n ;
46 cr op .F = 16 ;
47 cr op .N = N FF ;
48 cr op .A = 0 ;
49 cr op .DATA = f f i n ;
50 r e s = CFSA(c r a t e i d , &cr op) ;
51 i f (res <0)
52 cout << ” Error s e t t i n g Fl ipFlop : ” << r e s << endl ;
53
54 // read Fl ipFlop , f unc t i on code 0 , sub=address 0 reads a l l FF channe l s
55 cr op .F = 0 ;
56 cr op .N = N FF ;
57 cr op .A = 0 ;
58 r e s = CFSA(c r a t e i d , &cr op) ;
59 i f (res <0)
60 cout << ” Error read ing Fl ipFlop : ” << r e s << endl ;
61 cout << ”FF pattern : ” << std : : hex << cr op .DATA << endl ;
62
63 cout << endl << ” Continue or e x i t [y/n] ? ”
64 char ccc ;
65 c in >> ccc ;
66 i f (ccc==”y”) {
67 cout << ”Ending DAQ loop ” << endl ;
68 break ;
69 }
70 } //end DAQ loop
71
72 // c l o s e c ra t e
73 CRCLOSE(c r a t e i d) ;
74 cout << endl << ”Bye bye ! ” << endl ;
75
76 return 0 ;
77 }

12

Figure 1: How to connect an ADC: The signal from the PMT is split in two parts. The first part goes
to a discriminator and the discriminator output goes to a timer to generate the gate (100 ns) for the
ADC module. A second output from the timer goes to a flip-flop to set the flip-flop (S). The flip-flop
response Q is used to veto the generation of new gates until the flip-flop is reset by the DAQ. The
second part of the PMT signal is delayed such to coincide with the gate before entering the ADC
module. The gate has to open around 10 ns before the PMT pulse. The end marker (E.M.) of the
first timer starts the second timer and the E.M. generated by the second timer is used to generate a
time out (50 µs later) and sets the second flip-flop to signal to the DAQ that the ADC has completed
the conversion of the PMT signal and is ready for readout.

Example 4: ADC readout

This example shows how the operate and read an Analog to Digital Converter module
(ADC), model LeCroy 2249A. In order to digitize a pulse, a gate in coincidence with the
input PMT signal has to be generated (see Figure 1) to open the sampling window of
the ADC. A flip-flop is used to inhibit the generation of new triggers until it is not reset
by the DAQ at the end of the event acquisition cycle. To signal to the DAQ that the
ADC has completed the digitization of the input pulse a second flip-flop is set. The DAQ
program polls the flip-flop module until the correct pattern is not seen and then acquires
the digitized pulse. Otherwise the program continues polling the flip-flop module. Finally
it resets the flip-flops and a new acquisition cycle can start.

When launching the DAQ program you can also enter the controller’s IP address at
the prompt (l.15 and l.22). After establishing the connection between the PC and the
controller, the crate is scanned for modules at line 34. The output data file is opened
at line 59. Then the crate is initialized and the modules are cleared. The DAQ loop
starts at line 89. The flip-flop module is polled between lines 95 and 100. If a trigger has
been generated and the ADC has completed the conversion, the event is acquired, i.e.
the ADC module is read at line 106, and data is written to the screen and to the output
data file. Otherwise the program continues polling the flip-flop module until the correct
pattern is not identified. The flip-flop is reset at line 129, the veto is removed and trigger
generation resumes, and a new acquisition cycle starts.

Although we are reading only one ADC channel, this is already a full DAQ program.
To speed up the execution of the program, you can comment all unnecessary writing to
the screen.

13

readADC.c

1 //readADC . c
2 // sample program to read one ADC channel (LeCroy 2249A)
3 #include <iostream>
4 #include <fstream>
5 #include ” c r a t e l i b . h” //JENET CAMAC Crate Library
6 #include ” kbhit . c” // d e f i n i t i o n o f f unc t i on k b h i t ()
7
8 using namespace std ;
9

10 // put here the l o c a t i o n (address N) o f each module
11 const int N DWDISP = 1 ;
12 const int N ADC = 8 ; //ADC s l o t
13 const int N FF = 16 ; //FF s l o t
14
15 int main (int argc , char *argv []) {
16
17 //C111 data s t r u c t u r e F, N, A, Q, X, DATA (char , char , char , char , char , i n t)
18 CRATE OP cr op ;
19 short c r a t e i d , r e s ;
20
21 //open cra t e : d e f a u l t IP address f o r a l l Lab c o n t r o l l e r s 192 .168 .0 .98
22 i f (argc==2)
23 c r a t e i d = CROPEN(argv [1]) ;
24 else
25 c r a t e i d = CROPEN(” 1 9 2 . 1 6 8 . 0 . 9 8 ”) ;
26 i f (c r a t e i d <0) {
27 cout << ”ERROR: Unable to connect with s p e c i f i e d IP address ! \n ” ;
28 return 0 ;
29 }
30 cout << ” Crate opened ” << c r a t e i d << endl ;
31
32 // scan the c ra t e f o r modules (op t i ona l)
33 unsigned int s c a n r e s u l t ;
34 r e s = CSCAN(c r a t e i d , &s c a n r e s u l t) ;
35 i f (res <0)
36 cout << ” Error scanning the c ra t e : ” << r e s << endl ;
37 for (int i =0; i <24; i++) {
38 i f (s c a n r e s u l t & (1 << i))
39 cout << ” Stat i on ” << i+1 << ” i s f i l l e d with a module . \n” ;
40 }
41
42 //open output data f i l e
43 bool done = fa l se ;
44 s t r i n g adcname ;
45 cout << ” Enter f i l ename f o r data f i l e : ” ;
46 c in >> adcname ;
47 // check s t a t u s o f data f i l e
48 done = fa l se ;
49 while (! done) {
50 std : : i f s t r e a m fdata (adcname . c s t r ()) ;
51 i f (fdata . i s o p e n ()) {
52 cout << ”ATTTENTION: You might e ra s e data ! ” << endl ;
53 cout << ” Enter a d i f f e r e n t f i l ename : ” ;
54 c in >> adcname ;
55 }

14

56 else
57 done = true ;
58 }
59 std : : o f s tream fdata (adcname . c s t r ()) ; //open data f i l e
60
61 // c l e a r c ra t e
62 r e s = CCCZ(c r a t e i d) ;
63 i f (res <0) {
64 cout << ” Error execut ing CCCZ operat i on : ” << r e s << endl ;
65 return 0 ;
66 }
67
68
69 // c l e a r ADC (a l l channe ls) f unc t i on code F9
70 cr op .F = 9 ; // c l e a r ADC
71 cr op .N = N ADC;
72 cr op .A = 0 ;
73 r e s = CFSA(c r a t e i d , &cr op) ;
74 i f (res <0)
75 cout << ” Error c l e a r i n g ADC: ” << r e s << endl ;
76
77 // c l e a r F l i p /Flop func t i on code 18
78 cr op .F = 18 ;
79 cr op .N = N FF ;
80 cr op .A = 0 ;
81 cr op .DATA = 0xFF ;
82 r e s = CFSA(c r a t e i d , &cr op) ;
83 i f (res <0)
84 cout << ” Error c l e a r i n g FF: ” << r e s << endl ;
85
86 // s t a r t the DAQ loop
87 int patt ; //FF pa t t e rn
88 int xadc1 ; //ADC data
89 while (1) {
90
91 // check i f t r i g g e r generated (check F l ipF lop)
92 cr op .F = 0 ;
93 cr op .N = N FF ;
94 cr op .A = 0 ;
95 r e s = CFSA(c r a t e i d , &cr op) ;
96 i f (res <0)
97 cout << ” Error read ing Fl ipFlop : ” << r e s << endl ;
98 patt = cr op .DATA;
99 i f (patt == 3) {

100 cout << ”FF 1 and 2 are s e t \n” ;
101
102 // read ADC f i r s t channel
103 cr op .F = 0 ;
104 cr op .N = N ADC;
105 cr op .A = 0 ;
106 r e s = CFSA(c r a t e i d , &cr op) ;
107 i f (res <0)
108 cout << ” Error read ing ADC: ” << r e s << endl ;
109 xadc1 = cr op .DATA;
110
111 // wr i t e data to f i l e
112 cout << ”ADC: ” << xadc1 << endl ;
113 fdata << xadc1 << endl ;

15

114
115 // c l e a r ADC (a l l channe ls)
116 cr op .F = 9 ;
117 cr op .N = N ADC;
118 cr op .A = 0 ;
119 r e s = CFSA(c r a t e i d , &cr op) ;
120 i f (res <0)
121 cout << ” Error c l e a r i n g ADC: ” << r e s << endl ;
122 cout << ”ADC c l e a r e d \n” ;
123
124 // c l e a r F l ipF lop
125 cr op .F = 18 ;
126 cr op .N = N FF ;
127 cr op .A = 0 ;
128 cr op .DATA = 0xF ;
129 r e s = CFSA(c r a t e i d , &cr op) ;
130 i f (res <0)
131 cout << ” Error c l e a r i n g FF: ” << r e s << endl ;
132 cout << ” Fl ipFlop c l e a r e d \n” ;
133
134 i f (kbhit ()) { // to e x i t from the loop use func t i on k b h i t ()
135 cout << endl << ”Ending loop ” << endl ;
136 break ;
137 }
138 } // end wa i t ing f o r t r i g g e r
139 } // DAQ end loop
140
141 // c l o s e c ra t e
142 CRCLOSE(c r a t e i d) ;
143 cout << endl << ”Bye bye ! ” << endl ;
144
145 return 0 ;
146 }

References

[1] W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, 2nd Ed.,
Springer-Verlag (1994).

[2] CAMAC standard.

[3] LeCroy 1997 Research Instrumentation Products Catalog.

[4] CAEN, Mod C111C Technical Information Manual.

[5] C111C JENET C Library.

16

	Introduction
	CAMAC Commands
	Using the JENET Library
	How to Install the Crate Controller
	The WEB Interface
	How to Compile Under Linux

