Tutorial for Nios® Il

(inter) FPGA Intel FPGA Monitor Program

For Quartus® Prime 18.1

1 Introduction

This tutorial presents an introduction to the Intel FPGA Monitor Program, which can be used to compile, assemble,
download and debug programs for the Intel Nios® II processor. The tutorial is intended for a user who wishes to use
a Nios II based system on an Intel Development and Education board. It gives step-by-step instructions that illustrate
the features of the Monitor Program.

The Monitor Program is a software application which runs on a host PC, and communicates with a Nios II hard-
ware system on an FPGA board. It can be used to compile/assemble a Nios II software application, download the
application onto the FPGA board, and then debug the running application. It provides features that allow a user to:

» Set up a Nios II project that specifies a desired hardware system and software program
* Download the hardware system onto an FPGA board

* Compile software programs, specified in assembly language or C, and download the resulting machine code
into the hardware system

* Display the Nios II machine code stored in memory

* Run the Nios II processor, either continuously or by single-stepping instructions

* Examine and modify the contents of processor registers

* Examine and modify the contents of memory, as well as memory-mapped registers in I/O devices

*» Set breakpoints that stop the execution of a program at a specified address, or when certain conditions are met

* Develop Nios II programs that make use of device driver functions provided through Intel’s Hardware Ab-
straction Layer (HAL)

The process of downloading and debugging a Nios II program requires an FPGA board to implement the Nios II
hardware system. In this tutorial it is assumed that the reader has access to the Intel DE1-SoC Development and Ed-
ucation board, connected to a computer that has Quartus Prime and Nios II Embedded Design Suite (EDS) software
installed. Although a reader who does not have access to an FPGA board will not be able to execute the Monitor
Program commands described in the tutorial, it should still be possible to follow the discussion.

Intel Corporation - FPGA University Program 1
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

1.1 Who should use the Monitor Program

The Monitor Program is intended to be used in an educational environment by professors and students. It is not
intended for commercial use.

2 Installing the Monitor Program

The Monitor Program is released as part of the University Program Design Suite (UPDS). Before the UPDS can be
installed on a computer, it is necessary to first install Intel’s Quartus® Prime CAD software (either the Lite, Standard,
or Pro edition) and the Nios II Embedded Design Suite (EDS). A particular release of the Monitor Program can be
used only with a corresponding version of the Quartus Prime software and Nios II EDS. This software can be
obtained from the on Intel’s website at university.altera.com.

Once the Quartus Prime software and Nios II EDS are installed, the UPDS can be installed.

Note that if the Quartus Prime software is re-installed at some future time, then it will be necessary to re-install the
Monitor Program at that time.

2.1 Using a Windows Operating System

When using a Windows operating system, perform the following:

1. Install the Intel UPDS from the University Program section of Intel’s website. It can be found by going to
university.altera.com and choosing MATERIALS followed by Software and then Intel FPGA Monitor Program.
Specify the installed version of Quartus Prime software. Then click on the EXE item in the displayed table,
which links to an installation program called alfera_upds_setup.exe. When prompted to Run or Save this
file, select Run.

2. The first screen of the installer is shown in Figure 1. Click on the Next button.

3. The installer will display the License Agreement; if you accept the terms of this agreement, then click | Agree
to continue.

4. The installer now displays the root directory where the FPGA University Program Design Suite will be in-
stalled. Click Next.

5. The next screen, shown in Figure 2, lists the components that will be installed, which include the Monitor
Program software and University Program IP Cores. These IP Cores provide a number of I/O device circuits
that can be used in hardware systems to be implemented on the FPGA board.

6. The installer is now ready to begin copying files. Click Install to proceed and then click Next after the instal-
lation has been completed. If you answered Yes when prompted about placing a shortcut on your Windows

Desktop, then an icon Q is provided on the Desktop that can be used to start the Monitor Program.

2 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

ﬁf) Intel's FPGA University Program Design Suite Setup — *

intel' 2oe)§ Welcome to the Intel FPGA

University Program Design Suite
Setup Wizard

U n lversrty This wizard will guide you through the installation of the

Intel's FPGA University Program Design Suite v17.0. Please
P rog rams note that you must have previously installed a version of
Intel's Quartus Prime software (version 17.0). The Intel
e FPGA Monitor Program additionally requires the Intel's Mios 1T
Embedded Design Suite (version 17.0).

Figure 1. Inte]l UPDS Setup Program.

7. Now, the FPGA University Program Design Suite is successfully installed on your computer, so click Finish
to finish the installation.

8. Should an error occur during the installation procedure, a pop-up window will suggest the appropriate action.
Possible errors include:
¢ Quartus Prime software is not installed or the Quartus Prime version is incorrect.

¢ Nios IT EDS software is not installed or the version is incorrect.

2.2 Using a Linux* Operating System

When using a Linux* operating system, perform the following:

1. Install the UPDS from the University Program section of Intel’s website. It can be found by going to univer-
sity.altera.com and choosing SUPPORT followed by Training and University Program. Then, select software
tools > Intel FPGA Monitor Program. Specify the installed version of Quartus Prime software. Then click on
the TAR item in the displayed table, which links to an installation tarball called altera_upds_setup.tar. Save
this file to a directory of your choosing.

Intel Corporation - FPGA University Program 3
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

ﬁg) Intel's FPGA University Program Design Suite Setup — >
oy, Choose Install Location
‘J Choose the folder in which to install Intel's FPGA University
Program Design Suite.

This Intel's FPGA University Program Design Suite w17.0 must be installed to the root
directory for version 17.0 of the Intel FPGA software. For example,
Cilaltera\17.0

The University Program Design Suite may not work correctly if installed to another location.

Intel's FPGA software v17.0 Root Directory

| ContelFPGA\17.0) Browse...

Space reguired: 522.3MB
Space available: 2.8GE

Figure 2. The components that will be installed.

2. Using a console, navigate to the directory to which the file was saved. Extract the contents of altera_upds_setup.tar
using the following command: tar -xf altera_upds_setup.tar.

3. Among the extracted files is a shell script named install_altera_upds which will be used to install the UPDS.
Ensure that the script is executable by using the following command: chmod +x install_altera_upds.

4. Run the installation script with superuser privileges by using the following command: sudo ./install_altera_upds.

5. Follow the instructions displayed by the script to complete the installation.

3 Main Features of the Monitor Program

Each Nios II software application that is developed with the Intel FPGA Monitor Program is called a project. The
Monitor Program works on one project at a time and keeps all information for that project in a single directory in the
file system. The first step is to create a directory to hold the project’s files. To store the design files for this tutorial, we
will use a directory named Monitor_Tutorial. The running example for this tutorial is a simple assembly-language
program that controls some lights on a DE1-SoC board.

4 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

If you are using a Windows* operating system, then start the Monitor Program software either by double-clicking
its icon on the Windows Desktop or by accessing the program in the Windows Start menu under Intel > University
Program > Intel FPGA Monitor Program. You should see a display similar to the one in Figure 3.

If you are using a Linux operating system, then start the Monitor Program software by running the altera-monitor-
program shell script located in <path to Intel software>/University Program/Monitor Program/bin. You should see
a display similar to the one in Figure 3.

File Edit Actions Windows Help

O i & @ g i Lo | TV P

Project Files — | Disassembly — | Registers — X
Goto instruction | Address (hex) or symbol name | @ﬂ“ﬁl
[4] Te]
Editor Disassembly/ Breakpmnts}r Mernory)" Watche;)'rTrace !

Terminal — | Info & Errors - X

Info EiError;}r GDE Server )‘r \c’ariables}{

Figure 3. The main Monitor Program display.

This display consists of several windows that provide access to all of the features of the Monitor Program, which the
user selects with the computer mouse. Most of the commands provided by the Monitor Program can be accessed by
using a set of menus that are located below the title bar. For example, in Figure 3 clicking the left mouse button on
the File command opens the menu shown in Figure 4. Clicking the left mouse button on the entry EXxit exits from
the Monitor Program. In most cases, whenever the mouse is used to select something, the left button is used. Hence
we will not normally specify which button to press.

For some commands it is necessary to access two or more menus in sequence. We use the convention Menu1 >
Menu2 > ltem to indicate that to select the desired command the user should first click the mouse button on Menu1,
then within this menu click on Menu2, and then within Menu2 click on Item. For example, File > Exit uses the
mouse to exit from the Monitor Program. Many commands can alternatively be invoked by clicking on an icon
displayed in the Monitor Program window. To see the command associated with an icon, position the mouse over
the icon and a tooltip will appear that displays the command name.

Intel Corporation - FPGA University Program 5
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

File Edit Actions Windows

Mew... Ctrl-N
Open... -0
Save Ctrl-5

4| Mew Project...
ﬁ Open Project...
Open Recent Project k

Figure 4. An example of the File menu.

It is possible to modify the organization of the Monitor Program display in Figure 3 in many ways. Section 9 shows
how to move, resize, close, and open windows within the Monitor Program display.

3.1 Creating a Project

To start working on a Nios II software application we first have to create a new project, as follows:

1. Select File > New Project to open the New Project Wizard, which leads to the screen in Figure 5. The Wizard
presents a sequence of screens for defining a new project. Each screen includes a number of dialogs, as well
as a message area at the bottom of the window. The message area is used to display error and information
messages associated with the dialogs in the window. Double-clicking the mouse on an error message moves
the cursor into the dialog box that contains the source of the error.

In Figure 5 we have specified the file system directory D:\Monitor_Tutorial and the project name Moni-
tor_Tutorial. For simplicity, we have used a project name that matches the directory name, but this is not
required.

If the file system directory specified for the project does not already exist, a message will be displayed indicat-
ing that this new directory will be created. To select an existing directory by browsing through the file system,
click on the Browse button. Note that a given directory may contain at most one project.

The Monitor Program can be used with either an ARM* based system or a Nios II-based system. The choice
of a processor is made in the window in Figure 5 in the box labeled Architecture. We have chosen the Nios II
architecture for this tutorial.

2. Click Next to advance to the window shown in Figure 6, which is used to specify a particular system. A
hardware system to be implemented on the FPGA board is usually generated by using Quartus’s Platform
Designer tool. Information about creating systems using Platform Designer can be found in the Introduction
to the Intel Platform Designer Tool tutorial, which is available in the University Program section of Intel’s
website.

6 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

=] New Project Wizard X

Specify a project name and directory

Project directory:

|D:\Moni‘torjutorial | ‘ Browse... ‘

Project name:

|Momit0r_TutoriaI ‘

Architecture:  |Nios I -‘

Cancel

Figure 5. Specifying the project directory and name.

A system designed and generated by using Quartus Prime and its Platform Designer tool is described in
SOPClInfo and SOF files. The former gives a high-level description of the system. The latter represents the
FPGA circuit that implements the designed system; this file can be downloaded into the FPGA chip on the
board that is being used.

Any system which contains a Hard Processor System (HPS) component must also specify the preloader to be
run immediately following the circuit being downloaded. This preloader is used to configure the components
within the HPS with the setting required for the specific board.

The drop-down list on the Select a system pane can be used to choose the system to be used in the project.
The Monitor Program includes a number of prebuilt computer systems for Intel’s Development and Education
boards. Since in this tutorial we assume that the user has access to a DE1-SoC board, we will use a system
called the DE1-SoC Computer. This computer includes a number of interfaces to input/output devices imple-
mented in the FPGA fabric of the chip. It was created using Quartus Prime and its Platform Designer tool.
It is represented by .sopcinfo and .sof files which are automatically included when this computer is selected.
The DE1-SoC preloader is also automatically selected.

The user may also design and implement a custom system. If the custom system is selected, then the user
must manually specify the .sopcinfo and .sof files that define the required system in the System details pane.
If the custom system contains an HPS, the user must select their board from the preloader dropdown menu.

Intel Corporation - FPGA University Program 7
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

In the top right corner of Figure 6 there is a Documentation button. Clicking on this button opens a user
guide that provides all information needed for developing Nios II programs for the DE1-SoC Computer, such
as the memory map for addressing all of the I/O devices in the system. This file can also be accessed at a later
time by using the command Settings > System Settings and then clicking on the Documentation button.

] New Project Wizard X

Specify a system

Select a system

[pE1-50€ Computer ~ | Documentation

This system, called the DE1-50C Computer, is intended to be used as a platform for experiments in computer
organization and embedded systems, To support these experiments, the system contains a number of components: a
processor, memory, audio and video devices, and some simple [/0 peripherals,

System details
System description file (SOPCinfo):

./Computer_Systems/DE1-SoC/DET-SoC_Computer/verilog/Computer_System.sopcinfo
FPGA programming (SOF] file:
./Computer_Systems/DE1-SoC/DET-SeC_Computer/verilog/DE1_SeC_Computer.sof

The SOF file represents the FPGA programming file for the harcware system. If it is specified here, then the Monitor
Program can be used to download this programming file onto the board. Otherwise, the system will need to be
downloaded using some other method (for example, by using Quartus Il).

Preloader

Figure 6. Specifying the desired hardware system.

3. Click Next to advance to the screen in Figure 7, which is used to specify the program source files that are
associated with the project. The Program Type drop-down list can be used to select one of the following
program types:

Assembly Program: allows the Monitor Program to be used with Nios II assembly-language code
» C Program: allows the Monitor Program to be used with C code

» Program with Device Driver Support: this is an advanced option, which can be used to develop
programs that make use of device driver software for the I/O devices in the Nios II hardware system.
Programs that use this option can be written in either assembly, C, or C++ language (or any combination).
More information about writing programs that use device drivers can be found in Appendix B.

ELF or SREC File: allows the Monitor Program to be used with a precompiled program, in ELF or
SREC format

Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

* No Program: allows the Monitor Program to connect to the Nios II hardware system without first
loading a program; this can be useful if one wants to examine the current state of some I/O devices
without running an actual program.

New Project Wizard Y

Specify a program type

Program Type: |Assembly Program -

Lets you specify a program written in assembly language.

|Inc|ude a sample program with the projecd

Select a sample p n
This program demonstrates use of parallel ports in the Computer System. -
Interrupt Example E

JTAG UART

Simple Program It performs the following:

1. displays a rotating pattern on the LEDs

2. 1f a KEY s pressed, uses the SW switches as the pattern

|<Back||Nex‘t>| ‘ Save HCancel‘

Figure 7. Selecting a program type and sample program.

For our example, set the program type to Assembly Program. When the DE1-SoC computer has been
selected for the project, it is possible to click on the selection Include a sample program with the project.

As illustrated in Figure 7, several sample assembly-language programs are available for this prebuilt computer.
For our tutorial select the program named Simple Program. This is a very simple program which continuously
reads the state of the slider switches on the DE1-SoC board and displays their state on the red LEDs. The
source code for the program is:

Intel Corporation - FPGA University Program 9
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

10

.text

.equ LEDs, OxFF200000

.equ SWITCHES, OxFF200040

.global _start

_start:
movia r2, LEDs
movia r3, SWITCHES

LOOP: ldwio rd, (r3) S
stwio rd, (r2) *
br LOOP

.end

Click Next to advance to the screen in Figure 8.

New Project Wizard b4
Specify program details

Source files
First source file is used to determine the name of the binary program file.
C:/Desktop/Monitor_Tutorial/simple_program.s Add...
C:/Desktop/Monitor_Tutorial/address_map_nios2.s

Down
Program opti
{ Start symbol: |_start | ‘
Source files highlighted in blue are sample program files, which will be created in the project directory.
| < Back| HNext >‘| ‘ Save ‘ ‘ Cancel ‘

Figure 8. Specifying source code files.

When a sample program has been selected, the source code file(s) associated with this program is listed in
the Source files box. In this case, the source file is named simple_program.s; this file will be copied into the
directory used for the project by the Monitor Program. If a sample program is not used, then it is necessary to
click the Add button and browse to select the desired source file(s).

Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

Figure 8 shows how it is possible to specify a label that identifies the first instruction to be executed. In the
simple_program.s file, this label is called _start, as indicated in the figure.

4. Click Next to advance to the window in Figure 9. This window is used to specify the connection to the
FPGA board, the processor that should be used (some hardware systems may contain multiple processors),
and the terminal device. The Host connection drop-down list contains the physical connection links (such as
cables) that exist between the host computer and any FPGA boards connected to it. The processors available
in the system are found in the Processor drop-down list, and all terminal devices connected to the selected
processor are displayed in the Terminal device drop-down list. We discuss terminal devices in Section 6.

Accept the default choices that are displayed in Figure 9. If the Host Connection box is blank, make sure that
the DE1-SoC board is connected to the host by a USB cable and that its power is turned on. Then, press the
Refresh button and select the USB Blaster as the desired choice. For the DE1-SoC board the required choice

is DE-SoC.
=] New Project Wizard X
Specify system parameters
System parameters
Host mnnertiun:|DE-SOC [USB-1] '| ‘ Refresh |
Processar: |Niosz v|
™
Terminal device: |JTAG_UART v|
| < Back| HNex‘t >\| ‘ Cancel ‘

Figure 9. Specifying system settings.

5. Click Next to reach the final screen for creating the new project, shown in Figure 10. This screen is used to
specify memory settings that are needed for compiling and linking the program.

There are two modes that can be selected. In the Basic mode, which does not provide explicitly for the use
of interrupts, the application program starts at memory address 0x00000000 as shown in the figure. A more
general alternative is to use the Interrupts mode, which is discussed in Section 8. The program in the .text

Intel Corporation - FPGA University Program 11
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

12

New Project Wizard *

Specify program memory settings

Y opti
Here you can specify section names and their start and end addresses. These sections will be used by the
linker to place code and data at the specified addresses. To ensure correct use of the section names by
the linker, the names must match those identified by the assembler directives, such as .text.

Linker Section Presets: ‘Basic v|

Section Name | Memary Device Address Range ‘
.text SDREM 0x00000000 - OXQ3FFFFER

| < Back|| Next > | Save ‘ Cancel ‘

Figure 10. Specifying memory settings.

section can start at some other address, as may be specified by the user. To change the address, double-click
on the .fext entry and change the address in the pop-up box that appears.

Click Finish to complete the creation of the new project. At this point, the Monitor Program displays the
prompt shown in Figure 11. Clicking Yes instructs the Monitor Program to download the hardware system
associated with the project onto the FPGA board. It is also possible to download the system at a later time
by using the Monitor Program command Actions > Download System. If the downloaded system contains
more than one processor, the Monitor Program will prompt you to halt the processors other than the one being
used for the current project. It is generally recommended to halt the other processors because they can execute
without you knowing, resulting in unexpected behavior.

Download System - Prompt X

2 | Would you like to download the system associated with this project onto the board?
If so, make sure that the board is connected via the correct cable and is powered up.

[ Yes ]| N |

Figure 11. Download the hardware system.

Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

3.1.1 Downloading a Nios Il Hardware System

When downloading a Nios II hardware system onto an FPGA board, it is important to consider the type of
license that is included in the hardware system for the processor. The Nios II processor uses a licensing
scheme that provides two modes of operation: 1. an evaluation mode that allows the processor to be used
with some restrictions when no license is present, and 2. a normal mode that allows unrestricted use when
a license is present. Nios II licenses can be purchased from Intel, and are also available on a donated basis
through the University Program. The prebuilt computer systems provided with the Monitor Program, such as
the DE1-SoC Computer, include a Nios II processor that has a license. However, if other systems are being
used with the Monitor Program, then it is possible that a license is not present, and the Nios II processor may
be used in the evaluation mode. In this case it is necessary to use a different scheme, which is described in
Section 5, to download the Nios II hardware system onto the FPGA board and activate the evaluation mode.

3.2 Compiling and Loading the Program

After successfully creating a project, its software files can be compiled/assembled and downloaded onto the FPGA
board using the following commands:

* Actions > Compile menu item or o0 icon: compiles the source files into an ELF and SREC file. Build
warnings and errors will show up in the Info & Errors window. The generated ELF and SREC files are placed
in the project’s directory.

« Actions > Load menu item or ¥ icon: loads the compiled SREC file onto the board and begins a debugging
session in the Monitor Program. Loading progress messages are displayed in the Info & Errors window.

« Actions > Compile & Load menu item or (£ icon: performs the operations of both compilation and loading.

Our example project has not yet been compiled, so it cannot be loaded (the Load option is disabled). Select the Ac-

tions > Compile & Load menu item or click the £ icon to begin the compilation and loading process. Throughout
the process, messages are displayed in the Info & Errors window. The messages should resemble those shown in
Figure 12.

After successfully completing this step, the Monitor Program display should look similar to Figure 13. At this point
the processor is halted at the first instruction of the program that has to be executed, which is highlighted in yellow
shading. The main part of the display in Figure 13 is called the Disassembly window. It shows the machine code for
the assembled program, as well as the addresses of memory locations in which the instructions are loaded. It also
shows the assembly-language version of the assembled instructions.

Intel Corporation - FPGA University Program 13
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

Info & Errors — X

=T = = == =T T —
ELF generated at D:/Monitor Tutorial/simple program.elf. —
nios2-elf-objcopy -0 srec "D:/Monitor_Tutorial/simple program.elf™ "D:/Monitor_Tutorial,
SREC generated at D:/Monitor Tutorial/simple_program.srec.

Using cable "D 1"

stance 0x00

Connection established to GDB server at localhost:2399

Symbols loaded.
Source code loaded.
k]

Figure 12. Compilation and loading messages.

# Intel FPGA Monitor Program - Monitor_Tutorial : simple_program.srec [Paused]

File Edit Actions Windows Help
6 E Hhd o0k $
Project Files _ % | Disassembly — % | Registers —
[& Monitor_Tutorial Gt smrarr| s (e o s T | Reg | Velue |
“[7 simple_program.s — |l lpe
| +]| |ze2a 0x00000000
.eq  LEDs, 0xFF200000 r1 0X00000000
.equ SWITCHES, OxFF200040 r2 0x00000000
.global _start 3 0x00000000
I 0x00000000
start: s 0x00000000
wovia  rZ, LEDs /% hddress of red LEDa. */ =6 0x00000000
srare: 7 0x00000000
0x00000000  OOBFCE34 orhd r2, zero, OxFF20 b 0x00000000
0%00000004 10200004 addi 13, r2, Ox0 9 0x00000000
wovie 13, SUITCEES /% Address of switches. +f rﬂ z"zgzggzsg
0x00000008  DOFFCE3 orhi 3, zero, OxFF20 212 oioooooooo
0x0000000C  16C0L004 agdi  r3, r3, Ox40 15 1200000000
it 0x00000000
Long: ris 0x00000000
lawie x4, (r3) /% Bead the state of switches.| ||[z1g 0%00000000
LOOP: 17 0x00000000
0x00000010 19000057 lawio 4, 0(r3) ris 0x00000000
stwio 14, (r2) /% Display the state on LEDs. 19 0x00000000
0x00000014 11000035 stwio 14, 0(r2) = =20 0x00000000
Il FF5 0X00000000
ﬁ# 22 owosoonocs | |
Editor | Disassembly | Breakpoints | Memory | Watches | Trace r23 0x00000000 -
Terminal = | Info & Errors - X
JIAG UART link established using cable "DE-Sof [USB-1]", device 2, INFO: Non-memory - Bushbuttons 0xE£200050 =
inatance 0x00 INFO: Non-memory - Expansion_JFl 0x££200060
INFO: Non-memory - Expansion JB2 0xE£200070
INFO: Non-memory - Interval Timer 0x££202000
INFO: Non-memory - Interval Timer 2 0x££202020
INFO: Non-memory - Video In_Subsystem Video In DMA 0X££203060 E
=
L [ |} |
Info & Errors | GDB Server | Debug | Variables

Figure 13. The Monitor Program window after loading the program.

Most instructions in a Nios II assembly-language source program are assembled into directly-corresponding machine
instructions in the object code that is loaded into the memory for execution. But, this is not the case with all
instructions. The Nios II assembly language provides numerous pseudo-instructions, which are often replaced by
actual instructions that look quite different but have the same effect when executed. For instance, the pseudo-
instruction

movia 13, SWITCHES

14 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

loads into processor register r3 the memory address of the I/O data register that is connected to the slider switches on
the board. The required address is 32 bits long. However, immediate operands in Nios II Load instructions can be at
most 16 bits long. Therefore, as seen in Figure 13, the second movia instruction is replaced with two instructions.
The instruction

orhi 13, zero, OxFF20

places the immediate operand OxFF20 into the high-order 16 bits of register r3 and leaves the low-order 16 bits equal
to zero. The instruction

addi r3, r3, 0x40

changes the low-order 16 bits into 0x40, thus completing in register 13 the required address 0xFF200040. Informa-
tion about Nios II instructions and pseudo-instructions can be found in the tutorial Introduction to the Intel Nios I1
Soft Processor, available in the University Program section of Intel’s website.

3.2.1 Compilation Errors

During the process of developing software, it is likely that compilation errors will be encountered. Error messages
from the Nios II assembler or from the C compiler are displayed in the Info & Errors window. To see an example of
a compiler error message, edit the file simple_program.s, which is in the project’s directory, and replace the Branch
instruction mnemonic br with b. Recompile the project to see the error shown in Figure 14. The error message
indicates the type of error and it gives the line number in the file where the error was detected. Fix the error, and
then compile and load the program again.

Info & Errors — X
Compiling scurce Iiles... -
nios2-elf-as --gatabs -I "D:/altera/l3.l/nicsZeds/components/altera_nios2/sdk/ir
D:/Monitor Tutorial/simple program.s: Warning: end of file not at end of a line.
D iitor_Tutorial/simple program.s:12: Error: unrecognised instruction b
Compilation stopped. E

Figure 14. An example of a compiler error message.

3.3 Running the Program

As mentioned in the previous section, the processor is halted at the first instruction after the program has been loaded.

To run the program, select the Actions > Continue menu item or click the [l icon. The simple_program displays
the current values of DE1-SoC board’s slider switches on the red LEDs. The Continue command runs the program

indefinitely. To force the program to halt, select the Actions > Stop command, or click the Y icon. This command

causes the processor to halt at the instruction to be executed next, and returns control to the Monitor Program.

Figure 15 shows an example of what the display may look like when the program is halted by using the Stop
command. The display highlights in yellow the next program instruction to be executed, which is at address

Intel Corporation - FPGA University Program 15
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1

For Quartus® Prime 18.1

0x00000014, and highlights in red the values in the processor registers that have changed since the last pro-
gram stoppage. Other screens in the Monitor Program are also updated, which will be described in later parts of this

tutorial.

# Intel FPGA Monitor Program - Monitor_Tutorial : simple_program.srec [Paused]

File Edit Actions Windows Help

O He+EH Hbhd 20wk PP

Project Files — X | Disassembly — % | Registers x
(& Manitor Tutarial Goto instruction| Address (hex) or symbol name: |:| _ Reg | Velue |
[ rp e program.s =l lbc 0%00000014 -
2| lzero  oxoo000000
.equ  LEDs, OxFF200000 r1 0x00000000
Lequ  SUTTCHES, 0xFF200040 r2 0xFF200000
.global _start 3 0xFF200040
ra 0x00000000
[ 5 0%00000000
movia rz, LEDs /% Address of red LEDs. #/ ré 0x00000000
-~ 1 0%00000000
0%00000000 " ormi  r2, zero, OXFF20 e 000000000
0x00000004 addi  z2, x2, Ox0 Sn ;:;g;g;g;g
wovia  r3, SWITCHES /% Address of switches. ©/ L 0000000
0x00000008 orhi  z3, zero, 0xFFZ0 s 0200000000
0x0000000C addi  r3, r3, x40 13 00000000
r14 0%00000000
LOOE: r15 0200000000
lawio 4, [z3) /% Read the state of switches.®/| ||r14 0%00000000
Lo0R: r17 0%00000000
0x00000010 ldwio x4, 0(r3) ria 0%00000000
stwio  rd, [r2) /% Display the state on LEDs. /| || |r19 0%00000000
0x00000014 stwio x4, 0(z2) il [r20 0%00000000
=21 0%00000000
P ez 0%00000000 Ll
Editor , Disassembly | Breakpoints | Memory | Watches | Trace 23 0%00000000 =
Terminal — % | Info & Errors =
JTAG URRT link established using cable "DE-SoC [USB-1]", device 2, INFO: Non-memory - Expansion JB1 0x££200060 =
instance 0x00 INFO: Non-memory - Expansion_JE2 0x££200070
INFO: Non-memory - Interval Timer 0x££202000
INFO: Non-memory - Interval Timer 2 0x££202020
INFO: Non-memory - Video_In_Subsystem Video In [MA 0x££203060

Info & Errors | GDB Server | Debug ; Variables

Figure 15. The Monitor Program display after the program has been stopped.

3.4 Using the Disassembly Window

In Figure 15, the Disassembly window shows the machine instructions for our program. The leftmost column in
the window gives the memory addresses, the middle column displays the machine code at these addresses, and the
rightmost column shows both the original source code for the instruction, in a brown color, and the disassembled
view of the machine code that is stored in memory, in a green color.

The Disassembly window can be configured to display less information on the screen, such as not showing the
assembly-language instructions or not showing the machine encoding of the instructions. These choices can be made
by right-clicking on the Disassembly window and selecting the appropriate menu item, as indicated in Figure 16.

Ox00000010

Ox00000014

O0x00000018

LOOF:

ldwio rd, 0{r3) ¥ Show instruction words

stwio rd, (rz) 3
stwio rd, O0(r2)
br Loop

br

_0xC {0x0000 Goto instruction...

Figure 16. Display options for the Disassembly window.

16

Intel Corporation - FPGA University Program

March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

Different parts of memory can be displayed by scrolling, using either the vertical scrollbar on the right side of the
Disassembly window or a mouse scroll wheel. It is also possible to go to a different region of memory by using
the Goto instruction panel at the top of the Disassembly window, or by using the command Actions > Goto
instruction. The instruction address provided for the Goto command must be a multiple of four, because Nios II
instructions are word-aligned.

3.5 Single Stepping Program Instructions

When debugging a program, it is often very useful to be able to single step through the program and observe the
effect of executing each instruction. The Monitor Program has the ability to perform single-step operations. Each
single step consists of executing a single machine instruction and then returning control to the Monitor Program. If
the source code of the program being debugged is written in the C language, then each individual single step will
still correspond to one assembly-language (machine) instruction generated from the C code.

The single-step operation is invoked by selecting the Actions > Single step menu item or by clicking on the &
icon. The instruction that is executed by the processor is the one highlighted in yellow in the Disassembly window.
Consider our simple_program example. You can go to the first instruction of the program, which has the label _start,

by selecting Actions > Restart menu item or by clicking the “% icon. If the program is running, it must first be
halted before the restart command can be performed. The restart command loads into the Program Counter the
address of the first instruction, thus causing the execution to start at this point in the program. Now, single step
through the program and observe the displayed changes. Note that the register values are indicated in red when they
change as a result of executing the last instruction.

In a program that contains subroutines it is possible to step over an entire subroutine by using the Step Over
Subroutine command in the Actions menu. This command performs a normal single step, unless the current
instruction is a Call instruction, in which case the program will run until the called subroutine is completed.

3.6 Using Breakpoints

An instruction breakpoint provides a means of stopping the execution of a program when it reaches an instruction at
a specific address. The procedure for setting a breakpoint is:

1. In the Disassembly window, scroll to display the instruction that will have the breakpoint. For example, in the
window in Figure 15 scroll to the Branch instruction at address 0x00000018.

2. Click on the gray bar to the left of the address 0x00000018. As illustrated in Figure 17, the Monitor Program
displays a red dot next to the address to show that a breakpoint has been set. Clicking the same location again
removes the breakpoint.

Once the instruction breakpoint has been set, run the program. The breakpoint will trigger when the Program Counter
value equals 0x00000018. Control then returns to the Monitor Program, and the Disassembly window highlights in
a yellow color the instruction at the breakpoint. A corresponding message is shown in the Info & Errors pane.

Intel Corporation - FPGA University Program 17
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

# Intel FPGA Monitor Program - Monitor_Tutorial : simple_program.srec [Paused]

File Edit Actions Windows Help

O He+EH Hbhd 20wk PP

Project Files — X | Disassembly — X | Registers - X
Goto instruction| Address (hex) or symbol name:|:| ﬁ%
—l lpc [T 100 -
.global _start 4|llzeze oxno000000
-1 0%00000000
_start: r2 0xFF200000
wovia  rZ, LEDs 4% Address of red LEDs. */ =3
_stare: rd
0x00000000 orhi r2, zero, OxFF20 r5 0x00000000
0x00000004 addi ¥z, r2, Oxi ré 0x00000000
movia 3, SWITCHES  /* Address of switches. */ 7 000000000
0%x00000008 orhi  r3, zero, OxTFZ0 e 000000000
0x0000000C addi  r3, r3, 0x40 e 0x00000000
& =10 0%00000000
11 0%00000000
Loor: r12 0x00000000
lawic 4, (x3) /* Read the state of svitches.s/| (|| o5 1%00000000
LOoE: r1a 0x00000000
0%00000010 ldwio 4, 0{r3) 15 0%00000000
stwio 4, (z2) 4% Display the state on LEDs. =/ | |||x14 0%00000000
0%00000014 stwio 4, 0(r2) r17 0%00000000
br  LOOP 1z 0%00000000
W0x00000018 br ~0%C [0x00000010: LOGR) 13 0%00000000
0x0000001C B Ll =20 0%00000000
= r21 0%00000000
P ez 0%00000000 L
Editor , Disassembly | Breakpoints | Memory | Watches | Trace 123 0%00000000 =
Terminal — % | Info & Errors - X
JTAG UART link established using cable "DE-Sof [USE-1]", device 2, INFO: Non-memory - Expansion JB1 0x££200060 =
instance 0x00 INFO: Non-memory - Expansion_JB2 0x££200070
INFO: Non-memory - Iatezval Timer 0x££202000
INFO: Non-memory - Interval_Timer_2 0x££202020
INFO: Non-memory - Video_In_Subsystem Video_In_DMA 0xZ£203060

Program stopped | 0014

Info & Errors | GDB Server | Debug ; Variables

Figure 17. Setting a breakpoint.

Some versions of the Nios II processor support other types of breakpoints in addition to instruction breakpoints.
Other types of breakpoints are described in Appendix A.

3.7 Examining and Changing Register Values

The Registers window on the right-hand side of the Monitor Program display shows the values of processor regis-
ters. It also allows the user to edit most of the register values. The number format in which the register values are
displayed can be changed by right-clicking in the Registers window and selecting the desired format, as illustrated
in Figure 18.

Each time program execution is halted, the Monitor Program updates the register values and highlights any changes
in red. The user can edit the register values while the program is halted. Any edits made are visible to the processor
when the program’s execution is resumed.

As an example of editing a register value, set the slider switches on the DE1-SoC board to some pattern of Os and
1s. Run the simple_program and observe that the LEDs display the selected pattern. Next, stop the execution of
the program and set a breakpoint at the Store instruction at address 0x00000014. Run the program and after the
execution stops at the breakpoint, observe that the value in register r4 corresponds to the current setting of the slider
switches. Now, as indicated in Figure 19, double-click on the contents of register r4 and change them to the value
FFF. Press Enter on the computer keyboard, or click away from the register value to apply the edit. Then, single-step
the program to see that all LEDs will be turned on.

18 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

Registers — X

Reg Value

sl 0x00000010 =
Zero 0x00000000
rl 0x00000000
r2 0xFF200000
r3 0xFF200040
r4 0x00000258
r3 0x00000000

Binary
Octal

Decimal

Hexadecimal

Lag
Signed representation

rlg 0x00000000 | |

Figure 18. Setting the number format for displaying register values.

Disassembly — X | Registers — X
‘Gntninstmcﬁnn Address (hex) or symbol name: | Reg M
— || lpc oxoo0oonld) |
_start: = |zexo 0x00000000
0x00000000 orhi ri, zero, OxFFz0 rl 0x00000000
Ox00000004 addi rz, rzZ, Ox0 r2 0xFF200000
wovia r3, SWITCHES A% Ahddress of switches. */ r3 0xFF200040
0x00000005 orhi r3, zero, OxFFZ0
0x0000000C addi r3, r3, Ox40 0x00000000
0x00000000
LOOE: 0x00000000
ldwio rd, (r3) /% Bead the state of switches.*/ 0200000000
LO0P: 0x00000000
000000010 ldwio rd, 0(r3) 0x00000000
stw?o rd, [(rZ)] /% Display the state on LEDs. #/ 3:33333333
.DxDDDDDDl4 stywrio rd, 0(r2) 0x00000000
br  LOOP 000000000
000000015 br =0xC (0x00000010: LOOE) 0x00000000

Figure 19. Editing a register value.

3.8 Examining and Changing Memory Contents

The Memory window, depicted in Figure 20, displays the contents of the system’s memory space and allows the user
to edit memory values. The leftmost column in the window gives a memory address, and the numbers at the top of
the window represent hexadecimal address offsets from that corresponding address.

In this figure, the address of the second word in the second row is 0x00000010 + 0x4 = 0x00000014. The
displayed contents of this memory location are 0x11000035, which is the machine code for the instruction

stwio 14, 0(r2)

If a program is running, the data values displayed in the Memory window are not updated. But, when the program
is stopped, the data values are automatically updated. They can also be updated by pressing the Refresh button.
By default, the Memory window shows only the contents of memory devices, and does not display any values from

Intel Corporation - FPGA University Program 19
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

+# Intel FPGA Monitor Program - Monitor_Tutorial : simple_program.srec [Paused]
File Edit Actions MWindows Help
O G+ @ dhd 0mk 3§

Project Files — % | Memory - % =
e | coosttrstcormetnoner[so] cueypees
BB simple_program.s [o
0x00000000  OOBFCG34 10800004  OOFFCO34 18001004
0x00000010 19000037 11000035  ODOIFFDO6  AB16625F
000000020 SOOEECOS — DO47E00T  7098D4ED  BOOFI0SD
0x00000030  S8BL70AA  DESFESID  B30AESSB  FEODFCOD
0x00000040  62Z9EGSD  70LF904l  D4EEDS3Z  9Z1EDE0E =5 0x00000000
0x00000050  70Z2FESE  SG1DE3LS  7205B46B  2037FCOD 6 0x00000000
000000060 AOGGL4L7  JCOSFZAS  4SADBLLF  B134F0D =7 0x00000000
0x00000070  BESSESCE  F206B301  FOZFFOOS  FIOPFEAF =2 0200000000
000000080  DEDEDLOF  TOOSB0AE  DESFELOF  FCOSCA3E i :ia gigggggggg
0x00000090  FS1FD3zA  BOLFSSSD 70077423  FS07E306 o 100000000
0x000000K0  7O6F700F  960FFZ4F  D9GESHS6  9957701D 12 0200000000
0x000000B0  761976AA  D3SDEO4D  SLOBFEZ?  0023C2Z0F 13 0%00000000
0x000000C0  BOOEDCOE — AD4SFS07  B24FF1SD  F30FEZ09 14 0%00000000
0x000000D0  T10EG0ZE  F7AFFE13  COSFPDAE  ZO0EBZCS ris 000000000
0x000000EQ  EE45700D  BOSDE22F  FS6E70F2  1OAAFESS ri6 0x00000000
0x000000F0  1627911F  B724EBOF  S40AC4ID 35776400 r17 0X00000000
0x00000100  FAEEDZAF  EADSA247 70845047  749DE04F riz 0x00000000
0x00000110  410EFCOS  FE43DE4D  BSODPOEF  FE1FTG4E rig 0x00000000
0x00000120  TOEB7SLF  FA465453  S4AFF92C  721B66DF = =20 0x00000000
o Il 5
Lal IO 5
Editor | Disassembly | Breakpoints , Memory | Watches | Trace | r23 000000000 Bl
Terminal — | Info & Errors - X
JTAG UART link established using cable "DE-Sof [USB-1]", device 2, INFO: Non-memory - Expansion JFL 0xE£200060 =
instance 0x00 INFO: Non-memory - Expansion_JP2 0x££200070
INFO: Non-memory - Interval Timer 0x££202000
INFO: Non-memory - Interval Timer 2 0x££202020
: Non-memory - Video_In Subsystem Video In DMR 0X££203060
014 E
[+
(4] D
Info & Errors / GDB Server | Debug / Variables |

Figure 20. The Memory window.

memory-mapped I/O devices. To cause the window to display memory-mapped I/O locations, click on the check
mark beside Query Devices, and then click Refresh. For example, set the slider switches to some pattern, press
Refresh, enter the address 0xFF200040 into the goro address box and then press Go. Figure 21 shows the display
we obtained when choosing the pattern 0x30F.

Memory

-
Goto address (hex or symbol name): FF2EIEIEI-'-1EI|| §u| Query Devices

0xFFZ00040 ooooosoF qooooooo ooooooon Qooooooa
0xFFZ00050 oooooaoa aoooooao ooooaaon aooooaoa
0xFFZ000a0 FFFFFFFF aoooooao ooooaaon aooooaoa

Figure 21. Displaying the I/O locations.

The color of a memory word displayed depends on whether that location corresponds to an actual memory device, a
memory-mapped I/O device, or is not mapped at all in the system. A memory location that corresponds to a memory
device will be colored black, as in Figure 20. Memory-mapped I/O is shown in blue color, and a non-mapped address
is shown in grey. If a memory location changed value since it was previously displayed, then that memory location
is shown in a red color.

20 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

Similar to the Disassembly window, it is possible to view different memory regions by scrolling using the vertical
scroll bar on the right, or by using a mouse scroll wheel. There is also a Goto address panel, which is analogous to
the Goto instruction panel discussed in Section 3.4. Note that in Figure 21 we reached the I/O device by typing the
address FF200040 in this panel.

As an example of editing a memory value, go to address FE200000 which is the address of LEDs. Double-click on
the memory word at this address and type the data value FFF. Press Enter on the computer keyboard, or click away
from the memory word to apply the edit. This should cause all LEDs to be turned on.

When accessing an I/O device, some reads may be destructive. Namely, after some register in the I/O interface is
read, its contents may no longer be valid. Therefore, it is not appropriate to read all I/O registers when refreshing the
information in the Memory window. Instead, it is prudent to read only the registers that are of specific interest. This
can be accomplished by left-clicking on the address of interest, then right-clicking and selecting Read Selected
Address Range to update the displayed contents. Several consecutive addresses can be selected by clicking on the
first address and dragging across the other addresses.

It is possible to change the appearance of the Memory window in a number of ways, such as displaying data as
bytes, half-words or words. The Memory window provides additional features that are described in more detail in
Appendix A of this document.

4 Working with Project Files

Project files store the settings for a particular project, such as the specification of a hardware system and program
source files. A project file, which has the filename extension .amp, is stored into a project’s directory when the
project is created.

The Monitor Program provides the following commands, under the File menu, for working with project files:

1. New Project: Presents a series of screens that are used to create a new project.
2. Open Project: Displays a dialog to select an existing project file and loads the project.

3. Open Recent Project: Displays the five most recently used project files, and allows these projects to be
reopened.

4. Save Project: Saves the current project’s settings after they have been modified by using the Settings com-
mand.

4.1 Modifying the Settings of an Existing Project

After a project has been created, it is possible to modify many of its settings, if needed. This can be done by clicking
on the menu item File > Edit Project > System Settings in the Monitor Program. This action will display the
existing system settings for the project, and allow them to be changed. Similarly, the program settings for the project
can be displayed and modified by using the command File > Edit Project > Program Settings. To change these

Intel Corporation - FPGA University Program 21
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

settings, the Monitor Program has to first be disconnected from the system being debugged. This can be done by

using the command Actions > Disconnect, or by clicking the &t icon.

5 Using the Monitor Program with a Nios® Il Evaluation License

In our discussion of Figure 11 in Section 3.1, we showed how the Monitor Program can be used to download a
prebuilt Nios II hardware system onto an FPGA board, when the Nios II processor has a license. It is also possible
to use the Monitor Program to debug hardware systems in which the Nios II processor includes only an evaluation
license. In this case it is necessary to download the hardware system onto the FPGA board by using the Programmer
tool provided in the Quartus Prime software, rather than using the Monitor Program for this purpose. The Quartus
Prime Programmer tool provides a pop-up window, shown in Figure 22, which indicates activation of the evaluation
license for the Nios II processor. This pop-up window has to remain open in order to maintain the evaluation license
for Nios II. As long as the pop-up window remains open, the Monitor Program can be used to compile and download
software programs into the hardware system.

OpenCore Plus Status

Click Cancel to stop using OpenCore Plus |P.

Time remaining: unlimited

Cancel

Figure 22. The Quartus Prime Programmer pop-up window.

6 Using the Terminal Window

Monitor Program’s Terminal window supports text-based input and output. To see its operation, create a new Mon-
itor Program project, called Monitor_Terminal. When creating the project, follow the same steps shown for the
Monitor_Tutorial project, which were described in Section 3.1. For the screen shown in Figure 7 set the program
type to Assembly Program, and select the sample program named JTAG* UART. The source code file for that pro-
gram is called JTAG_UART.s. It communicates using memory-mapped I/O with the JTAG UART in the DE1-SoC
Computer that is selected as the Terminal device in the screen of Figure 9.

Compile, load and run the program. The Monitor Program window should appear as shown in Figure 23. Click the
mouse inside the Terminal window. Now, any characters typed on the computer keyboard are sent by the Monitor
Program to the JTAG UART. These characters are shown in the Terminal window as they are typed, because the
JTAG_UART:s program echoes the characters back to the Terminal window.

22 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

# Intel FPGA Monitor Program - JTAG_UART : JTAG_UART.srec [Running]

File Edit Actions Windows Help

O Bé¢iE Phid 08k TG

Project Files — % | Disassembly — X | Registers -
[ Moritor_Tutorial Gotoinstruction| Address (he)orsymbolname| || Ga ey | el |
[ JTAG UART:s —l e 0x00000000
||| [zere oxonooaooa
1 0R00000000
et /% executable cof | |z2 0x00000000
.glebal  _start =3 0x00000000
start: o4 0x00000000
/* set up stack pointer +/ s 0x00000000
novia sp, SDRAM END - 3 s% starts from lard || |76 0x00000000

0x00000000

_atart:
0x00000000

0x00000000 orhi  sp, zero, 0xd00

000000004 addi  sp, sp, -0xd 2“2;;2;22;
=

0x00000000

novia 6, JTAG_UART_BASE 4% JTAG UART base 0x00000000)

0x00000008 orhi 6, zero, 0xFF20 000000000

000000000 addi  ré, r6, Ox1000 0x00000000

0x00000000

/% print a text string ¥/ 0x00000000

nowia 8, TEXT_STRING 0x00000000

0x00000010 orhi 18, zero, O0x0 0x00000000

0x00000014 addi  r3, 18, 0x88 0x00000000

0x00000000
0x00000000
0x00000000
0x00000000 -

Editor , Disassembly | Breakpoints | Memory | Watches | Trace

Terminal = | Info & Errors - X

JTAG UART link established using cable "DE-SoC [USB-1]", device 2, }: Non-memory - Fushbuctons 0x££200050

instance 0x00 Non-memory - Expansion JB1 Ox:
Hon-memory - Expansion_JP2 Ox
Non-memory - Interval Timer Oxff
Hon-memory - Interval Timer 2 Ox
Hon-memory - Video_In_Subsystem V

JTAG UART exarple code
>

20_In_DMA 0x££203060

Info & Errors | GDB Server | Debug | Variables

Figure 23. Using the Terminal window.

The Terminal window supports a subset of the control character commands used for a de facto standard terminal,
called the VT100* The supported commands are listed in Table 1. In this table <ESC> represents the ASCII
character with the code 0x1B.

7 Using C Programs

C programs are used with the Monitor Program in a similar way as assembly-language programs. To see an example
of a C program, create a new Monitor Program project called Monitor_Terminal_C. Use the same settings as for the
Monitor_Terminal example, but set the program type for this project to C Program. Select the C sample program
called JTAG UART. As illustrated in Figure 24, this program includes a C source file named JTAG_UART.c; it has
the same functionality as the assembly-language code used in the previous example. Compile and run the program
to observe its behavior.

The C code in JTAG_UART.c uses memory-mapped I/O to communicate with the JTAG UART. Alternatively, it is
possible to use functions from the standard C library stdio.h, such as putchar, printf, getchar, and scanf for this
purpose. Using these library functions impacts the size of the Nios II executable code that is produced when the C
program is compiled, by about 30 to 64 KBytes, depending on which functions are needed. It is possible to minimize
the size of the code generated for this library by checking the box labeled Use small C library in Figure 24. When
this option is used the library has reduced functionality. Some limitations of the small C library include: no floating-
point support in the output routines, such as printf, and no support for input routines, such as scanf and getchar.

Intel Corporation - FPGA University Program 23
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® II

For Quamm@ Prime 18.1

Character Sequence

Description

<ESC>[2J Erases everything in the Terminal window

<ESC>[7h Enable line wrap mode

<ESC>[71 Disable line wrap mode

<ESC>[#A Move cursor up by # rows or by one row if # is not specified

<ESC>[#B Move cursor down by # rows or by one row if # is not specified

<ESC>[#C Move cursor right by # columns or by one column if # is not spec-
ified

<ESC>[#D Move cursor left by # columns or by one column if # is not speci-
fied

<ESC> [#1;#2L Move the cursor to row #; and column #;

<ESC>[H Move the cursor to the home position (row 0 and column 0)

<ESC>[s Save the current cursor position

<ESC>[u Restore the cursor to the previously saved position

<ESC>[7 Same as <ESC> [ s

<ESC>[8 Same as <ESC> [u

<ESC>[K Erase from current cursor position to the end of the line

<ESC>[1K Erase from current cursor position to the start of the line

<ESC>[2K Erase entire line

<ESC>[J Erase from current line to the bottom of the screen

<ESC>[1J Erase from current cursor position to the top of the screen

<ESC>[6n Queries the cursor position. A reply is sent back in the format

<ESC> [#;; #2R, corresponding to row #; and column #,.

Table 1. VT100 commands supported by the Terminal window.

In Figure 24 the option Emulate unimplemented instructions is checked. This option causes the C compiler to
include code for emulating any operations that are needed to execute the C program but which are not supported by
the processor. For example, the Nios II Economy version does not include a multiply instruction, but the C program
may need to perform this operation. By checking this option, a multiply instruction will be implemented in software
(by using addition and shift operations).

24

Intel Corporation - FPGA University Program

March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

New Project Wizard *

Specify program details

Source files
First source file is used to determine the name of the binary program file.

C:/Desktop/Monitor_Tutorial/JTAG_UART.c Add...
C:/Desktop/Monitor_Tutorial/main.c

oo "~ remoe |
C:/Desktop/Monitor_Tutorial/JTAG_UART.h

C:/Desktop/Monitor_Tutorial/address_map_nios2.h

Down

r Program opti

Additional compiler flags: |-g -00 -ffunction-sections -fverbose-asm -fno-inline -mno-cache-volatile |

Additional linker flags: | |

[ Use small C library Emulate unimplemented instructions

Source files highlighted in blue are sample program files, which will be created in the project directory.

|<Back||\Nex‘t>\| ‘ Save HCancel‘

Figure 24. Settings for a C program.

7.1 Source Level Debugging

The Monitor program supports common source level debugging features such as step over, step into, step out, and
visualizing variables. Using the JTAG UART sample program project you created in the previous section, go to the
project settings (File > Edit Project ) and navigate to the Program Settings tab. In the Compiler Flags input box,
ensure that the optimization level is set to 0, by replacing -O, -O1, -02, or -O3 flag with -O0. An optimization
level of 0 allows the Monitor Program to read and display variables from memory. Figure 25 shows the Monitor
Program’s text editor. The editor will be disabled during the debug session, and re-enabled when the debug session
is exited. Now save the project (File > Save Project), and compile and load the program (Actions > Compile &
load).

7.1.1  Using Breakpoints

Once the program is loaded, navigate to the Editor window of the Monitor Program. Go to the File menu and select
File > Open... to open the C source file which contains the main function of you program (most likely main.c).

Once the program is loaded, toggle the breakpoint at a line of source code by clicking on the numbers to the left of
the source code text. If a breakpoint does not show up on the line similar to Figure 26, the line of source code likely
does not correspond to an instruction. If this happens, try choosing a different line.

Intel Corporation - FPGA University Program 25
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1

For Quartus® Prime 18.1

File Edit Actions

Windows  Help

O HeE Phd 2nl 0

Project Files o

X | Editor

= Monitor_Terminal
(1 1TAG_UART.c
[) JTAG_UARTh

-0 e

* function prototypss */
0id put_jtag (char) ;
whar get_jtag(void) ;

— X | Registers =

v

* It performs the foilowing:

= i. sends some example text strings to the JTAG UART
* 2. reads and echos character data from/to the JTAG UART

10 |int wain(void)

1
2
3
4
& | * This program demonstratss uss of the JTAG UART port in the DE0O-Sof ©
[
7
8
g

1|t

12 char text_string[] = "\nITAG UART exawple codel\n> \O";
13 char *str, o

14

15 /% print a text string */

18 for (str = text_string; *str != 0; ++str)

17 put_jtag (*str);

18

T

. 18
[diloriDmembly Breakpoints | Memory | Watches

- %

Trace

Info & Errors - X

>>Running preloader..

>»Preloader succesafully run.

Starting GDB Server.

Connection established to GDB server at localhost:3101
GDB server connmecticn Terminated.

Succesafully executed the HPS preloader.

Info & Errors /| GDB Server

File Edit Actions

Windows  Help

O o+ d PAd 200G 8O

Terminal

- %

Project Files - X | Editor = % | Registers - X
[= Monitor_Terminal r—‘"‘ﬂi“l X Reg Value
[ JTAG_UART.c 9 o[ = 000000000
(3 JTAG_UARTH 2era 0x00000000
Lo 10 |int wain(veid) - 0500000000
1|t r2 0x00000000
12 char text_string[] = "\nJTAG¢ UART exsmwple codeln> \0"; r3 000000000
13 char otz o ra 0x00000000
s 0x00000000
14 s 0x00000000
15 /# print a text string */ £7 0x00000000
18 for (str = text_string; *str != 0; ++str) rz zkggzgggzg
I x
" puc_jteg (*etr); r10 0x00000000
18 r11 0x00000000
18 /* read and echo characters */ r12 0x00000000
20 while (1} r13 0x00000000
P ¢ r14 0x00000000
r1s 0x00000000
[ ] © = get_gtag [ ); r1s 0%00000000
3 if (e = '\0Y) 17 0x00000000
24 put_itag (e]; r1e 0x00000000
- ) I r1s 0x00000000
r20 0x00000000
bl (= [222
.7 I | <o
Editor | Disassembly | Breakpoints / Memory | Watches | Trace r23 0x00000000 =

Info & Errors

instance 0x00

>

JTAG URRT 1ink established using cable "DE-SoC [USB-1]", device 2,

JTAS URRT example code

1
To| %

ro: - XL

INFO: Non-memory - Expansion JP1 OXE£200060

INFO: Non-memory - Expansion JP2 OX££200070

INFO: Non-memory - Interval Timer Ox££202000

INFO: Non-memory - Interval Timer 2 0x££202020

INFO: Non-memory - Video_In Subsystem Video In DMA DKIZ203060

Info & Errors | GDB Server | Debug | Varizbles

Figure 26. Setting a breakpoint in the editor view.

Once the breakpoint is set, continue the program by clicking the green arrow on the toolbar, or Actions > Continue.
Once the program halts, the Monitor Program should look similar to Figure 27. In the Disassembly view the source
level breakpoint is marked with a red square as in Figure 28. This differentiates source level breakpoints from in-
struction level breakpoints.

Intel Corporation - FPGA University Program

March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

File Edit Actions Windows Help
O s Phd 2onk 88
Project Files — % | Editor — X | Registers - X
[ Monitor_Terminal ["maine | Reg Value
[ JTAG_UART.c lpc 0x00000154 -
[) JTAG_UARTh | SRR E zero 0x00000000
0O i r1 0x00000000
12 char text_string[] = "\nITAG UART example codeln> \O"; r2 0x00000000
13 char *str, o 3 0200000020
ra 20
1 s 20
15 /* print a text string */ re 0X03FFFFFL
18 for [str = text string; *str != 0; ++str) r7 0x00000000
17 put_jtay (*str); re 0x00000000
. = rg 0x00000000
r10 0x00000000
19 /* read and echo characters */ ri1 0%00000000
0 while (1] r1z 0x00000000
21 { r13 0x00000000
® = get qtag [ 1: r1s 0x00000000
e 15 0%00000000
23 if (e != A0 r16 0x00000000
24 put_jtag (e); r17 0x00000000
25 ) r1e 0x00000000
2 | r1s 0x00000000
1 [r20 0x00000000
27 3] |y
L} D |5
Editor | Disassembly | Breakpoints / Memory | Watches | Trace r23 0x00000000 =
Terminal — 3| Info&Errors s
JTAG UART link established using cable "DE-Sof [USB-1]", device 2, INFO: Non-memory - Expansion JP1 0X££200060 =
instance 0x00 INFO: Non-memory - Expansion JP2 0xf£200070
INFO: Non-memory - Interval Timer 0x££202000
JI2G URRT example code : Non-memory - Interval Timer 2 0xf£202020
> Nen-memory - Video_In_Subsystem Video_In DMA OXEZ203060
JTAG UIRT example code a
>
Info & Errors | GDE Serve Debug | Variables

Figure 27. Hitting a breakpoint in the editor view.

FPGA Monitor Program - Menitor_ [Paused]

File Edit Actions Windows Help

O o+ d PAd 200G 8O

Project Files — % | Disassembly — % | Registers Y
[= Monitor_Terminal ‘ J— s S . I:l Reg Value
[ 1TAG_UART.c 0500000154
[ JTAG_UARTh char Fstr, c: zero 0x00000000
0 0x00000000
47 princ a vext string T 0x00000000
for [str - text_string; sate '= 0; +rate) 3 20
0x00000130 E0RFFTLT law  rz, -36(Ep) re
0x00000134 10800043 addi £z, £z, Oxl s
0x00000138  EOBFITLS ste 1z, -35(Ep) L OEOSTEEERL
0X00000136  EOEFF7L7 law  rz, -I6im) 1 0x00000000
000000140 10500007 ldbu  rz, 0{r2) z8 000000000
0x0000014d  10A0SFCC andi 2z, r2, OxFF 5 :iu zﬁgzgggzg
0x00000148 10502010 worixZ, 12, 0x80 &l i1 00000000
0x00000L4C  LOBFEO0S auai  rz, rz, -0x80 R 00000000
0x00000150 109FF0LE bne 2, zero, -0xd0 (0x00000L14) 13 1%00000000
put_jtag {¥str): r11 0x00000000
r1s 0x00000000
/7 read and echo characters %/ 16 0x00000000
while (1) 17 0x00000000
{ r1s 0x00000000
= ger_jtag ()7 r1g 0x00000000
Mox00000154 0000060 call  0x00000022 (0x00000088: get_jtag) = |e20 0%00000000
7
L IG5 |
Editor , Disassembly | Breakpoints / Memory | Watches | Trace r2s 0x00000000 =
Terminal — X | Info&Errors =
JTAG UBRT 1ink established using cable "DE-SoC [USB-1]", device 2, INFO: Non-memory - Expansion JF1 0xf£200060 =
instance 0x00 : Non-memory - Expansion JP2 Ox££200070
: Non-memory - Interval_Timer 0X££202000
JTAG UBRT example code : Non-memory - Interval Timer 2 0x££202020
> Non-remory - Video_In Subsystem Video In DMA 0xE£203060
JTAG UBRT example code

>

Figure 28. Source level breakpoint in the disassembly view.

7.1.2 Source Level Debugging Actions

Navigate back the editor view and perform a Step Into action by selecting Actions > Step Into, or by using the main
toolbar. This will step to the next line of source code to be executed. If the program steps into a function in another
file, the Monitor Program will open the file in a new tab and highlight the line.

Intel Corporation - FPGA University Program 27
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

Figure 29. Step Over, Step Into, Step Out toolbar icons

Next, perform a Step Out action by selecting Actions > Step Out, or by using the main toolbar. This will step out
of the current function by executing until the first line of source code after returning from the current function. The
Monitor Program will print an error to the Info & Errors window if it cannot step out of the current function. This
may occur if the program is currently in the main function, or if the function does not return. The step out function
is only available for C programs, it is not available for assembly programs.

The Step Over action (Actions > Step Over) moves to the next line of source code without stepping into functions.
Execution will continue to the next line of source code inside the current function.

7.1.3 \Variable Values

Variables = #

Name Type Value

Ellocals
c char ¥
str char™ Ox3FFFFEF
[Htext _string char[28] JTITAG UART example co...

Figure 30. Monitor Program Variable View.

The Monitor Program’s Variables view displays the value of C program variables when the program is halted. Some
variable types such as Arrays, Typedefs, Structures and Unions will be expandable in the view. Use the + button to
expand and view the variables contents. Right clicking on a variable presents the options to jump to the declaration
of the variable, and the display format of the variable.

Go To Declaration will open the file the variable is declared in and scroll to the declaration line number.
Display As... will change the format in which the variable is displayed.

Variable values are only available with an optimization level of 0 (gcc command line argument -O0). For instructions
on how to change the programs optimization level, see the first paragraph of this section.

7.1.4 Enabling and Disabling Source Level Debugging

The source level debugging feature of the Monitor Program is a beta feature in the current release. The feature
can be enabled and disabled at any point by going to the Edit menu and selecting Edit > Enable Source Level
Debugging, or Edit > Disable Source Level Debugging, depending on whether the feature is currently disabled
or enabled respectively.

28 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

7.1.5 Setting the Optimization Level in Programs with Driver Support.

To set the optimization level for a Program with Driver Support (or BSP), first create a TCL script in the base
directory of the project (the same directory as your AMP project file). The TCl file should have a .zc! file extension,
for example config.tcl. Open this file in a text editor and add the single line:

set_setting hal.make.bsp_cflags_optimization -O0

Where the argument -OO0 above is the desired optimization level. Now open the project settings in the Monitor
Program and navigate to the Program Settings tab. In the BSP settings Tcl script input box (shown in Figure 31)
enter the path to the TCL script you just created, or use the Browse button to search for it.

# Project Settings Wizard X

File Settings | System Settings |, Program Type " Program Settings | Connection Settings |

Specify program details

Source files

First source file is used to determine the name of the binary program file.
C:/tempy/TESTFOLDER/MEDIA_HAL/media_HAL.c Add...
Down
- Program options
BSP settings Tel script (optional):
[ | [ Browse...|

Figure 31. Adding a TCL script to a Program with Driver Support.

Click the Finish button to close the dialog and save and compile the project. The optimization level should be set for
both the generated (BSP) files, as well as your project files.

8 Using the Monitor Program with Interrupts

The Monitor Program supports the use of interrupts in Nios II programs. Two examples of interrupts are illustrated
below, using assembly-language code and using C code.

8.1 Interrupts with Assembly-Language Programs

To see an example using interrupts with assembly-language code, create a new Monitor Program project called
Monitor_Interrupts. When creating the new project set the program type to assembly language and select the sample
program named Interrupt Example. Figure 32 lists the source files for this sample program. The main program for

Intel Corporation - FPGA University Program 29
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

the example is the file interrupt_example.s, which initializes some 1/O devices and enables Nios II interrupts. The
other source files provide the reset and exception handling for the program, and two interrupt service routines.

New Project Wizard x

Specify program details

Source files
First source file is used to determine the name of the binary program file.

C:/Desktop/Monitor_Tutorial/interrupt_examples Add...
C:/Desktop/Monitor_Tutorial/exception_handler.s _
C:/Desktop/Monitor_Tutorial/interval_timer_ISR.s

C:/Desktop/Monitor_Tutorial/pushbutton_ISRs
C:/Desktop/Monitor_Tutorial/globals.s
C:/Desktop/Monitor_Tutorial/address_map_nios2.s

Down

Program opti
{Startsymbol: _start | ‘

‘Source files highlighted in blue are sample program files, which will be created in the project directory. ‘

|<Back|”Nex‘t>‘| ‘ Save HCancel‘

Figure 32. The source files for the interrupt example.

Figure 33 shows the memory settings for this program. The reset vector of the Nios II processor is at address 0x0
and the exceptions vector is at address 0x2 0. Enough space has to be left between the exceptions vector location and
the text section of the program to accommodate the exceptions processing code, which corresponds to the assembly
language code in the file exception_handler.s. Starting the main program at address 0x200, as shown in the figure,
leaves enough space to accommodate the exception processing code for this example.

Compile and load the program. Then, scroll the Disassembly window to the label EXCEPTION_HANDLER, which
is at address 0x00000020. As illustrated in Figure 34, set a breakpoint at this address. Run the program. When
the breakpoint is reached, single step the program a few more instructions to determine the cause of the interrupt.
The source of the interrupt is a circuit in the DE1-SoC Computer called the interval timer. This circuit provides the
ability to generate an interrupt whenever a specified time period elapses. Single step the program until the processor
enters the interrupt-service routine for the interval timer. This routine first clears the timer register that caused the
interrupt, so that an interrupt request will not be raised immediately again, and then performs other functions needed
for the program.

Finally, remove the breakpoint that was set earlier, at address 0x00000020, and then select the Continue command
to run the program. Observe that the program displays a rotating pattern across the HEX displays on the DE1-SoC

30 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

New Project Wizard *
Specify program memory settings
M Y opti

Here you can specify section names and their start and end addresses. These sections will be used by the
linker to place code and data at the specified addresses. To ensure correct use of the section names by

the linker, the names must match those identified by the assembler directives, such as .text.
Linker Section Presets: ‘Exceptions v|

Section Name | Memary Device Address Range ‘

.reset SDRAM 0x00000000 - 0x0000001F

.exceptions SDRAM 0x00000020 - Ox000001FF

.text SDRAM 0x00000200 - OxO3FFFFFF

| < Back|| Next > | Save ‘ Cancel ‘

Figure 33. Memory offset settings for the interrupt example.

board. The direction of rotation can be changed by pressing the pushbuttons KEY; or KEY> on the DE1-SoC board,
and the pattern can be changed to correspond to the values of the slider switches by pressing KEY .

8.2 Interrupts with C Programs

To see an example of a C program that uses interrupts, create a new project called Monitor_Interrupts_C. When
creating this project, set the program type to G Program and select the sample program named Interrupt Example;
this program gives C code that performs the same operations as the assembly-language code in the previous example.
The source files for the C code are listed in Figure 35. The main program is given in the file interrupt_example.c, and
the other source files provide the reset and exception handling for the C program, as well as two interrupt-service
routines. Complete the steps for creating the project, and then compile and load it.

Set a breakpoint at the address 0x00000020, which is the exception vector address for the Nios II processor. Also,
scroll the Disassembly window to the function called interrupt_handler. As illustrated in Figure 36, set another
breakpoint at this address. Now, run the program to reach the first breakpoint, at address 0x00000020. The code
at this address, which is found in the file exception_handler.c, reads the contents of a control register in the Nios II
processor to determine if the interrupt is caused by an external device, then saves registers on the stack, and then
calls the interrupt_handler function.

Intel Corporation - FPGA University Program 31
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

Monitor Program

File Edit Actions Windows Help
8 meE HPhd 00k 9
Project Files — X | Disassembly - X
(= Interrupt_Example Goto instruction| Address (hex) or symbol name: EXCEFTICN_HANDLER
[ interrupt_example.s -
] exception_handler.s
[ pushbutton_ISR.s EXCEPTION HANDLER: rl 000000000
D) interval timer.s @0x00000020  DEFFFCOA addi  sp, sp, -0xl0 rz 0200000000
0200000024 DEOOOOLS st et, 0(=p) r3 0200000000
0x00000028 00313134 rdctl  et, ipending r4 0200000000
0x0000002C  COOO0LZ6E bey et, zero, Ox4 (0x00000034: SKIP Ei DEC) r5 0x00000000
0x00000030  EFTFFE0A addi ea, ea, -Oxd ré 0x00000000
000000001
SEIP_EA_DEC: E"Eggggggg
0x00000034  DFA00LLS st ea, 4(sp) nxnnnnnnnn
x
0x00000038  DFCO0Z15 st ra, &(sp) 00000000
0x0000003C  DDE00SLS st r2z, 12(sp) De0000004c
00000040 00315134 rdctl  er, ipending 113 éxéﬁénnnnn
0x00000044  COOOOLLE bae et, zero, Ox4 (0x0000004C: CHECE LEVEL 0) 12 0x00000000
r15 0xFF200050
HOT_EI: rlé 0xFF202000
0x00000048 00000706 br 0x1C (0xD000006E: END_ISR) r17 0x00000000
ria 0200000000
CHECK_LEVEL_D: r13 0200000000
0x0000004C  CSE00040 andi  rzz, et, Oxl = |z20 0200000000
il o |2 0200000000
r22 0200000000
Editor , Di: | Breakpoints | Memory | Watches /| Trace | v23 0%00000000 =
Terminal — X | Info & Errors - X
JTAG UART link established using cable "DE-SoC [USB-1]", device 2, INFO: Non-memory - Expansion JP1 0x££200060 =]
instance 0x00 INFO: Non-memory - Expansion_JF2 0x££200070
INFO: Non-memory - Interval Timer OX££202000
JIAG TART example code INFO: Non-memory - Interval Timer_2 Ox££202020
> INFO: Non-memory - Video In Subsystem Video In DMA 0x££203060
Program break B 0
GDB Server | Debug / Variables

Figure 34. The exception handler.

Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

New Project Wizard *

Specify program details

Source files
First source file is used to determine the name of the binary program file.

C:/Desktop/Monitor_Tutorial/interrupt_example.c Add...
C:/Desktop/Monitor_Tutorial/exception_handler.c _
C:/Desktop/Monitor_Tutorial/interval_timer_ISR.c

C:/Desktop/Monitor_Tutorial/pushbutton_ISR.c
C:/Desktop/Monitor_Tutorial/nios2_ctrl_reg_macros.h

C:/Desktop/Monitor_Tutorial/glabals.h
C:/Desktop/Monitor_Tutorial/address_map_nios2.h

Down

r Program opti

Additional compiler flags: |-g -01 -ffunction-sections -fverbose-asm -fno-inline -mno-cache-volatile |

Additional linker flags: | |

[ Use small C library Emulate unimplemented instructions

Source files highlighted in blue are sample program files, which will be created in the project directory.

| < Back| HNex‘t >\| ‘ Save ‘ ‘ Cancel ‘

Figure 35. The source files for the C code interrupt example.

void interrupt handler (woid)
{

interrupt_handler:

000000540 addi sp, sp, -0x8
O0x00000544 stw ra, 4(sp)
Ox00000548 stw rle, O(sp)

int ipending;
WIOSZ_READ TPENDING{ipending) @

O0x0000054C rdctl rl6, ipending

if { ipending s Oxl ) /7 interwal timer is interrupt level 0
0x000005E0 andi rz, rld, Oxl
O0x000005B4 hey r2, zero, Ox4 (0x000005BC)

i
interval timer_isr( );
0x000005ES call 000000176 (0x000005D3: interval timer_isr)
B

Figure 36. The interrupt handler.

Press Actions > Continue in the Monitor Program to reach the second breakpoint. Single stepping the program a
few more instructions shows that the interrupt is caused by the interval timer in the DE1-SoC Computer, as discussed
in the previous example. Additional single stepping causes the processor to enter the interrupt-service routine for
the interval timer, as depicted in Figure 37. This routine first clears the timer register that caused the interrupt, and
then performs other functions needed for the program. Finally, clear both breakpoints that were set earlier, at address

Intel Corporation - FPGA University Program 33
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

0x00000020 and interrupt_handler, and then run the program,; it displays a rotating pattern on the HEX displays
of the DE1-SoC board, as discussed in the previous example.

wolatile int * interval_timer_ptr = {int *) TNTERVAL_TTMER_EAZE;:

wolatile int * HEX3_HEX0D_ptr = iint *) HEX3_HEXO_BASE; 7 HEX3_HEXO address

wolatile int * HEX7?_HEX4 prr = (int *) HEX7_HEX4 BASE: J/ HEXT_HEX4 address

#i{interval timer ptr) = 0; /4 Clear the interrupt

interval timer ise:
0x000005DE orhi rZ, zero, OxFFz0

0x000005DC addi rz, rZ, O0xzZ000
0x000005E0 stwio zero, 0(r2)

Figure 37. The interrupt service routine for the interval timer.

9 Working with Windows and Tabs

It is possible to rearrange the Monitor Program workspace by moving, resizing, or closing the internal windows
inside the main Monitor Program window.

To move a particular window to a different location, click on the window title or the tab associated with the window,
and drag the mouse to the new location. As the mouse is moved across the main window, the dragged window will
snap to different locations. To detach the dragged window from the main window, drag it beyond the boundaries
of the main window. To re-attach a window to the main window, drag the tab associated with the window onto the
main window.

To resize a window, hover the mouse over one of its borders, and then drag the mouse. Resizing a window that is
attached to the main window will cause any adjacent attached windows to also change in size accordingly.

To hide or display a particular window, use the Windows menu. To revert to the default window arrangement,
simply exit and then restart the Monitor Program. Figure 38 shows an example of a rearranged workspace.

34 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

# Intel FPGA Monitor Program

File Edit Actions Windows Help
O RSB 4L Aipm TG
Project Files — X | Breakpoints — X | Disassembly — X | Registers

Goto mstruction| Address e orsymboiname| | &0 RegValud

- X

Lo

[4] L
Editor , Disassembly | Memory | Watches | Trace /|

Terminal = | Info & Errors x®

Info & Errors | GDB Server | Debug | Variables |

Figure 38. The Intel FPGA Monitor Program with a rearranged workspace.

10 Appendix A

This appendix describes a number of Monitor Program features that are useful for advanced debugging or other
purposes.

10.1  Using the Breakpoints Window

In Section 3.6 we introduced instruction breakpoints and showed how they can be set using the Disassembly window.
Another way to set breakpoints is to use the Breakpoints window, which is depicted in Figure 39. This window
supports three types of breakpoints in addition to the instruction breakpoint: read watchpoint, write watchpoint, and
access watchpoint, as follows:

* Read watchpoint - the processor is halted when a read operation is performed on a specific address.
* Write watchpoint - the processor is halted when a write operation is performed on a specific address.

* Access watchpoint - the processor is halted when a read or write operation is performed on a specific address.

In Figure 39 an instruction breakpoint is shown for the address 0x00000018. This corresponds to an address in
simple_program.s. In Section 3.6 we showed how to create such an instruction breakpoint by using the Disassembly
window. But we could alternatively have created this breakpoint by right-clicking in a grey box under the label
Instruction breakpoint in Figure 39 and then selecting Add. A breakpoint can be deleted by unchecking the box
beside its address.

Intel Corporation - FPGA University Program 35
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

# Intel FPGA Monitor Program - Monitor_Tutorial : simple_program.srec [Paused]

File Edit Actions Windows Help
8 meE HPhd 200k 9
Project Files — % | Breakpoints — X | Registers - X
— Instruction brezkpoint: Reg Value
| Address | Instruction | Condition pc 000000000 3
0x00000018he -0xC (0x00000010: LOOP) Z=EE 0x00000000
r1 0x00000000
— Read watchpoint: rz 0xFF200000
| Address 3
x4
— Write watchpoint: 5 0x00000000
|| Addres: r6 0x00000000
=7 0x00000000
— Access watchpoint: re 0x00000000
|| Addres: rg 0x00000000
r10 0x00000000
— Source breakpoint: r11 0x00000000
| File Mamd Line Number r12 0%00000000
r13 0x00000000
— Temporary instruction breakpoint: r1a 0x00000000
|| Addres: r1s 0x00000000
r16 0x00000000
— Run until: r17 0x00000000
Condition rig 0x00000000
— r19 0x00000000
r20 0x00000000
r21 0x00000000
r22 0x00000000
Editor / Disassembly Braakpomts/ MsmoijatchESI Trace | r23 0x00000000 =
Terminal — % | Info & Ermors - %
JIAG UART link established using cable "DE-SoC [USB-1]", device 2, ): Non-memory - Expansion JPL OEE =
instance 0x00 ): Non-memory - Expansion_JP2 Ox
): Non-memory - Interval Timer OXEE
): Non-memory - Interval Timer 2 Ox:
Non-memory - Video_In Subsystem Video_In DMA 0xf£203060
stoppe 0014
Info & Errors ] GDB Server | Debug | Variables |

Figure 39. The Breakpoints window.

Setting a read, write, or access watchpoint is done by right-clicking on the appropriate box in Figure 39 and speci-
fying the desired address.

The Monitor Program also supports a type of breakpoint called a conditional breakpoint, which triggers only when
a user-specified condition is met. This type of breakpoint is specified by double-clicking in the empty box under
the label Condition in Figure 39 to open the dialog shown in Figure 40. The condition can be associated with an
instruction breakpoint, or it can be a stand-alone condition if entered in the Run until box in the Breakpoints window.
As an example, we compiled and loaded the simple_program project. Then, we entered the condition r4 == 5.
The condition causes the breakpoint to trigger only if register r4 contains the value 5. Thus, running this program
causes the LEDs to display the current state of the slider switches as these switches are set to different patterns. But,
when the selected pattern is 0x005, the conditional breakpoint will stop the execution of the program.

Note that if a stand-alone condition is entered in the Run until box, then the Run button associated with this box
must be used to run the program, rather than the normal Actions > Continue command. The processor runs much
more slowly than in its normal execution mode when a conditional breakpoint is being used.

10.2 Working with the Memory Window

The Memory window was shown in Figure 20. This window is configurable in a variety of ways:

36 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1

For Quartus® Prime 18.1

Run Until Expression ﬁ

Syntax
Register values:
pS rl r2; ...

Number formats:
decmal: ###
hexadedmal: 0x==#
octal: 0z
binary: Ob###

Operators:
==, 1=, <, = ==, == 84 ||
o T %R

Accessing memory:
mem&({ address ): byte value at address

mem32{ address ): word value at address

mem 16{ address ): half-word value at address |

4 =35

Cancel

Figure 40. The Conditional Breakpoint dialog.

* Memory element size - the display can format the memory contents as bytes, half-words (2-bytes), or words
(4-bytes). This setting can be configured by right-clicking on the Memory window, as illustrated in Figure 35.

Ox00000000
Ox00000010
0x00000020
0x00000030
0x00000040
0x00000050
0x00000060
0x00000070
0x00000080
0x00000090
0x0000004D
0x000000ED
0x000000Co
0x000000D0
0x000000ED
0x000000FD
0x00000100
0x00000110
O0x00000120

00B
190 Read Selected Address Range

09F

DFSJ View as

4EE .

138 MNumber of words per line 4
1F5  Number format ’
2F3

20D Display order 4
08F

BFF Switch to character mode

AEE

28T Show equivalent ASCII characters
ZFE

2FSl Goto memory address...

6FD

10D Memory fill...

C7D L

A Load file into memory...

Byte (1-byte)
Half-word (2-bytes)
* Word (4-bytes)

Figure 41. Setting the memory element size.

e Number of words per line - the number of words per line can be configured to make it easier to find memory
addresses, as depicted in Figure 42.

* Number format - this is similar to the number format option in the Register window described in Section 3.7,
and can be configured by right-clicking on the Memory window.

* Display order - the Memory window can display addresses increasing from left-to-right or right-to-left.

Intel Corporation - FPGA University Program

March 2019

37


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1

For Quartus® Prime 18.1

Ox00000000 oo
Ox00000010 194

Read Selected Address Range

0x00000020 09K
0x00000030 0Fg
0x00000040
0x00000050
0x00000060 1Fj
0x00000070 ZF3
0x00000080 2D

View as 4

MNumber of words per line

Number format 4

0x00000090 0GH
0x0000004D EFH

1
2

Display order 4 m
8

Switch to character mode

0x000000ED AEE
0x000000Co ZGH
0x000000D0 ZFE

Show equivalent ASCII characters

0x000000ED ZFg
0x000000FD 6FT
0x00000100 1D
0x00000110 C7h
O0x00000120 OAF

Goto memory address...

Memory fill...

Load file into memory... I

Figure 42. Setting the number of words per line.

10.2.1 Character Display

The Memory window can also be configured to interpret memory byte values as ASCII characters. This is useful if
one wishes to examine character strings that are stored in the memory. For this purpose it is convenient to view the
memory in bytes and characters simultaneously so that the characters appear in the correct sequence. This can be
accomplished by clicking the Switch to character mode menu item, as illustrated in Figure 43. A sample display

in the character mode is shown in Figure 44.

Ox00000000
Ox00000010
0x00000020
0x00000030
0x00000040
0x00000050
0x00000060
0x00000070
0x00000080
0x00000090
0x0000004D
0x000000ED
||0xx000000C0
0x000000D0
0x000000ED
0x000000FD
0x00000100
0x00000110

AennAnnT 20

View as
MNumber of words per line
Number format

Display order

Switch to character mode

Show equivalent ASCII characters

Goto memory address...

Memory fill...

Load file into memory...

Figure 43. Switching to the character mode.

It is possible to return to the previous memory view mode by right-clicking and selecting the Revert to previous

mode menu item.

38

Intel Corporation - FPGA University Program

March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

Memaory - X
Goto address (hex or symbol name): ﬂ"JfJEfJfJ"J"J||:| Query Devices
[a]
000020000 6l 62 63 64 65 66 67 65 69 64 6B &6C el 6E abcd efogh ijk1l mnop
00020010 71 72 73 74 75 76 717 78 79 74 7B C 31 32 qgr st WV WX ¥z il 1234
0x000Z0020 FF 6B B3 DF 7F F§ 97 FY D7 4D EF 70 Fl1 E2 OO0 o3>0 OoMOp oo _0o
0x00020030 DE F9 DF 38 94 F5 D3 ES Fa FF 79 €D D3 DeE ooanos 00 | OO0 v n ooodeE
Mx000zZ0040 El FD' FE EF BF D5 Fg a4l ZE BS D4 E3 EQ FE oooao oooao .00 Too -
000020050 37 BB 3F FE E3 8B 6E ED BE 84 ZE 77 TE 25 T0¢=#0 “kns oh+w ~ % 0 ~
000020060 5D ER F7 F& 95 E1 EE 5F DF E3 63 &6 DF &aC ]+00 1f£c ¢ Orct O0l=20
0x00020070 4d BZ 4B FF 59 BS EBEO FE CE §9 65 EF Fi 4D oorKQ iooano o)kO EIH‘“EIﬁ
0x00020080 FC EE FDI' FF Da YF 74 DD 5D B3 ED SE F? 1E =000 u] t ]Onw u] oad
Ox00020090 76 hA C3 29 74 DB AL 6F 13 75 F5 EF 79 E7 wZ 0 tO00ao u0oano v OO0
00020040 F3 Fo DF &F 7B BE D& EF 7C FF 7I» 5F 1C 5F ooow {ooao 1ol _ _ono
Ox000Z00E0 F7 FF EE CE D7 BF LOF D5 2D 65 D4 DE §F 62 oo-0 oooano -e00O TbaJ0
Ox000200C0 47 §3 3JE AF &1 35 D& 6D A4F D3 45 SE a7 F7 o%:=0 O50mn ooo” wozEod
0x000Z0000 JE E1 li 7E D5 C2 FD 71 56 56 FE 5F E4 EY >0 - ooodaqg W o o_ ooao -~
0x000Z00E0D &F EY FD 07 7F BE7 59 64 77 F? 6D F7 ED &C o0 ovd wiOn0O o108
Mx000200F0 34 67 DA BE Fi D7 94 YF 77 CE SE 3F L6 B4 rgOfE oo+d wOo" oz voo ||
0 B g — - . ol

Editor / Disassembly / Breakpoints , Memory | Watches

Figure 44. Character mode display.

10.2.2 Memory Fill

Memory fills can be performed in the Memory window. Click the Actions > Memory fill menu item or right-click
on the Memory window and select Memory fill. A Memory fill panel will appear on the left side of the Memory
window. Simply fill in the desired values and click Fill.

10.2.3 Load File Data into Memory

Data stored in a file can be loaded into the memory by using the Memory window. This feature is accessed by
selecting the command Actions > Load file into memory or by right-clicking on the Memory window. The Load
file panel will appear on the left side of the Memory window, as illustrated in Figure 45, to allow the user to browse
and select a data file. The user provides a base address in memory where the data should be stored.

The format of these files is illustrated in Figure 46. The file consists of any number of lines, where each line
comprises a comma-separated list of data values. Each data value is expressed as a hexadecimal number with an
optional — sign. Two additional parameters can be specified: the value of the delimiter character (comma is the
default), and size in bytes of each data value (1 is the default).

10.3 Setting a Watch Expression

Watch expressions provide a convenient means of keeping track of the value of multiple expressions of interest.
These expressions are re-evaluated each time program execution is stopped. To add a watch expression:

1. Switch to the Watches window.

2. Right-click on the gray bar and click Add, as illustrated in Figure 47.

Intel Corporation - FPGA University Program 39
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1

For Quamm@ Prime 18.1

Memory

Gﬂtnaddmﬁs(hexnrsvmbnlnamek|

puadiie Hide || 00000000
Select a file: 000000010
100000020

1%00000030

File type: 000000040
100000050

Start address (hex):l:l 000000060
100000070

Ox00000080
00000090
000000040
O0x000000B0
Ox000000C0
000000000
Ox000000ED

Es9F100C
EAFFFFFC
aogoooon
S5555555
E49E6023
F59F2033
FZA481FF
CSSE4LEA
B369657C
FFE01012
000pDEss
CEAEFFF?
AEIES3AZ
TELABL3C
Q7FDETEF

Es9Fzo0c
FFzOo0ono
oooooano
SE555555
OB0OOO014
ED210043
EaCo00l4
53554067
OEG5646F
FFFF5204
004490B4
DEDEE7D7
EDSAZ531
11FDEZDS
G6459E77F

Es923000
FFzooo4n
Qooooosn
55555555
ES330520
E3l0E2912
E3a08047
65205456
04z0213E
Cc4z41100
46400664
DEDASS3D
SEAIDTFF
SEFE4G56
F76DE777

Esglsono
aooooano
aoooooono
55555555
E1ZFFF94
4a000103
E1ZFFFLF
T16DE5TA
08900075
10000250
00s44c00
SCAANZEF
8587F757
EBADE7F4
Z6FFECED

[

— X
"J||:| Query Devices

[«

Editor | Dl;a;;embl},r)'r Breakpoints Memoryj Watche;)'rTracE

Figure 45. The Load file panel.

1,-1,2,-2

88,11,22,33
1044,2055,3066,4077
10000088 ,20000099,300000aa,4000080bb

Figure 46. A Delimited hexadecimal value file.

Watches

Expression

Walug

Figure 47. The Watches window.

3. The Edit Watch Expression window will appear, as shown in Figure 48. The desired watch expression can then
be entered, using the syntax indicated in the window. In the figure, the expression mem32 (sp) is entered,
which will display the value of the data word at the current stack pointer address.

4. Click Ok. The watch expression and its current value will appear in the table. The number format of a value
displayed in the watch expression window can be changed by right-clicking on the row for that value. As the
program being debugged is repeatedly run, the watch expression will be re-evaluated each time and its value

will be shown in the table of watch values.

10.4 The GDB Server Panel (Advanced)

To see this panel, select the GDB Server panel of the Monitor Program. This window will display the low-level
commands being sent to the GDB Server, used to interact with the HPS system on the DE1-SoC board. It will also
show the responses that GDB sends back. The Monitor Program provides the option of typing GDB commands and
sending them to the debugger. Consult online resources for the GDB program to learn what commands are available.

40

Intel Corporation - FPGA University Program

March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

Edit watch expression X
Syntax
Register values:
10, 11,12, ...
Number formats:
decimal: ###
hexadecimal: Ox###
octal: 0###
binary: 0b###
Operators:
===, %, >, <=, 2=, 88 ||
+Hu 5%
Accessing memory:
memB(address }: byte value at address
mem15( address ): haif-word value at address
mem32( address ); word value at address
mem32 (sp)

Figure 48. The Edit Watch Expression window.

11 Appendix B - Using Device Drivers (Advanced)

Intel’s development environment for Nios II programs provides a facility for using device driver functions for the
I/O devices in a hardware system. This facility, which is called the hardware abstraction layer (HAL), is supported
by the Monitor Program. Using device driver functions is not recommended for beginning students, and is intended
for more advanced users.

To see an example of code that uses device driver functions create a project called Monitor_HAL. Select the DE1-
SoC Computer system. Set the program type to Program with Device Driver Support, check Include a sample
program with the project, and select the sample program named Media. The source file for this sample program is
called media.c. When creating this project, the New Project Wizard does not display the screen for choosing memory
settings, such as the one in Figure 33. This is because the HAL automatically chooses the necessary memory settings
for projects that make use of device drivers.

The media.c program communicates with I/O devices by making calls to device driver functions, rather than using
memory-mapped I/O as has been done in previous examples in this tutorial. To see some examples of such function-
calls, examine the source code in the file media.c. It calls device driver functions for the audio devices in the
DE1-SoC Computer, the VGA output port, the PS/2 port, and parallel ports. The device driver functions for each
of these devices are defined in include files that are specified at the top of the media.c file. The set of device driver
functions provided for an IP core is specified as part of the documentation for that IP core.

Compile and load the program by using the command Actions > Compile & Load. The Monitor Program auto-
matically compiles both the media.c program and all device drivers that it uses. In subsequent compilations of the
program, only the media.c code is compiled.

Run the program. It performs the following:

* Records audio for about 10 seconds when KEY[1] is pressed. LEDR][0] is lit while recording.

Intel Corporation - FPGA University Program 41
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

* Plays the recorded audio when KEY[2] is pressed. LEDR[1] is lit while playing.
* Draws a blue box on the VGA display, and places a text string inside the box.

» Shows on the HEX displays the last three bytes of data received from a device connected to the PS/2 port.

More details about developing programs with the Monitor Program that use HAL device drivers can be found in
the tutorial Using HAL Device Drivers with the Intel FPGA Monitor Program, which is available in the University
Program section of Intel’s website. More information about HAL can be found in the Nios Il Software Developer’s
Handbook.

42 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

12 Appendix C - Running Multiple Instances of the Monitor Program (Advanced)

In some cases it may be useful to run more than one instance of the Monitor Program on the same computer. For
example, the selected system may contain more than one processor. An instance of the Monitor Program is required
to run and debug programs on each available processor. As described in Section 3.1, it is possible to select a
particular processor in a system via the Processor drop-down list in the New Project Wizard and Project Settings
windows.

The Monitor Program uses the GDB Server to interact with the HPS system, and connects to the GDB Server using
TCP ports. By default, the Monitor Program uses port 2399 as the base port, and to connect to each processor in a
system the Monitor Program will attempt to use a port located at a fixed offset from this base port. For example, a
single system consisting of four processors corresponds to ports 2399-2402.

However, the Monitor Program does not detect any ports that may already be in use by other applications. If the Mon-
itor Program fails to connect to the GDB Server due to a port conflict, then the base port number can be changed by
creating an environment variable called ALTERA_MONITOR_DEBUGGER_BASE_PORT and specifying a different
number.

It is also possible to have more than one board connected to the host computer. As described in Section 3.1, a
particular board can be selected via the Host connection drop-down list in the New Project Wizard and Project
Settings windows. In this case, a separate instance of the Monitor Program is needed to interact with each processor
on each physical board. By default, the Monitor Program assumes a maximum of ten Nios II processors per board.
This means that ports 2399-2408 are used by the Monitor Program for the first board connected to the computer, and
the first processor on the second board will use port 2409.

It is possible to specify a different value for the maximum number of processors per Nios II hardware system by
creating an environment variable called ALTERA_ MONITOR_DEBUGGER_MAX_PORTS_PER_CABLE and speci-
fying a different number. This is useful if a system contains more than ten Nios II processors. It is also useful if a
port conflict exists and none of the systems contain ten or more processors. In this case, decreasing this number (in
conjunction with changing the base port number) may provide a solution.

Intel Corporation - FPGA University Program 43
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

13 Appendix D - Examining the Instruction Trace (Advanced)

An instruction trace is a hardware-level mechanism to record a log of all recently executed instructions. The Nios II
JTAG Debug Module has the instruction trace capability, but only if a Level 3 or higher debugging level is selected
in the SOPC Builder or Platform Designer configuration of the JTAG Debug Module (See the Nios II Processor
Reference Handbook, available from Intel, for more information about the configuration settings of the JTAG Debug
Module). If the required JTAG Debug Module is not present, a message will be shown in the Info & Errors window
of the Monitor Program after loading a program, to indicate that instruction trace is not available.

The Trace feature is disabled by default. To enable the trace feature, go to the Trace window, right click inside the
window, then select Enable Trace. To view the instruction trace of a program, go to the Trace window after pausing
the program during execution. As shown in Figure 49, the instructions are grouped into different colored blocks
and labeled alphabetically. The number of times each instruction block is executed is shown beneath its alphabetical
label.

Trace -

«

0x000004c8 stw rls, 0{rlé)
0x000004ce law rld, 0(rls) E
0x000004d0 bne rl4, rl5, 0x30 (0x00000554: SHOW_ERROR)
0x000004d4 addi rl6, rl6, O F
0x000004d8 buye rl?, rl6, -0x28 (0x000004b4: MEM LOOP)

MEM_LOOP: 3
0x000004b4 beq et, zero, Ox4 (0x000004bc: SKIP_NOP)
0x000004b8 add Zero, Zero, Zero H
0x000004bc call 0x0000015e (0x00000578: UPDATE_ HEX DISPLAY)

UPDATE_HEX_DISPLAY:
0x00000578 addi sp, sp, -0x24
0x0000057c stw ra, 0(sp)
0x00000580 stw fp, 4(sp)
0x00000584 stw rl5, &isp) E
0x00000588 stur 16, 12(sp) DI C )
0x0000058c stw rl7, 16{sp)
0x000005%0 stw rld, 20(sp)
0x00000594 stw rl9, Z4(sp)
0x00000598 stw rz0, Z8(sp) I
0x0000059%c stw rzZl, 3Z(sp)
0x000005a0 addi fp, sp, OxzZd
0x000005a4 orhi rl5, zero, Ox0
0x000005a8 addi rl5, rl5, Oxaad
0x000005ac Lewr rlé, 4irls)
0x000005b0 orhi rl7, zero, Ox0
0x000005ba addi rl7, rl7, Ox7
0x000005b8 orhi rl5, zero, 0OxO
0x000005be addi rl5, rl5, Oxacd
fwN0nnncesn hi ¥10 v Ol

Figure 49. The Trace window.

Right-clicking anywhere in the Trace window brings up several options, as shown in Figure 50. The Trace feature
can be turned on or off by selecting the Enable trace or Disable trace options. It is also possible to toggle the
debug events in the trace on or off by selecting Show debug events, or clear current trace sequences by selecting
Clear trace sequences.

Running the program using the Actions > Continue or Actions > Single Step commands will show up in the trace
sequence as debug events after each time the program pauses execution, as shown in Figure 51.

If the pc value is changed before the program continues to run, the Monitor Program will insert a gap sequence in
the trace, as shown in Figure 52. The Actions > Restart command will set the pc value back to the initial starting

44 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

v Lp, syopy

tw rls, G(sp)

tw rlé, 1Z{sp)

tw rl7, l6{sp)

tw rld, Z0{sp)

tw rls,

tw rz0,

tw r2l, Disable trace

ddi o,

rhi r15, Clear trace sequences
ddi rl5, rl5, Oxaad

aw £l6, 4{rls)
rhi rl7?, zero, Ox0
ddi rl7?, rl7, 0x7

Figure 50. Right-click options in the Trace window.

Trace -
0x000006£4 andhi rld, rl7, OxfLff P N B Q
0x000006E8 heqg rl8, zero, Ox24 (0x00000720: NO_CHAR) x2l

NO_CHAR:
0x00000720 1dsr ra, 0(sp)
0x00000724 1dw fp, 4(sp) AF
0x00000728 1dw rlS, S{sp)
0x0000072c 1dwr rlé, 1Z(sp)
Fi HALT
SINGLE-STEP
SINGLE-STEP
SINGLE-STEP
SINGLE-STEP
SINGLE-STEP
CONTINUE
Ox000004cs stw rl5, 0(rle)
0x000004cc 1dwr rld, 0{xrle) ol
0x0000044d0 bne rld, rl5, Ox80 (0x00000554: SHOW_ERROR)
0x000004d4 addi rlé, rlé, 0x4 E
0x000004d3 hyge rl7, rl6, -0x28 (0x000004b4: MEM LOOF)
MEM_LOOP: 5 C B
0x000004b4 bey et, zero, Ox4 (0x000004bc: SKIP_NOP)
0x000004b3 add ZELo, ZEro, Zero G
0x000004bc call 0x0000015e {0x00000573: UPDATE_HEX DISPLAY)
UPDATE_HEX DISPLAY: H
fise UNAMNET addi m__an (w24

Figure 51. The Trace window with various debug events.

address. The pc value can also be arbitrarily set by double clicking its value in the Registers window and editing
its hexadecimal value.

Breakpoints in the program will also show up in the trace sequence as a debug event each time the breakpoint
condition is met, as illustrated in Figure 53.

13.0.1 Note About Tracing Interrupt Sequences

It is possible that interrupt sequences are happening in the program, yet do not show up in the Trace window in the
Monitor Program. This is because the instruction blocks shown in the trace sequence are actually sampled from a
window of time over the entire program execution. As a result, the interrupt sequences may not be included in the

Intel Corporation - FPGA University Program 45
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

URBLLUUSEE suw Lis, ioysp)
0x00000590 stw r18, 20(sp)
FORCED HALT

000000408 stw r1s, 0(rl6)

0x000004cc ldw rld, 0(rlé) D
0x000004d0 bne rld, 1S, 0x80 (0x00000554: SHOW_ERROR)

0x%000004d4 addi  rl6, rle, Ox4 .
MennNNnads e 17 rlA  =Nv?8 (MeNNNNNdh4- MFM T.ONPY r

Figure 52. A gap sequence in the instruction trace.

_start:
0x00000400 orhi  sp, zero, Oxa0 BY
0x00000404 addi  sp, sp, -0x4

0x00000408 add fp, sp, zero

CONTINUE
0x000004c6 stw rls, 0(rl6)
0x000004cc ldw 14, 0(zlé) B
fxnANAN AN hne Tl4. T1A. AN (MAANANGS4: SHAT FRRANRY

Figure 53. A breakpoint in the instruction trace.

sample of instruction blocks displayed in the Monitor Program. One way to deal with this problem is to trigger a
breakpoint after an interrupt finishes executing.

14  Appendix D - Configuration File

The Monitor Program configuration file allows default values to be set for project creation. The monitor program
searches $(UniversityProgramRoot)/amp.config for the configuration file, where UniversityProgramRoot is the
path to the University Program directory in the Quartus installation.

For example C:/intelFPGA/16.1/University_Program/amp.config.

To change the default path to the configuration file, add the following command line argument when running the
Monitor Program: —-config-file=<Path to File>

Table 2 summarizes the configuration options available in the Monitor Program.

The configuration file uses white space or an equal sign as a delimiter, for example: flag option or flag=option.
Where flag is one of the values in the first column of Table 2 and option is the default value for that flag. Number
signs (#) can be used to add comments to the configuration file. Lines starting with the symbol will not be processed
with the configuration file. Boolean values can use integers or case insensitive strings. Options of ’false’, 'no’ and
’0” will all produce a false Boolean, any other values will produce a true Boolean.

46 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1

For Quamm@ Prime

18.1

Flag

Explanation

project_name
project_path

architecture

system

c_compiler_flags
c_linker_flags
use_small_c_lib
emulate_instr
include_system_info_file
answer_for_reload_file

The project name.

The new project directory path.

The architecture.

The default sample system to be used (ex. DE1-SoC Computer)
C Compiler flags

C Linker flags

Boolean to use the small C Library (Nios II)

Boolean to emulate unimplemented instructions

Boolean whether to include the system info header by default.
yes or no option to bypass the file reload dialog when files are edited outside the
program. If undefined, the dialog will be shown.

Table 2. Configuration Flags and Default Options.

Intel Corporation - FPGA University Program
March 2019

47


https://www.altera.com/support/training/university/overview.html

INTEL FPGA MONITOR PROGRAM TUTORIAL FOR N10s® I1 For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

48 Intel Corporation - FPGA University Program
March 2019


https://www.altera.com/support/training/university/overview.html

	1 Introduction
	1.1 Who should use the Monitor Program

	2 Installing the Monitor Program
	2.1 Using a Windows Operating System
	2.2 Using a Linux* Operating System

	3 Main Features of the Monitor Program
	3.1 Creating a Project
	3.1.1 Downloading a Nios II Hardware System

	3.2 Compiling and Loading the Program
	3.2.1 Compilation Errors

	3.3 Running the Program
	3.4 Using the Disassembly Window
	3.5 Single Stepping Program Instructions
	3.6 Using Breakpoints
	3.7 Examining and Changing Register Values
	3.8 Examining and Changing Memory Contents

	4 Working with Project Files
	4.1 Modifying the Settings of an Existing Project

	5 Using the Monitor Program with a Nios® II Evaluation License
	6 Using the Terminal Window
	7 Using C Programs
	7.1 Source Level Debugging
	7.1.1 Using Breakpoints
	7.1.2 Source Level Debugging Actions
	7.1.3 Variable Values
	7.1.4 Enabling and Disabling Source Level Debugging
	7.1.5 Setting the Optimization Level in Programs with Driver Support.


	8 Using the Monitor Program with Interrupts
	8.1 Interrupts with Assembly-Language Programs
	8.2 Interrupts with C Programs

	9 Working with Windows and Tabs
	10 Appendix A
	10.1 Using the Breakpoints Window
	10.2 Working with the Memory Window
	10.2.1 Character Display
	10.2.2 Memory Fill
	10.2.3 Load File Data into Memory

	10.3 Setting a Watch Expression
	10.4 The GDB Server Panel (Advanced)

	11 Appendix B - Using Device Drivers (Advanced)
	12 Appendix C - Running Multiple Instances of the Monitor Program (Advanced)
	13 Appendix D - Examining the Instruction Trace (Advanced)
	13.0.1 Note About Tracing Interrupt Sequences

	14 Appendix D - Configuration File

