.l/nte|> FPGA Introduction to the

Platform Designer Tool

For Quartus® Prime 18.1

1 Introduction

This tutorial presents an introduction to the Intel® Platform Designer tool, which is used to design digital hardware
systems that contain components such as processors, memories, input/output interfaces, timers, and the like. The
Platform Designer tool allows a designer to choose the components that are desired in the system by selecting these
components in a graphical user interface. It then automatically generates the hardware system that connects all of
the components together.

The hardware system development flow is illustrated by giving step-by-step instructions for using the Platform
Designer tool in conjunction with the Quartus® Prime software to implement a simple example system. The last
step in the development process involves configuring the designed hardware system in an actual FPGA device, and
running an application program. To show how this is done, it is assumed that the user has access to an Intel DE-
series Development and Education board connected to a computer that has Quartus Prime and Nios® II software
installed. The screen captures in the tutorial were obtained using the Quartus Prime version 18.1; other versions of
the software may be slightly different.

Contents:

* Nios II System

Intel’s Platform Designer Tool
* Integration of a Nios II System into a Quartus Prime Project
* Compiling a Quartus Prime Project when using the Platform Designer Tool

* Using the Intel FPGA Monitor Program to Download a Designed Hardware System and Run an Application
Program

Intel Corporation - FPGA University Program 1
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

2 Intel DE-series FPGA Boards

For this tutorial we assume that the reader has access to an Intel DE-series board, such as the one shown in Figure 1.
The figure depicts the DE1-SoC board, which features an Intel Cyclone® V FPGA chip. The board provides a lot
of other resources, such as memory chips, slider switches, pushbutton keys, LEDs, audio input/output, video input
(NTSC/PAL decoder) and video output (VGA). It also provides several types of serial input/output connections,
including a USB port for connecting the board to a personal computer. In this tutorial we will make use of only a
few of the resources: the FPGA chip, slider switches, LEDs, and the USB port that connects to a computer.

Although we have chosen the DE1-SoC board as an example, the tutorial is pertinent for other DE-series boards that
are described in the University Program section of Intel’s website.

Figure 1. An Intel DE1-SoC board.

3 A Digital Hardware System Example

We will use a simple hardware system that is shown in Figure 2. It includes the Intel Nios II embedded processor,
which is a soft processor module defined as code in a hardware-description language. A Nios II module can be
included as part of a larger system, and then that system can be implemented in an Intel FPGA chip by using the
Quartus Prime software.

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

Host computer

USB-Blaster
Reset n Clock interface

| |

|
Nios II processor |
|

FPGA chip
JTAG Debug JTAG UART
module interface

Avalon switch fabric

On-chi Switches LEDs
memorr; parallel input parallel output
interface interface

R

SW7 SWO0 LEDR7 LEDRO

Figure 2. A simple example of a Nios II system.

As shown in Figure 2, the Nios II processor is connected to the memory and I/O interfaces by means of an intercon-
nection network called the Avalon® switch fabric. This interconnection network is automatically generated by the
Platform Designer tool.

The memory component in our system will be realized by using the on-chip memory available in the FPGA chip.
The I/O interfaces that connect to the slider switches and LEDs will be implemented by using the predefined modules
that are available in the Platform Designer tool. A special JTAG* UART interface is used to connect to the circuitry
that provides a USB link to the host computer to which the DE-series board is connected. This circuitry and the
associated software is called the USB-Blaster. Another module, called the JTAG Debug module, is provided to allow

Intel Corporation - FPGA University Program 3
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

the host computer to control the Nios II system. It makes it possible to perform operations such as downloading Nios
II programs into memory, starting and stopping the execution of these programs, setting breakpoints, and examining
the contents of memory and Nios II registers.

Since all parts of the Nios II system implemented on the FPGA chip are defined by using a hardware description
language, a knowledgeable user could write such code to implement any part of the system. This would be an
onerous and time consuming task. Instead, we will show how to use the Platform Designer tool to implement the
desired system simply by choosing the required components and specifying the parameters needed to make each
component fit the overall requirements of the system. Although in this tutorial we illustrate the capability of the
Platform Designer tool by designing a very simple system, the same approach is used to design larger systems.

Our example system in Figure 2 is intended to realize a trivial task. Eight slider switches on the DE1-SoC board,
SW7 -0, are used to turn on or off eight LEDs, LEDR7 —0. To achieve the desired operation, the eight-bit pattern
corresponding to the state of the switches has to be sent to the output port to activate the LEDs. This will be done
by having the Nios II processor execute a program stored in the on-chip memory. Continuous operation is required,
such that as the switches are toggled the lights change accordingly.

In the next section we will use the Platform Designer tool to design the hardware depicted in Figure 2. After
assigning the FPGA pins to realize the connections between the parallel interfaces and the switches and LEDs on
the DE1-SoC board, we will compile the designed system. Finally, we will use the software tool called the Intel
FPGA Monitor Program to download the designed circuit into the FPGA device, and download and execute a Nios
II program that performs the desired task.

Doing this tutorial, the reader will learn about:

Using the Platform Designer tool to design a Nios II-based system
* Integrating the designed Nios II system into a Quartus Prime project
* Implementing the designed system on the DE1-SoC board

* Running an application program on the Nios II processor

4 Intel’s Platform Designer Tool

The Platform Designer tool is used in conjunction with the Quartus Prime CAD software. It allows the user to easily
create a system based on the Nios II processor, by simply selecting the desired functional units and specifying their
parameters. To implement the system in Figure 2, we have to instantiate the following functional units:

* Nios II processor

* On-chip memory, which consists of the memory blocks in the FPGA chip; we will specify a 4-Kbyte memory
arranged in 32-bit words

* Two parallel I/O interfaces

4 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL

For Quartus® Prime 18.1

* JTAG UART interface for communication with the host computer

To define the desired system, start the Quartus Prime software and perform the following steps:

1. Create a new Quartus Prime project for your system. As shown in Figure 3, we stored our project in a directory
called platformdesigner_tutorial, and we assigned the name lights to both the project and its top-level design
entity. You can choose a different directory or project name. Step through the screen for adding design files to
the project; we will add the required files later in the tutorial. In your project, choose the FPGA device used
on your DE-series board. A list of FPGA devices on the DE-series boards is given in Table 1.

G MNew Project Wizard

Directory, Name, Top-Level Entity

What is the working directory for this project?

|C:\Desktop\plarformdesigner_tu‘[orial |

What is the name of this project?

llights] |-

What is the name of the top-level design entity for this project? This name is case sensitive and must exactly
match the entity name in the design file.

llights |-

Use Existing Project Settings...

< Back Finish Cancel Help

x

Figure 3. Create a new project.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL

For Quartus® Prime 18.1

Board

Device Name

DEO-CV

Cyclone® V SCEBA4F23C7

DEO-Nano

Cyclone® IVE EP4CE22F17C6

DEO-Nano-SoC

Cyclone® V SoC SCSEMA4U23C6

DEI1-SoC

Cyclone® V SoC 5SCSEMASF31C6

DE2-115

Cyclone® IVE EP4CE115F29C7

DE10-Lite

Max® 10 10M50DAF484C7G

DE10-Standard

Cyclone® V SoC 5CSXFC6D6F31C6

DE10-Nano

Cyclone® V SE 5CSEBA6U2317

Table 1. DE-series FPGA device names

2. After completing the New Project Wizard to create the project, in the main Quartus Prime window select Tools
> Platform Designer, which leads to the window in Figure 4. This is the System Contents tab of the Platform
Designer tool, which is used to add components to the system and configure the selected components to meet
the design requirements. The available components are listed on the left side of the window.

=& Platform Designer - unsaved.qsys* (C\Desktop\platformdesigner_tutorial\unsaved.qsys) - O X
File Edit System Generate View Tools Help
I Catalog % - = o[L= System Contents 23| Address Map & | Interconnect Requirements & - o
x & % & W system: unsaved
\ y
Project + Use Con.. Name Description Export Clock Base
; B New Component... 2 B dk_0 Clock Source
gary Funct X clk_in Clock Input clk exported
__DaSSFLC unctions == clk_in_reset Reset Input reset
Interface Protocols = dk Clock Output clk 0
[F-Low Power ~ dlk_reset Reset Output
Memory Interfaces and Controlle -
[+Processors and Peripherals
Qsys Interconnect x
[+-Tri-State Components
University Program
< >
New... Edit... =+ Add...
L. Hiel 2| Device i o
[+-m= clk
B reset
[H-F clk_0
< >
"‘|"' fI’t ¥ Current filter:
o= Messages 2@| -==
Type Fath Message
0 Errors, 0 Warnings Generate HDL... | Finish

Figure 4. Create a new Nios II system.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

3. The hardware system that will be generated using the Platform Designer tool runs under the control of a clock.
For this tutorial we will make use of the 50-MHz clock that is provided on the DE1-SoC board. Your hardware
system should contain a clock source called clk_0, whose frequency is 50-MHz. You can check that its fre-
quency is indeed 50-MHz by double clicking the component, and checking the Clock frequency parameter of
the component. If your system does not already contain clk_0, it is possible to add a clock source by selecting
Basic Functions > Clocks; PLLs and Resets > Clock Source in the IP Catalog tab, then clicking Add....

4. Next, specify the processor as follows:

* On the left side of the Platform Designer window expand Processors and Peripherals, select Em-
bedded Processors > Nios Il (Classic) Processor and click Add..., which leads to the window in

Figure 5.
2 Nios Il (Classic) Processor - nios2_gsys_0
“ Nios II (Classic) Processor i
Megacors® GILETA_Ni0S2_gSys D
~ Block Diagram
G Nios 1T i
[Show signals ore Nios I Caches and Memory Interfaces Advanced Features MMU and MPU Settings JTAG Debug Module
|+ Select a Nios II Core
nios?_gsys_0 No=licorE: () Nios /e
clk (O hios If's
lock avalol
eset n aualo (@) Nios I/f
d irg . N i jt
interrupt resel A A A
{0 el Gchle cus Nios II/e Nios II/s Nios II/f
avalon nios_custom_instruction
H RISC RISC RISC
Nios II 32-bit 3201t 32-bit
Selector Guide Instruction Cache Instruction Cache
Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
Hardware Divide Hardware Divide
Barrel Shifter
Data Cache
Dynamic Branch Prediction
Memory Usage (e.g Stratix IV) | Two M9Ks (or equiv.) Two M8Ks + cache Three M9Ks + cache
"~ Hardware Arithmetic Operation
Hardware multiplication type: Embedded Multipliers
[JHardware divide
|~ Reset vector
Reset vector memory: None -
Reset vector offset: 0x00000000
Reset vector: 0x00000000
< > I - 4
@ Error: nios2_qsys_0: Reset slave is nat specified. Flease select the reset slave
(@ Error: nios2_gsys_0: Exception slave is not specified. Please select the exception slave
', Warning: nios2_gsys_0: Nios II Classic cores are no longer recommended for new projects
Cancel Finish

Figure 5. Create a Nios II processor.

* Choose Nios II/e which is the economy version of the processor. This version is available for use without
apaid license. The Nios II processor has reset and interrupt inputs. When one of these inputs is activated,
the processor starts executing the instructions stored at memory addresses known as reset vector and
interrupt vector, respectively. Since we have not yet included any memory components in our design,
the Platform Designer tool will display corresponding error messages. Ignore these messages as we will
provide the necessary information later. Click Finish to return to the main Platform Designer window,
which now shows the Nios II processor specified as indicated in Figure 6.

Intel Corporation - FPGA University Program 7
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

« Platform Designer - unsaved.qsys* (C\Desktop\platformdesigner_tutorial\unsaved.qsys) — O X
File Edit System Generate View Toals Help
“ P Catalog i% - of 0| = System Contents % | AddressMap ¢ | Interconnect Requirements &% - o
x ¥ % & W system: unsaved Path: nios2_qsys 0
4
Easw’c Functions ~ : Use Connections Name Description Export Clock Base
DSP B dk_0 Clock Source
Interface Protocols X = clk_in Clock Input. clk exported
Low Power = (= cll_in_reset Reset Input reset
Memury Inten’daces ar;]d CTntl .I clk Clock Output dk_o
UEE?EF;,WS and Peripherals ~ clk_reset Reset Output
i Co FTOcessors ._ = nios2_qsys_0 Nios 11 (Classic) Processor
[-Embedded Processors - m ok ”
R i 11 (Classic) Pr] - d Clock Tnput unconneci
“- # Nios II Processor reset_n Reset Input [clk]
Hard Processor Compone data_master \Avalon Memory Mapped Master [clk]
Hard Processor Systems instruction_master |Avalon Memory Mapped Master [clk]
< > d_irg Interrupt Receiver [clk]
jtag_debug_modul... Reset Output [clk]
New.... | PEdEN + Add... jtag_debug_module |Avalon Memory Mapped Slave [clk] 0x08
custom_instructio... |Custom Instruction Master
‘I,‘ Hiel $3| Device S(%| |
] unsaved [unsaved.gsys*]
= clk
= reset
Lk clk_0
=
Connections < S
“l"' fh W current filter:
4% Messages ¢ | - o
Type Path Message iy
S[x] 4 Errors ~
%] unsaved.nios2_qsys_0|Reset slave is not specified. Flease select the reset slave
%] unsaved.nios2_qgsys_0|Exception slave is not specified. Please select the exception slave
[x] unsaved.nios2_qgsys_0|nios2_qsys_0.clk must be connected to a clock output. v
< >
4 Errors, 1 Warning Generate HDL... Finish

Figure 6. Inclusion of the Nios II processor in the design.

5. To specify the on-chip memory perform the following:
* Expand the category Basic Functions, and then expand to select On Chip Memory > On-Chip Mem-
ory (RAM or ROM), and click Add

¢ In the On-Chip Memory Configuration Wizard window, shown in Figure 7, ensure that the Slave S1
Data width is set to 32 bits and the Total memory size to 4K bytes (4096 bytes)

* Do not change the other default settings
* Click Finish, which returns to the System Contents tab as indicated in Figure 8

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

2 On-Chip Memory (RAM or ROM) - onchip_memory2_0 X
“ On-Chip Memory (RAM or ROM)
Megotorss Altera_avalon_onchip_memory2
3 4
|~ Block Diag [W ~ 1
. [* Memory type |
] Show signals N
Type: RAM (Writable) -~
. Dual-port access
onchip_memory2_0 L] 3
Single clock operation
clk1
- lock Read During Write Mode: DONT CARE
s . =
avalon
Block type:
o typ AUTO ~
reset
altera_avalon_onchip_memory2
|' Size
Enable different width for Dual-port access
Slave 51 Data width: 32 v
Total memory size: 4096 bytes
Minimize memory block usage (may impact fmax)
[~ Read latency
Slave s1 Latency: 1w
Slave s2 Latency: 1
[~ ROM/RAM Memory Protection |
Reset Request: Enabled
|~ EcC P: & |
Extend the data width to support ECC bits: | pjsabled
|- Memory initafization |
Initialize memory content
[Jenable non-default initialization file
Type the filename (e.g: my_ram.hex) or select the hex file using the file browser button.
User created initialization file: onchip_mem.hex N
Cancel Finish

Figure 7. Define the on-chip memory.

6. Observe that while the Nios II processor and the on-chip memory have been included in the design, no con-
nections between these components have been established. To specify the desired connections, examine the
Connections area in the window in Figure 8. The connections already made are indicated by filled circles
and the other possible connections by empty circles, as indicated in Figure 9.

Clicking on an empty circle makes a connection. Clicking on a filled circle removes the connection.

Make the following connections:

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

* Clock inputs of the processor and the memory to the clock output of the clock component

* Reset inputs of the processor and the memory to both the reset output of the clock component and the
jtag_debug_module_reset output

* The s/ input of the memory to both the data_master and instruction_master outputs of the processor

The resulting connections are shown in Figure 10.

<3 Platform Designer - unsaved.qgsys® (C\Desktop\platformdesigner_tutorial\unsaved.qsys) -] X
File Edit System Generate View Iools Help
Y P Catalog % - | E System Contents % | Address Map % | Interconnect Requirements &3 - -
x| a em: unsaved Path: onchip_memory2_0
Y x 0 Wl syst p_ y2_
~ * | use connections Name Description Export Clock Base
‘ B ck 0 Clock Source
x [cli_in Clock Input clk exported
5 o P
valon FIFO Mematy _E clk_in_reset Reset Input reset
valon-ST Dual Clock FIFO = ol L di_o
valon-ST Multi-Channel Shared = cli_reset Reset Qutput
walon-ST Round Robin Schedule - B nios2_qsys_0 Nios II (Classic) Processor
wvalon-ST Single Clock FIFO clk Clock Input unconnecty
In-Chip Memory (RAM or ROM! x reset_n Reset Input [clk]
on; Debug and Verification data_master Avalon Memory Mapped Master [clk]
L & instruction_master |Avalon Memory Mapped Master [clk]
< > d_irg Interrupt Receiver [clk]
jtag_debug_modul...|Reset Output [clk]
; jtag_debug_module |Avalon Memory Mapped Slave [o 0x0§
Hew... Edit... 4 Add... deb dul ! d S [clk]
custom_instructio... |Custom Instruction Master
N = onchip_memory2_0 On-Chip Memory or
[/] hi 2_0 On-Chip M RAM or ROM
.. Hiel m Device 2 - o clkl Clock Input unconneck
M unsaved [unsaved.gsys+] sl Avalon Memory Mapped Slave [clk1]
- = ck resefl Reset Input [clk1]
[H-m= reset
[F-4F ck_0
[+-42F nios2_gsys 0
(-4 onchip_memory2_0 < 3
[+ Connections —
e At ¥ Current filter:

o 7| oo

Type Path Message &
=[] 6 Errors ~
[} unsaved.nios2_gqsys_0 Reset slave is not specified. Please select the reset slave
[ix] unsaved.nios2_qsys_0 Exception slave is not specified. Please select the exception slave
[x] unsaved.nios2_qsys_0 nios2_qsys_0.clk must be connected to a clock output hd
< >
6 Errors, 2 Warnings Generate HDL... Finish

Figure 8. The on-chip memory included on a DE-series board.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL

For Quartus® Prime 18.1

Connections Mame Description Exp... Clock

= clk_0 Clock Source
dk_in Clock Input clk exported
ck_in_reset Reset Input reset
dk Clock Output ck_0
dk_reset Reset Output

E nios2_gsys_0 Mios II (Classic) Processor
dk Clock Input wnconnected
reset_n Reset Input [clk]
data_master Avalon Memory Mapped Master [clk]
instruction_master Avalon Memory Mapped Master [clk]
d_irg Interrupt Receiver [clk]
jtag_debug_module_r... [Reset Output [clk]
jtag_debug_meodule Avalon Memory Mapped Slave [clk]
custom_instruction_m. .. [Custom Instruction Master

B onchip_memory2_0 |On-Chip Memory (RAM or ROM)
dk1 Clock Input wnconnected
sl Avalon Memory Mapped Slave [clk1]
resetl Reset Input [ck1]

Figure 9. Connections that can be made.
Connections Mame Description Exp...

= clk_0 Clock Source

C— dk_in Clock Input clk
o ck_in_reset Reset Input reset
— dk Clock Gutput
—_— dk_reset Reset Output
E nios2_gsys_0 Mios II (Classic) Processor
dk Clock Input
reset_n Reset Input
— data_master Avalon Memory Mapped Master
— instruction_master Avalon Memory Mapped Master
d_irg Interrupt Receiver
- jtag_debug_module_r... [Reset Output
jtag_debug_meodule Avalon Memory Mapped Slave
custom_instruction_m. .. [Custom Instruction Master
B onchip_memory2_0 |On-Chip Memory (RAM or ROM)
dk1 Clock Input
sl Avalon Memory Mapped Slave
resetl Reset Input

Figure 10. The connections that are now established.

7. Specify the input parallel I/O interface as follows:
» From the IP Catalog, select Processors and Peripherals > Peripherals > PIO (Parallel I/O) Intel
FPGA IP and click Add to reach the PIO Configuration Wizard in Figure 11

* Specify the width of the port to be 8 bits and choose the direction of the port to be Input, as shown in the
figure.

* Click Finish.

Intel Corporation - FPGA University Program 11
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

o PIO (Parallel 1/0) Intel FPGA IP - pio_0 x

PIO (Parallel I/O) Intel FPGA IP
3’ altera_a(valunjiu f)

4 |
|~ Block Diagram N | | ¥
~ Basic Settings
[show signals Width (1-32 bits): 5
Direction: () Bidir
@ fnput
lock () InOut
() Output
avalon Output Port Reset Value: |gypoooooooooooooon

pio_0

clk

eset

51

external_connection

[~ Output Regt |

Enable individual bit setting/dearing

altera

[~ Edge cap gis |
[synchrenously capture

Edge Type: RISING

Enable bit-clearing for edge capture register

|~ Interrupt
[] Generate IRQ
[RQ Type: LEVEL

Level: Interrupt CPU when any unmasked [0 pin is logic true
Edge: Interrupt CPU when any unmasked bit in the edge-capture
register is logic true. Available when synchronous capture is enabled

|~ Test bench wiring
[] Hardwire PIO inputs in test bench

Drive inputs to field.: 0x0000000000000000

< >

|@ Info: pie_0: PIO inputs are not hardwired in test bench. Undefined values will be read from PIO inputs during simulation. |

Cancel

Figure 11. Define a parallel input interface.

8. In the same way, specify the output parallel I/O interface:
» From the IP Catalog, select Processors and Peripherals > Peripherals > PIO (Parallel I/O) Intel
FPGA IP and click Add to reach the PIO Configuration Wizard again
* Specify the width of the port to be 8 bits and choose the direction of the port to be Output.
* Click Finish to return to the System Contents tab

9. Specify the necessary connections for the two PIOs:

* Clock input of the PIO to the clock output of the clock component

* Reset input of the PIO to the reset output of the clock component and the jtag_debug _module_reset
output

* The s/ input of the PIO the data_master output of the processor

The resulting design is depicted in Figure 12.

12 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

Connections Mame Description
B clk_0 Clock Source
C— dk_in Clock Input
C— dk_in_reset Reset Input
— dk Clock Output
— dk_reset Reset Output
E nios2_gsys_0 Mios II (Classic) Processaor
dk Clock Input
reset_n Reset Input
—r data_master Avalon Memary Mapped Master
—_— instruction_master Avalon Memory Mapped Master
d_irg Interrupt Receiver
— jtag_debug_module_r... [Reset Output

jtag_debug_module Avalon Memory Mapped Slave
custom_instruction_m... [Custom Instruction Master
B onchip_memeory2_0 |[On-Chip Memory (RAM or ROM) Intel ...

dkl Clock Input
s1 Avalon Memary Mapped Slave
resetl Reset Input

B pio_0 PIO (Parallel 1/0) Intel FPGA IP
dk Clock Input
reset Reset Input
=1 Avalon Memary Mapped Slave
external_connection Conduit

B pio_1 PIO (Parallel I/0) Intel FPGA IP
dk Clock Input
reset Reset Input

*~———— g1 Avalon Memory Mapped Slave

external_connection Conduit

Figure 12. The system with all components and connections.

10. We wish to connect to a host computer and provide a means for communication between the Nios II system
and the host computer. This can be accomplished by instantiating the JTAG UART interface as follows:

* Select Interface Protocols > Serial > JTAG UART Intel FPGA IP and click Add to reach the JTAG
UART Configuration Wizard in Figure 13

* Do not change the default settings
* Click Finish to return to the System Contents tab

Connect the JTAG UART to the clock, reset and data-master ports, as was done for the PIOs. Connect the
Interrupt Request (IRQ) line from the JTAG UART to the Nios II processor by selecting the connection under
the IRQ column, as shown in Figure 14. Once the connection is made, a box with the number O inside will
appear on the connection. The Nios II processor has 32 interrupt ports ranging from O to 31, and the number
in this box selects which port will be used for this IRQ. Click on the box and change it to use port 5. Make
sure the irq port of JTAG UART gets automatically connected to the d_irq port of Nios II Processor.

Intel Corporation - FPGA University Program 13
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

& JTAG UART Intel FPGA IP - jtag_uart_0

“ JTAG UART Intel FPGA IP

Mogators” altera_avalon_jtag_uart

F
[+ Block Di | o
" : |~ Write FIFO (Data from Avalon to JTAG)
[show signals Buffer depth (bytes): ggq -
- IRQ threshold: 8
jtag_uart_0
[] Construct using registers instead of memory blocks
clk ir
7 e F |~ Read FIFO (Data from JTAG to Avalon)
258 Buffer depth (bytes): |54 -
avalon_jtag_slave avalon 1RQ threshold: 3
altera_avalon_jtag_uart [[] Construct using registers instead of memory blocks
< >

'+, Warning: jtag_uart_0: JTAG UART IP input dock need to be at least double (2x) the operating frequency of JTAG TCK on board

Cancel Finish
Figure 13. Define the JTAG UART interface.
Connections Mame Description Base End IRQ
Clock Source
C— dk_in Clock Input ck exported
C— dk_in_reset Reset Input reset
— dk Clock Output dk_0
— < dk_reset Reset Output
= nios2_gsys_0 Nios II (Classic) Processor
ck Clock Input clk_0
reset_n Reset Input [clk]
— data_master Avalon Memory Mapped Master [clk]
—t instruction_master Avalon Memory Mapped Master [clk]
d_irg Interrupt Receiver [clk] IRQ O IRD 31fF—
— jtag_debug_module_r... [Reset Output [ck]
jtag_debug_module Avalon Memory Mapped Slave [clk] 0x0800 0x0E£E
custom_instruction_m. .. (Custom Instruction Master
E onchip_memeory2_0 |On-Chip Memory (RAM or ROM) Intel ...
dki Clock Input clk_0
sl Avalon Memory Mapped Slave [ck1] 00000 0x0EEE
resetl Reset Input [ck1]
= pio_0 P10 (Parallel 1j0) Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [clk]
51 Avalon Memory Mapped Slave [clk] 00000 0:2000£
external_connection Coniduit
E pio_1 P10 (Parallel 1j0) Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [clk]
sl Avalon Memory Mapped Slave [clk] 00000 0:2000£
external_connection Conduit
B jtag_uvart_0 ITAG UART Intel FPGA IP
ck Clock Input clk_0
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x0000 020007
-— irg Interrupt Sender [clk] >—E|

Figure 14. Connect the IRQ line from the JTAG UART to the Nios II processor.

11. Note that the Platform Designer tool automatically chooses names for the various components. The names are
not necessarily descriptive enough to be easily associated with the target design, but they can be changed. In

14 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL

For Quartus® Prime 18.1

Figure 2, we use the names Switches and LEDs for the parallel input and output interfaces, respectively. These
names can be used in the implemented system. Right-click on the pio_0 name and then select Rename.
Change the name to switches. Similarly, change pio_1 to LEDs. Figure 15 shows the system with name
changes that we made for all components.

Connections

Name

Description

Clock Source

Ex...

Clode

Base

End

RQ

12. Observe that the base and end addresses of the various components in the designed system have not been
properly assigned. These addresses can be assigned by the user, but they can also be assigned automatically
by the Platform Designer tool. We will choose the latter possibility. However, we want to make sure that the
on-chip memory has the base address of zero. Double-click on the Base address for the on-chip memory in
the Platform Designer window and enter the address 0x00000000. Then, lock this address by clicking on the

ck_in
dk_in_reset
dk
dk_reset
[nios2_gsys_0
dk
reset n
data_master
instruction_master
d_irg
jtag_debug_module_r...
jtag_debug_module
custom_instruction_m...
= onchip_memory2_0
k1
sl
resetl
B switches
dk
reset
51
external_connaction
= LEDs
dk
reset
sl
external_connection
B jtag_uart_0
ck
reset
avalon_jtag_slave
irg

Clock Input

Reset Input

Clock Output

Reset Output

Mios II (Classic) Processor
Clock Input

Reset Input

Avalon Memory Mapped Master
Avalon Memory Mapped Master
Interrupt Receiver

Reset Output

Avalon Memory Mapped Slave
Custom Instruction Master

On-Chip Memory (RAM or ROM) Intel ...

Clock Input

Avalon Memory Mapped Slave
Reset Input

PIO (Parallel 1/0) Intel FPGA IP
Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

PIO (Parallel 1/0) Intel FPGA TP
Clock Input

Reset Input

Avalon Memory Mapped Slave
Conduit

ITAG UART Intel FPGA IP
Clock Input

Reset Input

Avalon Memory Mapped Slave
Interrupt Sender

clk

clk_0
[k
[ck]
[kl
[k
[ck]
[k

clk_0
[ck1]
[ck1]

clk_0
[k
[k

clk_0
[kl
[k

clk_0
[ck]
[clk]
[clk]

IRQ O

0x0800

Ox0000

Ox0000

Ox0000

Ox0000

Figure 15. The system with all components appropriately named.

IRG 31

Ox0f££

Ox0££f

Ox000£

Ox000£

0x0007

adjacent lock symbol. Now, let the Platform Designer assign the rest of the addresses by selecting System >

Assign Base Addresses (at the top of the window), which produces an assignment similar to that shown in

Figure 16.

Intel Corporation - FPGA University Program

March 2019

15

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

Connections Mame Description Ex... Clock Base End IRQ
B dk_0 Clock Source
o dk_in Clock Input clk exported
C— dk_in_reset Reset Input reset
— dk Clock Qutput clk_0
— < dk_reset Reset Output

B nios2_gsys_0 Mios II (Classic) Processor
dk Clock Input clk_0
reset_n Reset Input [clk]
data_master Avalon Memory Mapped Master [clk]
instruction_master Avalon Memory Mapped Master [clk]
d_irg Interrupt Receiver [iclk] IRQ 0 IRQ 31F—

¢ jtag_debug_module_r... [Reset Output [clk]

jtag_debug_module Avalon Memory Mapped Slave [clk] 0x1800 Oxl1£f£f
custom_instruction_m... (Custom Instruction Master

E onchip_memory2_0 |On-Chip Memory (RAM or ROM) Intel ...
dk1 Clock Input clk_0
sl Avalon Memory Mapped Slave Dowbi [dk1] 0x0000 0x0£EE
resetl Reset Input [clk1]

B switches P10 (Parallel 1/0) Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [clk]
51 Avalon Memory Mapped Slave [clk] 0x2010 0x2201F
external_connection Conduit

Bl LEDs PIO (Parallel 1/0) Intel FPGA TP
dk Clock Input clk_0
reset Reset Input [clk]
s1 Avalon Memory Mapped Slave [clk] 0x2000 0x200£
external_connection Conduit

B jtag_uvart_0 TTAG UART Intel FPGA TP
dk Clock Input clk_0
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x2020 022027

-— irg Interrupt Sender [clk] >—E|

Figure 16. The system with assigned addresses.

13. The behavior of the Nios II processor when it is reset is defined by its reset vector. It is the location in the

16

memory device from which the processor fetches the next instruction when it is reset. Similarly, the exception
vector is the memory address of the instruction that the processor executes when an interrupt is raised. To
specify these two parameters, perform the following:

* Right-click on the nios2_gsys_0 component (it may be called nios2_processor in some versions of the
Platform Designer) in the window displayed in Figure 16, and then select Edit to reach the window in
Figure 17

 Select onchip_memory2_0.s1 to be the memory device for both reset and exception vectors, as shown in
Figure 17

* Do not change the default settings for offsets
* Observe that the error messages dealing with memory assignments shown in Figure 5 will now disappear

¢ Click Finish to return to the System Contents tab

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL

For Quartus® Prime 18.1

=% Nios Il (Classic) Processar - nios2_qgsys 0

“ Nios II (Classic) Processor
Mogotors AItErA_Ni0S2_qsys

Documentation

WNIOS 1€ WIOS 1175
[~ Block Diag
H RISC RISC
] show signals NIOS II 32-hit 32-hit
Selector Guide Instruction Cache Instruction Cache
Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
ik Hardware Divide Hardware Divide
lock Barrel Shifter
eset n et Data Cache
A Dynamic Branch Prediction
interrupt
tag debug module Memaory Usage (e.g Stratix IV) (Two M3Ks (or equiv.) Twio MSKs + cache Three M9Ks + cache
avalon n|
|' A Avith s '.r
Hardware multiplication type: Embedded Multipliers ~
[Hardware divide
~ Reset Vector
Reset vector memory: onchip_memory2_0.s1 (o3
Reset vector offset: nios2_gsys_0.jtag_debug_module
o onchip_memory2_0.51
|~ Exception Vector
Exception vector memory: onchip_memory2_0.s1 ~
Exception vector offset: 0x00000020
Exception vector: 0x00000020
|~ MMU and MPU
< > W

. Warning: nios2_qsys_0: Nios II Classic cores are no longer recommended for new projects

Cancel

Figure 17. Define the reset and exception vectors.

14. So far, we have specified all connections inside our nios_system circuit. It is also necessary to specify connec-
tions to external components, which are switches and LEDs in our case. To accomplish this, double click on
Double-click to export (in the Export column of the System Contents tab) for external_connection of the
switches PIO, and type the name switches. Similarly, establish the external connection for the lights, called
leds. This completes the specification of our nios_system, which is depicted in Figure 18.

Intel Corporation - FPGA University Program

March 2019

17

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

Connections MName Description Export Clock Base End IRQ
B dk_0 Clock Source
o dk_in Clock Input clk exported
C— dk_in_reset Reset Input reset
— dk Clock Output clk_0
— < dk_reset Reset Output
= nios2_gsys_0 Mios I1 (Classic) Processor
dk Clock Input clk_0
reset_n Reset Input [clk]
— data_master Avalon Memory Mapped Master [clk]
—_— instruction_master Avalon Memory Mapped Master [clk]
d_irg Interrupt Receiver [iclk] IRQ 0 IRQ 31—
¢ jtag_debug_module_r... [Reset Output [clk]
jtag_debug_module Avalon Memory Mapped Slave [clk] 0x1800 Oxl£ff
custom_instruction_m... (Custom Instruction Master
B onchip_memory2_0 |On-Chip Memory (RAM or ROM) Intel ...
dk1 Clock Input clk_0
s1 Avalon Memory Mapped Slave [clk1] & 0x0000 Ox0EEE
resetl Reset Input [clk1]
B switches FIO (Parallel 1/0) Intel FPGA IP
dk Clock Input clk_0
reset Reset Input [clk]
51 Avalon Memory Mapped Slave [clk] 0x2010 0x201£
- external_connection Conduit switches
B LEDs PIO (Parallel 1/0) Intel FPGA TP
dk Clock Input clk_0
reset Reset Input [clk]
s1 Avalon Memory Mapped Slave [clk] 0x2000 0x200£
- external_connection Conduit leds
B jtag_uvart_0 TTAG UART Intel FPGA TP
* dk Clock Input clk_0
reset Reset Input [clk]
avalon_jtag_slave Avalon Memory Mapped Slave [clk] 0x2020 0:2027
-— irg Interrupt Sender [clk] >—E|

Figure 18. The complete system.

15. Having specified all components needed to implement the desired system, it can now be generated. Save the

18

specified system; we used the name nios_system. Then, select Generate > Generate HDL, which leads to
the window in Figure 19. Select None for the option Simulation > Create simulation model, because in
this tutorial we will not deal with the simulation of hardware. Click Generate on the bottom of the window.
When successfully completed, the generation process produces the message “Generate Completed".

Exit the Platform Designer tool to return to the main Quartus Prime window.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

== Generation *

[~ Synthesis

Synthesis files are used to compile the system in a Quartus project.

Create HDL design files for synthesis: | vearjlog ~

[] create timing and resource estimates for third-party EDA synthesis tools.
Create block symboal file (.bsf)

[~ simulation

The simulation model contains generated HDL files for the simulator, and may include simulation-only features.
Simulation scripts for this component will be generated in a vendor-specific sub-directory in the specified output directory.

Follows the guidance in the generated simulation scripts about how to structure your design's simulation scripts and how to use the
ip-setup-simulation and jp-make-simscript command-line utilities to compile all of the files needed for simulating all of the IP in your design

Create simulation model: None

[~ Output Directory
Path:

C:/Desktop/platformdesigner_tutorial/nios_system

< >

Generate Cancel

Figure 19. Generation of the system.

Changes to the designed system are easily made at any time by reopening the Platform Designer tool. Any com-
ponent in the System Contents tab of the Platform Designer tool can be selected and edited or deleted, or a new
component can be added and the system regenerated.

5 Integration of the Nios® Il System into a Quartus® Prime Project

To complete the hardware design, we have to perform the following:

* Instantiate the module generated by the Platform Designer tool into the Quartus Prime project
* Assign the FPGA pins
* Compile the designed circuit

* Program and configure the FPGA device on the DE1-SoC board

5.1 Instantiation of the Module Generated by the Platform Designer Tool

The Platform Designer tool generates a Verilog module that defines the desired Nios II system. In our design,
this module will have been generated in the nios_system.v file, which can be found in the directory platformde-

Intel Corporation - FPGA University Program 19
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

signer_tutorial/nios_system/synthesis of the project. The Platform Designer tool generates Verilog modules, which
can then be used in designs specified using either Verilog or VHDL languages.

Normally, the Nios II module generated by the Platform Designer tool is likely to be a part of a larger design.
However, in the case of our simple example there is no other circuitry needed. All we need to do is instantiate the
Nios II system in our top-level Verilog or VHDL module, and connect inputs and outputs of the parallel 1/O ports,
as well as the clock and reset inputs, to the appropriate pins on the FPGA device.

The Verilog code in the nios_system.v file is quite large. Figure 20 depicts the portion of the code that defines the
input and output ports for the module nios_system. The 8-bit vector that is the input to the parallel port switches is
called switches_export. The 8-bit output vector is called leds_export. The clock and reset signals are called clk_clk
and reset_reset_n, respectively. Note that the reset signal was added automatically by the Platform Designer tool; it
is called reser_reset_n because it is active low.

module nios_system (

input wire clk_clk, l/ clk.clk

output wire [7:0] leds_export, rr leds. export
input wire reset_reset_n, /r reset.reset_n
input wire [7:0] switches_export // switches.export

Figure 20. A part of the generated Verilog module.

The nios_system module has to be instantiated in a top-level module that has to be named /lights, because this is the
name we specified in Figure 3 for the top-level design entity in our Quartus Prime project. For the input and output
ports of the lights module we have used the pin names that are specified in the DE1-SoC User Manual: CLOCK_50
for the 50-MHz clock, KEY for the pushbutton switches, SW for the slider switches, and LEDR for the red LEDs.
Using these names simplifies the task of creating the needed pin assignments.

20 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

5.1.1 Instantiation in a Verilog Module

Figure 21 shows a top-level Verilog module that instantiates the Nios II system. If using Verilog for the tutorial, type
this code into a file called lights.v, or use the file provided with this tutorial.

module lights (CLOCK_50, SW, KEY, LEDR);
input CLOCK_50;
input [7:0] SW;
input [0:0] KEY;
output [7:0] LEDR;

nios_system NiosII (
.clk_clk (CLOCK_50),
.reset_reset_n (KEY),
.switches_export (SwW),
.leds_export (LEDR)) ;
endmodule

Figure 21. Instantiating the Nios II system using Verilog code.

Intel Corporation - FPGA University Program 21
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

5.1.2 Instantiation in a VHDL Module

Figure 22 shows a top-level VHDL module that instantiates the Nios II system. If using VHDL for the tutorial, type
this code into a file called lights.vhd, or use the file provided with this tutorial.

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY lights IS

PORT (
CLOCK_50 : IN STD_LOGIC;
KEY : IN STD_LOGIC_VECTOR (0 DOWNTO O);
SW : IN STD_LOGIC_VECTOR (7 DOWNTO O);
LEDR : OUT STD_LOGIC_VECTOR (7 DOWNTO O0)
)

END lights;

ARCHITECTURE lights_rtl OF lights IS

COMPONENT nios_system

PORT (
SIGNAL clk_clk: IN STD_LOGIC;
SIGNAL reset_reset_n : IN STD_LOGIC;
SIGNAL switches_export : IN STD_LOGIC_VECTOR (7 DOWNTO O0);
SIGNAL leds_export : OUT STD_LOGIC_VECTOR (7 DOWNTO O0)
)i

END COMPONENT;

BEGIN
NiosII : nios_system
PORT MAP (

clk_clk => CLOCK_50,
reset_reset_n => KEY (0),
switches_export => SW(7 DOWNTO O0),
leds_export => LEDR(7 DOWNTO O0)
) i
END lights_rtl;

Figure 22. Instantiating the Nios II system using VHDL code.

22 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

6 Compiling the Quartus® Prime Project

Add the lights.v/vhd file to your Quartus Prime project. Also, add the necessary pin assignments for the DE-series
board to your project. The procedure for making pin assignments is described in the tutorial Quartus Prime Intro-
duction Using Verilog/VHDL Designs. Note that an easy way of making the pin assignments when we use the same
pin names as in the DE1-SoC User Manual is to import the assignments from a Quartus Prime Setting File with Pin
Assignments. For example, the pin assignments for the DE1-SoC board are provided in the DEI_SoC.gsf file, which
can be found on Intel’s FPGA University Program website.

Since the system we are designing needs to operate at a 50-MHz clock frequency, we can add the needed timing
assignment in the Quartus Prime project. The tutorial Using TimeQuest Timing Analyzer shows how this is done.
However, for our simple design, we can rely on the default timing assignment that the Quartus Prime compiler
assumes in the absence of a specific specification. The compiler assumes that the circuit has to be able to operate
at a clock frequency of 1 GHz, and will produce an implementation that either meets this requirement or comes as
close to it as possible.

Finally, before compiling the project, it is necessary to add the nios_system.qip file (IP Variation file) in the directory
platformdesigner_tutorial/nios_system/synthesis to your Quartus Prime project. Then, compile the project. You may
see some warning messages associated with the Nios II system, such as some signals being unused or having wrong
bit-lengths of vectors; these warnings can be ignored.

Note: Certain boards with MAX10 chips (eg. DE10-Lite) may require you to change the setting Assignments >
Device > Device and Pin Options > Configuration > Configuration Mode to Single uncompressed image
with Memory Initialization in order to successfully compile.

7 Using the Intel FPGA Monitor Program to Download the Designed Circuit and Run an
Application Program

The designed circuit has to be downloaded into the FPGA device on a DE-series board. This can be done by using
the Programmer Tool in the Quartus Prime software. However, we will use a simpler approach by using the Intel
FPGA Monitor Program, which provides a simple means for downloading the circuit into the FPGA as well as
running the application programs.

A parallel I/O interface generated by the Platform Designer tool is accessible by means of registers in the interface.
Depending on how the PIO is configured, there may be as many as four registers. One of these registers is called
the Data register. In a PIO configured as an input interface, the data read from the Data register is the data currently
present on the PIO input lines. In a PIO configured as an output interface, the data written (by the Nios II processor)
into the Data register drives the PIO output lines. If a PIO is configured as a bidirectional interface, then the PIO
inputs and outputs use the same physical lines. In this case there is a Data Direction register included, which
determines the direction of the input/output transfer. In our unidirectional PIOs, it is only necessary to have the
Data register. The addresses assigned by the Platform Designer tool are 0x00002010 for the Data register in the PIO
called switches and 0x00002000 for the Data register in the PIO called LEDs, as indicated in Figure 16.

Our application task is very simple. A pattern selected by the current setting of slider switches has to be displayed
on the LEDs. We will show how this can be done in both Nios II assembly language and C programming language.

Intel Corporation - FPGA University Program 23
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

7.1 A Nios Il Assembly Language Program

Figure 23 gives a Nios II assembly-language program that implements our task. The program loads the addresses of
the Data registers in the two PIOs into processor registers r2 and r3. It then has an infinite loop that merely transfers
the data from the input P1O, switches, to the output PIO, leds.

.equ switches, 0x00002010
.equ leds, 0x00002000
.global _start
_start: movia r2, switches
movia r3, leds
LOOP: ldbio rd, 0(r2)
stbio rd, 0(r3)
br LOOP
.end

Figure 23. Assembly-language code to control the lights.

The directive .global _start indicates to the Assembler that the label _start is accessible outside the assembled
object file. This label is the default label we use to indicate to the Linker program the beginning of the application
program.

For a detailed explanation of the Nios II assembly language instructions see the tutorial Introduction to the Intel Nios
11 Soft Processor, which is available on Intel’s FPGA University Program website.

Enter this code into a file lights.s, or use the file provided with this tutorial, and place the file into a working directory.
We placed the file into the directory platformdesigner_tutorial\app_software.

7.2 A C-Language Program

An application program written in the C language can be handled in the same way as the assembly-language pro-
gram. A C program that implements our simple task is given in Figure 24. Enter this code into a file called lights.c,
or use the file provided with this tutorial, and place the file into a working directory.

#define switches (volatile char x) 0x0002010
#idefine leds (char *) 0x0002000
void main ()
{ while (1)
xleds = xswitches;

}

Figure 24. C-language code to control the lights.

24 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

7.3 Using the Intel FPGA Monitor Program

The FPGA University Program provides the monitor software, called Intel FPGA Monitor Program, for use with the
DE-series boards. This software provides a simple means for compiling, assembling and downloading of programs
onto a DE-series board. It also makes it possible for the user to perform debugging tasks. A description of this
software is available in the Intel FPGA Monitor Program tutorial. We should also note that other Nios II development
systems are provided by Intel, for use in commercial development. Although we will use the Intel FPGA Monitor

Program in this tutorial, the other Nios II tools available from Intel could alternatively be used with our designed
hardware system.

Open the Intel FPGA Monitor Program, which leads to the window in Figure 25.

& Intel FPGA Monitor Program - O X

File Edit Actions Windows Help
O RB4B 4L 2Apmly i
Disassembly — X

Registers — X

Goto instruction| Address (hex) or symbo '1a'ne:| | Go Hide @Valu

-

[a] [»]
Disassembly}(Breakpoints/ Memoryf Watches] Trace}

Terminal — | Info & Errors — X

Info & Errorsf GDB Sewerf

Figure 25. The Intel FPGA Monitor Program main window.

Intel Corporation - FPGA University Program 25
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

The monitor program needs to know the characteristics of the designed Nios II system, which are given in the file

nios_system.qsys. Click the File > New Project menu item to display the New Project Wizard window, shown in
Figure 26, and perform the following steps:

1. Enter the platformdesigner_tutorial\app_software directory as the Project directory by typing it directly into
the Project directory field, or by browsing to it using the Browse... button.

2. Enter lights_example (or some other name) as the Project name

3. Select Nios Il as the Architecture and click Next, leading to Figure 27.

New Project Wizard %

Specify a project name and directory

Project directory:

|C:\Desktop\platformde;igner_‘[utorial\app_software | | Browse... |

Project name:

|Iights_e;(ample |

Architecture: ||Nios Il ."

Ne)(t>| | Finish ||Cancel|

‘ < back

Figure 26. Specify the project directory and name.

26 Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL

For Quartus® Prime 18.1

New Project Wizard

Specify a system

rSelect a system

|<Custom System > '| | Documentation

Specify a system by selecting a system description (SOPClnfo) file, preloader and optionally a
programming file (SOF).

rSystem details
System description file (SOPClnfo):

|C:/Desktop/pIatformdesigner_tutorial/nios_system.sopcinfo ‘ ‘ Browse... |

FPGA programming (SOF) file:

|C:/Desktopf'platformdesigner_tutoriaI/output_files/lights.sof ‘ ‘ Browse... |

The SOF file represents the FPGA programming file for the hardware system. If it is specified here, then
the Monitor Program can be used to download this programming file onto the board. Otherwise, the
system will need to be downloaded using some other method (for example, by using Quartus II).

Preloader

Not Required =

|| < Back" ‘ Mext >| | Finish || Cancel |

Figure 27. The System Specification window.

4. From the Select a System drop-down box select Custom System, which specifies that you wish to use the
hardware that you designed.

Click Browse... beside the System description field to display a file selection window and choose the
nios_system.sopcinfo file. Note that this file is in the design directory platformdesigner_tutorial.

Select the lights.sof file in the FPGA programming (SOF) file field, which provides the information needed
to download the designed system into the FPGA device on the DE-series board. Note that this file is in the
design directory platformdesigner_tutorial/output_files.

Finally, for the Preloader field, select Not Required. Click Next, which leads to the window in Figure 28.

Intel Corporation - FPGA University Program

March 2019

27

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL

For Quartus® Prime 18.1

28

New Project Wizard

Specify a program type

Program Type: "Select a program type...

1

Select a program type from the drop-down menu above.

| <Back|| Next = | |

| | Cancel |

Figure 28. Specification of the program type.

5. If you wish to use a Nios II assembly-language application program, select Assembly Program as the pro-
gram type from the drop-down menu. If you wish to use a C-language program, select C Program. Click

Next, leading to Figure 29.

Click Add... to display a file selection window and choose the lights.s file, or lights.c for a C program, and

click Select. For this tutorial, we have chosen to use the assembly program. We placed the application-
software files in the directory platformdesigner_tutorial\app_software. Upon returning to the window in

Figure 29, click Next.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

New Project Wizard ¥

Specify program details

rSource files
First source file is used to determine the name of the binary program file.

C./Desktop/platformdesigner_tutorial/app_software/lights.s || Add... ||

| Remove |

Down

rProgram options
Start symbol: |_start |

| < Back|| Mext >| | Finish || Cancel |

Figure 29. Specify the application program to use.

7. In the window in Figure 30, ensure that the Host Connection is set corresponding to your target board. Here,
we are using the DE1-SoC board, and so have set it to DE-SoC, the Processor is set to nios2_gsys_0 and the
Terminal Device is set to jtag_uart_0. Click Next.

Intel Corporation - FPGA University Program 29
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

30

New Project Wizard ¥
Specify system parameters
r System parameters
Host connection:|DE—SOC [USB-1] '| | Refresh|
Processor: |ni052_qsys_0 -|
[
Terminal device: Hjtag_uart_t) -||
| < Back|| Next >| | Finish | | Cancel |

Figure 30. Specify the system parameters.

8. The Monitor Program also needs to know where to load the application program. In our case, this is the mem-
ory block in the FPGA device. The name assigned to this memory is onchip_memory. Since there is no other
memory in our design, the Monitor Program will select this memory by default, as shown in Figure 31.

Having provided the necessary information, click Finish to confirm the system configuration. When a pop-up
box asks you if you want to have your system downloaded onto the DE-series board click Yes.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

New Project Wizard X
Specify program memory settings
rMemory options
Here you can specify section names and their start and end addresses. These sections will be used by the
linker to place code and data at the specified addresses. To ensure correct use of the section names by
the linker, the names must match those identified by the assembler directives, such as .text.
Linker Section Presets: |Basic '|
Section Name | Memaory Device Address Range |
.Cext onchip memory2 0 0x00000000 - Ox00000FFF
| < Back| Next = | || Finish || | Cancel |

Figure 31. Specify where the program will be loaded in the memory.

9. Now, in the monitor window in Figure 25 select Actions > Compile & Load to assemble and download your

program.

10. The downloaded program is shown in Figure 32. Run the program and verify the correctness of the designed
system by setting the slider switches to a few different patterns.

Intel Corporation - FPGA University Program

March 2019

31

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL

For Quartus® Prime 18.1

32

Eile Edit Actions Windows Help

@ Intel FPGA Monitor Program - lights_example : lights.srec [Paused]

O 5 ¢E 2Ll 200k

Disassembly

s

‘annmshuchnn‘ Address (hex) or symbol name:|

0x 00000000 Qos00034
0x00000004 loga0404
X 00000008 oocooos4
Oxoonoooonc lacanood

.2 switches, Ox00002010
.equ leds, Ox00002000
.global _start
_start:

movia r2, switches
_atart:

orhi r2, zero, Ox0

addi rz, rz, Ox2010
movia r3, leds

orhi r3, zZero, 0Ox0
addi r3, r3, OxzZ000

I
|>|E hed

[of

[»]

Disassembly / Breakpoints / Memory] Watches] Trace j

Terminal

- X | Info & Errors

Registers —
Reg Value
pc 0x00000000
zero 0x00000000
rl 0x00000000
r2 0x00000000
r3 0x00000000
r4 0x00000000
s 0x00000000
ré 0x00000000
e7 0x00000000
rg 0x00000000
rg 0x00000000
rlo 0x00000000
ril 0x00000000
riz 0x00000000
rl3 0x00000000
rl4 0x00000000
rls 0x00000000
rlg 0x00000000
rl7 0x00000000
rlg 0x00000000

— X

device 1, instance 0x00

JIRG URRT link established using cable "DE-350C [USB-1]",

Info & Errors

GDB Server

INFO: Nen-memory - jtag_uart 0 0x2020
INFO: Memory - onchip _memory2 0 (0x0 - Oxfff)
INFO: Non-memory — switches 0x2010
INFO: Non-memory - LEDs 0x2000

Figure 32. Display of the downloaded program.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

INTRODUCTION TO THE PLATFORM DESIGNER TOOL For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

Intel Corporation - FPGA University Program 33
March 2019

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 Intel DE-series FPGA Boards
	3 A Digital Hardware System Example
	4 Intel's Platform Designer Tool
	5 Integration of the Nios® II System into a Quartus® Prime Project
	5.1 Instantiation of the Module Generated by the Platform Designer Tool
	5.1.1 Instantiation in a Verilog Module
	5.1.2 Instantiation in a VHDL Module

	6 Compiling the Quartus® Prime Project
	7 Using the Intel FPGA Monitor Program to Download the Designed Circuit and Run an Application Program
	7.1 A Nios II Assembly Language Program
	7.2 A C-Language Program
	7.3 Using the Intel FPGA Monitor Program

