(|nte|> FPGA Making Platform Designer Compo-

nents

For Quartus® Prime 18.1

1 Introduction

The Intel® Platform Designer tool allows a digital system to be designed by interconnecting selected Platform
Designer components, such as processors, memory controllers, parallel and serial ports, and the like. The Platform
Designer tool includes many pre-designed components that may be selected for inclusion in a designed system,
and it is also possible for users to create their own custom Platform Designer components. This tutorial provides
an introduction to the process of creating custom Platform Designer components. The discussion is based on the
assumption that the reader is familiar with the Verilog or VHDL hardware description language and is also familiar
with the material in the tutorial Introduction to the Intel Platform Designer Tool.

The screen captures in this tutorial were obtained using the Quartus® Prime version 18.1 software; if other versions
are used, some of the images may be slightly different.

Contents:

¢ Introduction to Platform Designer

What is a Platform Designer component?
* Avalon Memory-Mapped Interface details
* Adding a new component to Platform Designer

* Instantiating the new component

Intel Corporation - FPGA University Program 1
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

2 Introduction to Platform Designer

The Platform Designer tool allows users to put together a system using pre-made and/or custom components. Such
systems usually comprise one or more processors, memory interfaces, I/O ports and other custom hardware. The
Platform Designer-created system can be included as part of a larger circuit and implemented on an FPGA board,
such as the Intel DE-series boards. An example of such a system is depicted in Figure 1, where the part of the system
created by the Platform Designer tool is highlighted in a blue color.

Host computer

[\/ (USB connection)
Llj— UsB Altera DE-series Board RS-232

Blaster KEY chip
Reset
JTAG port Nios Il processor
P Interval Serial port
timer
Avalon Interconnect

System .
: On-chip
1D FPGA chip memory
Parallel Parallel Parallel Parallel SRAM SDRAM Parallel
port port ports port controller controller ports
Slider 7-Segment LEDs Pushbuttons SRtf_‘M SD'E_AM Expansion
switches displays chip chip connectors

Figure 1. Block diagram of an example Platform Designer system implemented on an FPGA board.

Each component in the system, referred to as a Platform Designer component, adheres to at least one of the Avalon®
Interfaces supported by Platform Designer. With the interface defined for the component, Platform Designer is able
to construct an interconnect structure, called the Avalon Interconnect, which enables components to exchange data.
The Platform Designer tool can generate a system based on the selected set of components and user parameters. The
generated system contains Verilog or VHDL code for each component and the interconnect structure, allowing it to
be synthesized, placed and routed for an FPGA device.

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

In this tutorial we explain what we mean by a Platform Designer component, describe the Avalon Interfaces in more
detail, and show how to create a custom component that can be included in the Platform Designer list of available
components.

3 What is a Platform Designer Component?

A Platform Designer component is a hardware subcircuit that is available as a library component for use in the
Platform Designer tool. Typically, the contains two parts: the internal hardware modules, and the external Avalon
Interfaces. The internal modules are the circuits that implement the desired functionality of the Platform Designer
component, while the Avalon Interfaces are used by the component to communicate with hardware modules that are
external to the component.

There are many types of Avalon Interfaces; the most commonly used types are:

¢ Avalon Clock Interface — an interface that drives or receives clocks
* Avalon Reset Interface — an interface that provides reset capability

* Avalon Memory-Mapped Interface (Avalon MM) — an address-based read/write interface which is typical of
master-slave connections

* Avalon Streaming Interface (Avalon-ST) — an interface that supports unidirectional flow of data

* Avalon Conduit Interface — an interface that accommodates individual signals or groups of signals that do
not fit into any of the other Avalon Interface types. You can export the conduit signals to make connections
external to the Platform Designer system.

A single component can use as many of these interface types as it requires. For example, a component might provide
an Avalon-ST port for high-throughput data, in addition to an Avalon MM slave port for control. All components
must include the Avalon Clock and Reset Interfaces. Readers interested in more complete information about the
Avalon Interfaces may consult the Avalon Interface Specifications document that can be found on the Intel website.

In this tutorial we will show how to develop a Platform Designer component that has an Avalon Memory-Mapped
Interface and an Avalon Conduit Interface. The component is a 32-bit register that can be read or written as a
memory-mapped slave device via the Avalon Interconnect and can be visible outside the system through a conduit
signal. The purpose of the conduit is to allow the register contents to be displayed on external components such as
LEDs or 7-segment displays. Thus, this register is similar to the output parallel ports shown in Figure 1.

If the register is to be used in a system such as the one depicted in Figure 1, then it should respond correctly to
Nios II instructions that store data into the register, or load data from it. Let D be the 32-bit input data for the
register, byteenable be the four-bit control input that indicates which byte(s) will be loaded with new data, and Q be
the 32-bit output of the register. In addition, it is necessary to provide clock and reset signals. Figures 2 and 4 show
a suitable specification for the desired register, called reg32, in Verilog and VHDL, respectively.

Intel Corporation - FPGA University Program 3
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Our register will be instantiated in a top-level module that provides the necessary signals for connecting to an Avalon
MM Interconnect. Let this module be called reg32_avalon_interface. The Avalon MM Interface signals used in this
module are:

* clock

* resetn — active-low reset signal

* readdata — 32-bit data read from the register

* writedata — 32-bit data to be stored in the register

* read — active when a read (load) transaction is to be performed

* write — active when a write (store) transaction is to be performed

* byteenable — two-bit signal that identifies which bytes are being used

* chipselect — active when the register is being read or written

The reg32_avalon_interface module also provides a 32-bit Avalon Conduit Interface signal called Q_export. Fig-
ures 3 and 5 show how this module can be specified in Verilog and VHDL code, respectively.

module reg32 (clock, resetn, D, byteenable, Q);
input clock, resetn;
input [3:0] byteenable;
input [31:0] D;
output reg [31:0] Q;

always(@ (posedge clock)

if (!resetn)
Q <= 32'b0;
else
begin

if (byteenable[0]) Q[7:0] <= D[7:0];
if (byteenable[l]) Q[15:8] <= D[15:8];
if (byteenable[2]) Q[23:16] <= D[23:16];
if (byteenable[3]) Q[31:24] <= D[31:24];
end
endmodule

Figure 2. Verilog code for the 32-bit register.

4 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

module reg32_avalon_interface (clock, resetn, writedata, readdata, write, read,
byteenable, chipselect, Q_export);

input clock, resetn, read, write, chipselect;
input [3:0] byteenable;
input [31:0] writedata;
output [31:0] readdata;

output [31:0] Q_export;

wire [3:0] local_byteenable;
wire [31:0] to_reg, from_reg;

assign to_reg = writedata;
assign local_byteenable = (chipselect & write) ? byteenable : 4’dO0;

reg32 Ul (.clock(clock), .resetn(resetn), .D(to_reqg),
.byteenable (local_byteenable), .Q(from_reqg));

assign readdata = from_reg;
assign Q_export = from_reg;
endmodule

Figure 3. Verilog code for the Avalon MM Interface.

Intel Corporation - FPGA University Program 5
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

LIBRARY iecee;
USE ieee.std_logic_1164.all;

ENTITY reg32 IS
PORT (clock, resetn : IN STD_LOGIC;
D : IN STD_LOGIC_VECTOR (31 DOWNTO O) ;
byteenable : IN STD_LOGIC_VECTOR (3 DOWNTO O);
Q : OUT STD_LOGIC_VECTOR (31 DOWNTO 0));
END reg32;

ARCHITECTURE Behavior OF reg32 IS

BEGIN
PROCESS
BEGIN
WAIT UNTIL clock’EVENT AND clock = ’17;
IF resetn = ’(0’THEN
Q <= "0000000000000000O0OOCO0OOOO0OOOOOCOOOQO";
ELSE
IF byteenable(0) = ’1’THEN
Q (7 DOWNTO 0) <= D(7 DOWNTO 0); END IF;
IF byteenable(l) = ’1’'THEN
Q (15 DOWNTO 8) <= D(15 DOWNTO 8); END IF;
IF byteenable(2) = ’'1’THEN
Q (23 DOWNTO 16) <= D (23 DOWNTO 16); END IF;
IF byteenable(3) = ’'1’THEN

Q (31 DOWNTO 24) <= D (31 DOWNTO 24); END IF;
END IF;
END PROCESS;
END Behavior;

Figure 4. VHDL code for the new register.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY reg32_avalon_interface IS
PORT (clock, resetn : IN STD_LOGIC;
read, write, chipselect : IN STD_LOGIC;
writedata : IN STD_LOGIC_VECTOR (31 DOWNTO O);
byteenable : IN STD_LOGIC_VECTOR (3 DOWNTO O);
0)
0)

4

readdata : OUT STD_LOGIC_VECTOR (31 DOWNTO
Q_export : OUT STD_LOGIC_VECTOR (31 DOWNTO
END reg32_avalon_interface;

)i

ARCHITECTURE Structure OF reg32_avalon_interface IS
SIGNAL local_byteenable : STD_LOGIC_VECTOR (3 DOWNTO O0);
SIGNAL to_reg, from_reg : STD_LOGIC_VECTOR (31 DOWNTO O0);

COMPONENT reg32
PORT (clock, resetn : IN STD_LOGIC;
D : IN STD_LOGIC_VECTOR (31 DOWNTO O0);
byteenable : IN STD_LOGIC_VECTOR (3 DOWNTO O) ;
Q : OUT STD_LOGIC_VECTOR (31 DOWNTO 0));
END COMPONENT;
BEGIN
to_reg <= writedata;
WITH (chipselect AND write) SELECT
local_byteenable <= byteenable WHEN ’"1’, "0000" WHEN OTHERS;
reg_instance: reg32 PORT MAP (clock, resetn, to_reg, local_byteenable,
from_req);
readdata <= from_reg;
Q_export <= from_reg;
END Structure;

Figure 5. VHDL code for the memory-mapped new-register interface.

4 Avalon® Memory-Mapped Interface Details

The Avalon Memory-Mapped Interface is a bus-like protocol that allows two components to exchange data. One
component implements a master interface that allows it to request and send data to slave components. A slave com-
ponent can only receive and process requests, either receiving data from the master, or providing the data requested
by the master.

Each slave device includes one or more registers that can be accessed for read or write transaction by a master
device. Figures 6 and 7 illustrate the signals that are used by master and slave interfaces. The direction of each
signal is indicated by arrows beside it, with < indicating an output and — indicating an input to a device. All
transactions are synchronized to the positive edge of the Avalon clk signal. At time f, in the figures, the master
begins a read transaction by placing a valid address on its address outputs and asserting its read control signal. The
slave recognizes the request because its chipselect input is asserted. It responds by placing valid data on its readdata

Intel Corporation - FPGA University Program 7
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

outputs; the master captures this data on its readdata inputs and the read transaction ends at time #;. A second read
transaction is shown in the figure starting at time #,. In this case, the slave device asserts the waitrequest input of the
master, which can be used to extend a read transaction by any number of clock cycles. The slave device deasserts
the waitrequest signal and provides the requested data at time #3, and the read transaction ends at time #;.

A write transaction is illustrated starting at time #5 in Figures 6 and 7. The master places a valid address and data on
its address and datawrite outputs, and asserts the write control signal. The slave captures the data on its datawrite
inputs and the write transaction ends at time tg. Although not shown in this example, a slave device can assert the
waitrequest input of the master to extend a write transaction over multiple clock cycles if needed.

to ty t, ts ty tg ts
—- clk M —r 7 7 =/ *°—@/ $17"1
- address address address address »>——
- writedata data__>—
- readdata data data
- write 1
- read _ [1 |
- waitrequest

Figure 6. Timing diagram for read/write transactions from the master’s point of view.

to t, t, ty t, ts te

- clk I I | [[I I I | I | I I I
— address address address address ' >—
—- writedata data _ >—

- readdata data data
—- chipselect 1
- write
- read [1 I

= Wwaitrequest

Figure 7. Timing diagram for read/write transactions from the slave’s point of view.

Addresses used by master devices are aligned to 32-bit word boundaries. For example, Figure 8 illustrates four
32-bit addresses that could be used to select four registers in a slave device. The address of the first register is
0x10000000, the address of the second register is 0x10000004, and so on. In this example, the slave would have
a two-bit address input for selecting one of its four registers in any read or write transaction. Since addresses are
word-aligned, the lower two address bits from the master are not seen in the slave. The master provides a four-bit
byteenable signal, which is used by the slave to control a write transaction for individual bytes. For example, if
the master performs a write transaction to only the most-significant byte of the second register in Figure 8 then the
master would write to address 0x10000007 by having its byteenable output signal set to the value Ox1000 and its
address output signal set to the value 0x10000004. The slave device would see its two-bit address input set to 0x01
and would use its byteenable inputs to ensure that the write transaction is performed only for the selected byte of the
second register. Although the byteenable signals are not shown in Figures 6 and 7, they have the same timing as the
address signals.

8 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS

For Quamm'® Prime 18.1

The above examples show the basic transactions between a master and a slave. More advanced transactions can be
performed, the procedure for which is described in the Avalon Interconnect Specifications document.

sttrirss ,SAlgc\jlfess[l..O] st e !
0x10000000 00
0x10000004 01
0x10000008 10
0x1000000C 11

Figure 8. Example for registers in an Avalon MM Interface.

Intel Corporation - FPGA University Program
March 2019

First Register
Second Register
Third Register

Fourth Register

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

5 Adding a New Component to the Platform Designer IP Catalog

In this section we show how to create a new Platform Designer component for our 32-bit register defined in Figures 2
to 4. As a first step, start the Quartus Prime software and make a new project for use with this tutorial. Name the

project component_tutorial, and choose the settings that are needed for your DE-series board, including the specific
FPGA chip.

Next, using your preferred HDL language (Verilog or VHDL), create a new design file (File > New... > Design
Files) and add the Verilog code from Figure 2, or the VHDL code from Figure 4, and name the file reg32.v (or
.vhd). Add this file to your current project (Project > Add Current File to Project). Create another file and add
the Verilog code from Figure 3 or the VHDL code from Figure 5, name the file reg32_avalon_interface.v (or .vhd),
and add this file to the current project.

Later, we will create a top-level HDL file for the component_tutorial project, but first we will use the Platform
Designer tool to generate an embedded system. Open the Platform Designer tool to get to the window depicted
in Figure 9. The Platform Designer tool automatically includes a clock component in the system, as shown in the
figure.

2= Platform Designer - unsaved.qgsys* (C:\Desktop\component_tutorial\unsaved.qsys) - O X
File Edit System Generate View Tools Help
TP Catalog - = O|| L= System Contents $3| Address Map %% | Interconnect Requirements &% =]
- x| - System: unsaved
X &2
\ .
Project + Use Con... Name Description Export Clock Base
- New Component... 2 B ck_0 Clock Source
.gary Funct X clk_in Clock Input clic exported
--DaSSPIC unctions [clk_in_reset Reset Input reset
[-Interface Protocols = el (E2Es T ER
F-Low Power - clk_reset Reset Output
[+-Memory Interfaces and Controllg -
Processors and Peripherals
Qsys Interconnect x
Tri-State Components
[+}-University Program
< >
New... Edit. + Add
L Hiel &| Device 2 il
= clk
»= reset
(-4 clk_0
< >
”'l"' fh . V. Current filter:
=2 Messages S3| |
Type Path Message
0 Errors, 0 Warnings Generate HDL... | Finish
Figure 9. Platform Designer window.
10 Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Before creating the new Platform Designer component for our 32-bit register, we will first instantiate some other
components that will be needed in our system. In the IP Catalog area of the Platform Designer window expand
the Processors and Peripherals > Embedded Processors item and add a Nios Il (Classic) Processor to the
system. In the Nios II Processor dialog window that opens, select Nios ll/e as the type of processor. Next, in the IP
Catalog, expand the Basic Functions > On-Chip Memory item and add an On-Chip Memory (RAM or ROM)
Intel FPGA IP component. Click Finish to return to the main Platform Designer window. In the Connections area
of the Platform Designer window, make the connections illustrated in Figure 10 between the clock component, Nios
II processor, and on-chip memory module.

+= Platform Designer - unsaved.qgsys* (C\Desktop\component_tutorial\unsaved.qsys) - O X
Eile Edit System Generate View Tools Help
[T 1P Catalog % - = M| I System Contents 2@] Address Map &2 ‘ Interconnect Requirements &% | - |
=] |a System: unsaved Path: clk_0
4 X 5 - -
A * | yse connections Name Description Export Clock Base
L = ck 0 Clock Source
X = clk_in Clock Input clik axported
B s i
Avalon FIEO Mamc _E clk_in_reset Reset Input reset
i ® Avalon-ST Dual Clt == —_— dk Clock Output clk_0
e Avalon-ST Multi-Ct = —— clk_reset Reset Output
: Avalon-ST Round | B nios2_gsys_0 Nios II (Classic) Processor
Avalon-ST Single (v clk Clock Input clk_0
On-Chip Memor x reset_n Reset Input [clk]
[#-Simulation; Debug and V¢ —_— data_master Avalon Memory Mapped Master [clk]
EEDSP P & —T instruction_master |Avalon Memory Mapped Master [clk]
> d_irg Interrupt Receiver [clk]
—t jtag_debug_modul... Reset Output [clk]
New... | | Edit... + Add... jtag_debug_module |Avalon Memory Mapped Slave [clk] 0x08
custom_instructio... |Custom Instruction Master
2 onchip_memory2_0 0n-Chip Memory (RAM or ROM)
. Hiel | Device ¥| _ o m dki Clock Input cli_0
] unsaved [unsaved.gsys#] sl Avalon Memory Mapped Slave [clk1] 0x00
--I- clk resetl Reset Input [clk1]
[+-m= reset
i
=k nios2_gsys_0
H-m= clk < >
[+]-=a custom_instruction_master —
-a d_irg A #ft % % current filter:
-4 data_master
[+-=& instruction_master 4= Messages & | - :
[+]-m= jtag_debug_module
[+-=a jtag_debug_module_reset Type Path Message)
[+)-m= reset_n
[=+4F onchip_memory2_0 =0 4 Errors ~
F-m= clkl [x] unsaved.nios2_gqsys_0 Reset slave is not specified. Please select the reset slave
"' risetl [x] unsaved.nios2_gqsys_0 Exception slave is not specified. Please select the exception slave
H-m= s
[1-Bm Connections %] unsaved.nios2_gsys_0.data_master nios2_gsys_0.jtag_debug_module (0x800..0xfff) overlaps onchip_memo ¥
< >
4 Errors, 1 Warning Generate HDL... Finish

Figure 10. Connections needed between components.

Intel Corporation - FPGA University Program 11
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Errors will be displayed in the Platform Designer Messages window about the Reset and Exception vectors mem-
ories that are needed for the Nios II Processor. To fix these errors, re-open the Nios II processor component that has
already been added to the system by right-clicking on it and selecting Edit. In the window shown in Figure 11 use
the provided drop-down menus to set both the Reset vector memory and Exception vector memory to the on-chip
memory component. Click Finish to return to the main Platform Designer window.

2 Nios Il (Classic) Processor - nios2_qsys_0
“ Nios II (Classic) Processor
[SEEct d Wivs 1T 00Te
" Block Diagram i pjgs 11 Core: @ Nios /e
[show signals
() Nios I/s
o Nios IIff
gl Nios II/e Nios II/s Nios II/f
EselD = RISC RISC RISC
dirg Nios II 32-bit 32-bit 32-bit
R chone il Selector Guide Instruction Cache Instruction Cache
Branch Prediction Branch Prediction
Hardware Multiply Hardware Multiply
Hardware Divide Hardware Divide
Barrel Shifter
Data Cache
Dynamic Branch Prediction
Memory Usage (e.g Stratix IV) | Two M9Ks (or equiv.) Two M9Ks + cache Three M9Ks + cache
|~ Hard Arithmetic Operati
Hardware multiplication type: Embedded Multipliers
Hardware divide
|' Reset Vector
Reset vector memory: onchip_memory2_.s1 w
Reset vector offset: 0x00000000
Reset vector: 0x00000000
|~ Exception Vector
Exception vector memory: onchip_memory2_0.s1 w
Exception vector offset: 0x00000020
Exception vector:
< s P 0x00000020 »
. Warning: nies2_qsys_0: Nios II Classic cores are no longer recommended for new projects

Figure 11. Setting the reset and exception vector memories.

12 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

The Platform Designer window may now show an error related to overlapping addresses assigned to the components
in the system. To fix this error click on the System menu in the Platform Designer window and then click on Assign
Base Addresses. The Platform Designer window should now appear as illustrated in Figure 12.

=% Platform Designer - unsaved.qsys* (D:A\QuartusProjects\platformdesigner_tutoriahunsaved.qsys) - [m] x
File Edit System Generate VWiew Tools Help
[T P Catalog &%] E System Contents o5 ‘ AddressMap &% | Interconnect Requirements 58]
3 x| 3 % & W system:unsaved Path: nios2_gsys_0
Project Py F |use connections MName Description Export Clock Base End RQ
-0 New Component... .) B dk_0 Clock Seurce
[H-System X [n) ck_in Clock Input clk exported
Library = - dkn_reset Reset Input reset
- Basic Functions ck Clock Output k.0
[-Arithmetic =
Bridges and Adaptors - E k_reset = Outpu
Clocks; PLLs and Resets = mios2_gsys 0 Mios IT (Classic) Processor
Configuration and Programming - dk Clock Input ck_o
DMA ¥ reset_n Reset Input [ck]
-0 Chip Memary —_— data_master Avalon Memory Mapped Master [ck]
Avalon FIFO Memory Int —_— instruction_master Avalon Memary Mapped Master [clk]
Avalon-5T Dual Clock FIF + d_irg Interrupt Receiver [ck] IRQ 0 IRQ 31
< > — jtag_debug_module_r... [Reset Output [ck]
jtag_debug_module Avalon Memory Mapped Slave [clk] 0x2300 0x2EEE
New... Edit... = Add... custom_instruction_m... [Custom Instruction Master
B onchip_memory2_0 |COn-Chip Memory (RAM or ROM) Intel ...
t" e | DeviceF: 32 = dk1l Clock Input ck_0
s1 Avalon Memory Mapped Slave [ck1] 0x1000 0x1EEE
I unsaved [unsaved. gsys*] resetl Reset Input [ck1]
»= ck
B= reset
£k ck_0
SR nios2_gsys_|
= ck
[+ =@ custom_instruction_master < z
[=8 d_irg et W Current filters
[+ =& data_master
[- \.nshuchun,master o= Messages 00 | ==
[+ W= jtag_debug_module
[+ =@ jtag_debug_module_reset Type Path Message
G- resetn SR 1 Warning
=-4F onchip_memory2_0 —
[e okl a unsaved.nios2_gsys_0 Mios II Classic cores are no longer recommended for new projects
[} W= resetl
[B 51
Connections
< >
0 Errors, 1 Warning Generate HOL... Finish
Figure 12. The base Platform Designer system.
Intel Corporation - FPGA University Program 13

March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Now, we will create the new Platform Designer component for our 32-bit register, and make this component available
in the Platform Designer IP Catalog. To create a new component, click the New Component... button in the IP
Catalog area of the Platform Designer window. The Component Editor tool, shown in Figure 13, will appear. It has
four tabs.

The first step in creating a component is to specify where in the IP Catalog our new component will appear. In the cur-
rent tab, Component Type, change the Name to reg32_avalon_interface, the Display name to reg32_component,
and provide a name for the Group setting, such as My Own IP Cores.

== Component Editor - reg32_avalon_interface_hw.tcl* x

File Templates Beta View

Component Type &% | Block Symbol &8 | Files & | Parameters I% | Signals & Interfaces 33| - M|

F About Component Type

Hame: reg32_avalon_interface
Display name: |req32_component
Version: 1.0

Group: My Own IP Coreg|
Description:

Created by:

Icon:

Documentation: Title URL

Messages oo =]
CJ To Do: Add HDL files on the Files tab, or add signals on the Signals tab.

Help d Prev Next | Finish...

Figure 13. Component Editor window.

14 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS

For Quartus® Prime 18.1

Next, we add the files that describe the component. Go to the Files tab, depicted in Figure 14, and then click on the
Add File... button under Synthesis Files to browse and select the top-level file reg32_avalon_interface.v. Run the
analysis of the top-level file by clicking on the Analyze Synthesis Files button. Platform Designer analyzes this
file to determine the types of interfaces that are used by the component. Optionally, you can also add the file reg32.v
to the list of Synthesis Files. Then click the Copy from Synthesis Files button under Verilog Simulation Files to
add the files for simulation. If the Component Editor finds any errors when analyzing the top-level file, then they
will need to be fixed and the code re-analyzed. Once no syntax errors are present, then the next step is to specify the
types of interfaces that are used by the component.

& Component Editor - reg32_avalon_interface_hw.tcl* X
File Templates Beta View

Component Type % | Block Symbol &2 ‘ Files 23| Parameters % | Signals & Interfaces $3| - |

+ About Files

Synthesis Files

generated.

signals.

These files describe this component's implementation, and will be created when a Quartus synthesis model is

The parameters and signals found in the top-level module will be used for this component's parameters and

Output Path Source File Type Attributes
reg32_avalon_interfa...|reg32_avalon_interface.v |Veril HDL Top-level File

MH4» M

Add File... | Remove File | | Analyze Synthesis Files Create Synthesis File from Signals
Top-level Module: | rag32_avalon_interface

Verilog Simulation Files
These files will be produced when a Verilog simulation model is generated.

Output Path Source File Type Attributes
= reg32_avalon_interfa...|reg32_avalon_interface.v |Verilog HDL no attributes
- reg32.v reg32.v Verilog HDL no attributes
v
¥

Add File... | Remove File | Copy from Synthesis Files

VHDL Simulation Files
These files will be produced when a VHDL simulation model is generated.

Qutput Path Source File Type Attributes

MH4rHM

Messages

=

€3 Error: clock_reset: Synchronous edges DEASSERT requires associated clock
. Warning: avalon_slave_0: Signal readdata appears 2 times (only once is allowed)

Help 4 Prev Next [Einish...

Figure 14. Adding HDL files that define the new component.

Intel Corporation - FPGA University Program

March 2019

15

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Click on the Signals & Interfaces tab to specify the meaning of each interface port in the top-level entity. This
leads to the window in Figure 15.

=+ Component Editor - reg32_avalon_interface_hw.tcl* X
Eile Templates Beta View
Component Type &2 | Block Symbol & | Files 22 | Parameters &% | Signals & Interfaces &2 |
» About Signals
~
Name Name: avalon_slave_0 Documentation
avalon_slave_0
= Q_export [32] rezddats Type: Avalon Memory Mapped Slave !
©= byteenable [4] byreenable Associated Clock: | none v
- chipselect [1] o 1
= read [1] read Associated Reset: none 4
=0 readdata [32] readdsta
- resetn [1] Heg Assignments: Edit...
= write [1] »
= writedata [32] writedata
‘ [~ Block Diag [} [P t
Address units: WORDS
avalon_slave_0 Associated clock:
avalon slave 0 Associated reset:
esetn . r 5
Bits per symbol:
iedata[31_0] | eomburstransier BT &
Burstcount units:
mrziitdedatalm..ﬂl readdata WORDS
=T write Explicit address span: 00000000000000000
read
teenable[3..0]
hipselect byteenable [Timing
expori31.0 chipselect T
: readdata = 0
null Read wait: 1
Write wait:]
Hold: 0
Timing units: Cycles B
|~ Pipelined Transf
Read latency: 0
Maximum pending read transactions: g
Maximum pending write transactions: | g
< - >
Messages m =
3 Error: dock_reset: Synchronous edges DEASSERT requires associated clock ~
. Warning: avalon_slave_0: Signal readdata appears 2 times (only once is allowed) v
Help 4 Prev Mext [Finish...
Figure 15. Initial settings for component signals.
16 Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

To define correctly the meaning of each signal, it is necessary to specify the correct types of interface, put the
signals in the correct interface, and specify the signal type for each signal. For the clock [1] signal, select <<add
interface>> and select Clock Input as in Figure 16. Now drag and drop the signal clock [1] into Clock Input interface
and change its Signal Type to clk, as shown in Figure 17.

-+ Component Editor - reg32_avalon_interface_hw.tcl* X

File Templates Beta View

Component Type %2 | Block Symbol 2% | Files 22| Parameters &% | Signals & Interfaces &2 -=n-

+ About Signals

Name

®=avalon_slave_0 4
=3 ()_export [32] r
== byteenable [4
=~ chipselect [1]
= read [1] read
=0 readdata [32] re
= resetn [1]
= write [1] w1
== writedata [
<<add sign

®=clock_reset 7

= clock [1]
< <add
e e—]
AHB Master
AHB Slave
APB Master
APB Slave

AX] 4 Stream Master

AX] 4 Stream Slave

AX] Master

AX] Slave

AX14 Master

AX14 Slave

AX14Lite Master

AXl4Lite Slave

Avalon Memory Mapped Master
Avalon Memory Mapped Slave
Avalon Streaming Sink

Avalon Streaming Source

Messages ¢ Clock Input 2o
3 Error: clock_ Clock Output s associated clock ~
», Warning: avz Conduit nes (only once is allowed) ™
' Custom Instruction Master ' =
Custom Instruction Slave Help 4 Prev Next | Finish...
Figure 16. Creating the Clock Input interface.
Intel Corporation - FPGA University Program 17

March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

=+ Component Editor - reg32_avalon_interface_hw.tcl* X
Eile Templates Beta View
Component Type %2 | Block Symbol 22 | Files 2% | Parameters &% | Signals & Interfaces &2 |

» About Signals

Name Name: clock
#=avalon_slave_0 4valon Memary Mappe Signal Type: |reset_n M
=1 _export [32] readdsta
o oo) e Width: F—
- chipselect [1] chpselect S reset_n
Direction: input &

= read [1] read

=0 readdata [32] readdsta

= resetn [1] beginbursttransfer
=~ write [1] write

= writedata [32] writedata
<<add signal>>

= clock_reset Reser Input

<<add signal>>

®=clock_sink ook imput

<<add signal>>
<<add inferface>>

[Wessages™ i< _do

/v, Warning: clock_reset: Interface has no signals ~
3 Error: dock_reset: Synchronous edges DEASSERT requires associated clock v
Help 4 Prev Next [Finish...
Figure 17. Specifying the signal type for clock.
18 Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS

For Quartus® Prime 18.1

For the resetn [1] signal, drag and drop it into the Reset Input interface and change its signal type to reset_n, as

indicated in Figures 18 and 19.

=+ Component Editor - reg32_avalon_interface_hw.tcl*

Eile Templates Beta View

Component Type %2 | Block Symbol 22 | Files 2% | Parameters &% | Signals & Interfaces &2

» About Signals

Name Name: resetn

#=avalon_slave_0 4 Memary Mappe Signal Type: | beginbursttransfer o
=1 _export [32] readdsta
= byteenable [4 eenable Width: 1
- chipselect [1]
= read [1] read
=0 readdata [32] readdsta
=~ write [1] write
= writedata [32] writedata
<<add signal>>

#=clock_reset fesat

= rgsetn [1]

= clock_sink
= clock [1]
<<add interface>>

Direction: input b

Messages o |

3 Error: dock_reset: Synchronous edges DEASSERT requires associated clock
& Error: dock_reset: Signal resetn has unknown type beginbursttransfer

Help 4 Prev Mext [Finish...

Figure 18. Changing the interface for resetn.

Intel Corporation - FPGA University Program
March 2019

19

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

<

=+ Component Editor - reg32_avalon_interface_hw.tcl* X
Eile Templates Beta View
Component Type %2 | Block Symbol 22 | Files 2% | Parameters &% | Signals & Interfaces &2 |
» About Signals
Name Name: resetn
#=avalon_slave_0 4valon Memary Mappe Signal Type: |beginbursttransfer M

#=clock_reset fesat miur

= clock_sink ook input

<<add interface=>

=1 _export [32] readdsta
= byteenable [4] Hyteenable Width: reset
- chipselect [1] chpselect
= read [1] read

= readdata [32] readdata beginbursttransfer
=~ write [1] write

= writedata [32] writedata
<<add signal>>

Direction: reset_req

<<add signal>>

= clock [1] o

:

==
Error: clock_reset: Synchronous edges DEASSERT requires associated clock ~
Error: clock_reset: Signal resetn has unknown type beginbursttransfer v

Help 4 Prev Mext [Finish...

20

Figure 19. Specifying the signal type for resetn.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Finally, the Q_export signal must be visible outside the Platform Designer-generated system; it requires a new
interface which is not a part of the Avalon Memory-Mapped Interface. Click on the <<add interface>>, and
specify its type as Conduit, as shown in Figure 20. Drag and drop Q_export into the newly created conduit interface.
The Signal Type for a conduit signal does not matter, so Q_export does not need to be edited. The rest of the signals
shown in the Component Editor already have correct interface types as their names are recognizable as specific
Avalon signals. The Component Editor window should now appear as shown in Figure 21.

=+ Component Editor - reg32_avalon_interface_hw.tcl* X

File Templates Beta View

Component Type 2% | Block Symbol 2% | Files 22| Parameters &I | Signals & Interfaces &2 =

» About Signals

Name

»=avalon_slave_0 -
=3 (_export [32] rea.
== byteenable [4]
= chipselect [1] ¢
= read [1] read
=1 readdata [32] readdsta
= write [1] write
= writedata [32] wrifedat.

<<add signal>>
= clock_reset Fsset
= resetn [1] rese
<<agd signal.
= clock_sink O/
= clock [1] ¢

AHB Master

AHB Slave

APB Master

APB Slave

AXI 4 Stream Master

AXI 4 Stream Slave

AXI Master

AXI Slave

AXI4 Master

AXI4 Slave

AXl4Lite Master

AXl4Lite Slave

Avalon Memory Mapped Master
Avalon Memory Mapped Slave

L Avalon Streaming Sink

Avalon Streaming Source

Messages il =]
& Error: © e 2quires associated clock ~
», Warning Clock Output s 2 times (only once is allowed) v
Conduit S
Custom Instruction Master Help 4 Prev Next | Finish...

Cuctam Inctrictinn Slava

Figure 20. Creating an external interface for Q_export.

Intel Corporation - FPGA University Program 21
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS

For Quartus® Prime 18.1

=+ Component Editor - reg32_avalon_interface_hw.tcl*

Eile Templates Beta View

Component Type %2 | Block Symbol 22 | Files 2% | Parameters &% | Signals & Interfaces &2

» About Signals

Name Name: Q_export

#=avalon_slave_0 4valon Memary Mappe Signal Type: |readdata hd
= byteenable [4] Hyreenable
=~ chipselect [1] chpsslect Width: 32
= read [1] read
=0 readdata [32] readdsta
=~ write [1] write
= writedata [32] writedata
<<add signal>>

= clock_reset Reser Input
= resetn [1] reset n
<<add signal>>

= clock_sink ook input
= clock [1] o

»= conduit_end Conduit

XD
<<add signal>>
<<add inferface>>

Direction: output b

Messages

Error: avalon_slave_0: Interface must have an associated clock

E Error: clock_reset: Synchronous edges DEASSERT requires associated clock
(X

Help 4 Prev Mext [Finish...

22

Figure 21. Final settings for component signals.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Note that there are still some error messages. The first error message states that the avalon_slave_0 interface must
have an Associated Clock and an Associated Reset. Select clock_sink as this clock and clock_reset as the reset, as
indicated in Figure 22. Also note in Figure 22 that under the Timing heading we have changed the parameter called
Read wait for the avalon_slave_0 interface from its default value, which was 1, to the value 0. This parameter
represents the number of Avalon clock signals that the component requires in order to respond to a read request. Our
register can respond immediately, so we do not need to use the default of 1 wait cycle.

=+ Component Editor - reg32_avalon_interface_hw.tcl* X

Eile Templates Beta View

Component Type %| Block Symbol 23| Files 23| Parameters i | Signals & Interfaces &l =

» About Signals

~
Hame Name: avalon_slave_0 Documentation
avalon_slave 0
== byteenable [4 Type: Avalon Memory Mapped Slave ~
©- chipselect [1] Associated Clock: | clock_sink ~
= read [1] read
=1 readdata [32] readdsta Associated Reset: |clock_reset ~
= wite [1] writ iy
= writedata [32] wrifedat. Assignments: Edit...
- resetn [1] [Block Diag | W [P 1
<<add =i Address units: WORDS
= clock_sink]
o ok 1] avalon_slave_0 Associated clock: clock_sink
= conduit_end (onc vl slsm [Associated reset: clock_reset
=3 Q_export [32] rea g - - _ =
<<add signal>> ritedatal3.0] {10 ata Bits per symbal: 8
[eaddata[31..0]
<<ad T {:;t;ud“’ Burstcount units: WORDS
ead) .
teenabie3 0] |2 Explicit address span: 00000000000000000000
- byteenable
hipselect chipselect I
~ Timing
null Setup: 0
Read wait: 0
Write wait: 0
Hold: 0
Timing units: Cycles i
|~ Pipelined Transf
Read latency: 0
Maximum pending read transactions: |
Maximum pending write transactions: | v
< - >
Messages m il =]
’a Error: clock_reset: Synchronous edges DEASSERT requires associated clock
Help 4 Prev Mext | Finigh...
Figure 22. Specifying the clock and reset associated with the Avalon Slave interface.
Intel Corporation - FPGA University Program 23

March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

The remaining error messages state that the clock_reset interface must have an associated clock. Set this clock to
clock_sink, as depicted in Figure 23. Now, there should be no error messages left. Click Finish to complete the
creation of the Platform Designer component, and save the component when prompted to do so.

«» Component Editor - reg32_avalon_interface_hw.tcl* *
Eile Templates Beta View
Component Type % | Block Symbol 2% | Files 2| Parameters % | Signals & Interfaces &2 ==
+ About Signals
Hame Name: clock_reset Documentation
»=avalon_slave_0 Ava ry Mappe .
== byteenable [4] e ypes (B AL >
©- chipselect [1] ¢ t Associated Clock: |dock_sink w
=~ read [1] read
e e R U —
= write [1] wr
[Block Diag | o |- Paramet
Associated clock: clock_sink
clock_reset Synchronous edges: |peassert -
= clock_sink Clock nput el f
= dock [1] clock_rese
»= conduit_end £setn resetn
=3 Q_export [32] readdata
s nuil
< >
Messages m - o
@ Info: No errors or warnings.
Help 4 Prev Mext | Finish...

24

Figure 23. Specifying the clock associated with the reset interface.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

6 Instantiating the New Component

In the Platform Designer IP Catalog, expand the newly-created item My Own IP Cores. Add an instance of the
reg32_component, to open the window shown in Figure 24. Click Finish to return to the main Platform Designer
window. Next, make the connections shown in Figure 25 to attach the register component to the required clock and
reset signals, as well as to the data master port of the Nios IT processor. Finally, as indicated in the Export column
in Figure 25, click on Double-click to export for the Conduit and specify the name ro_hex. Notice in the Base
address column in Figure 25 that the assigned address of the new register component is 00000000. This address can
be directly edited by the user, or it can be assigned automatically by using the Assign Base Addresses command
in the System menu. In this tutorial, we will leave the address as 00000000.

- reg32_component - reg32_avalon_interface_0

“ reg32_component

Megaters 2032_avalon_interface

[~ Block Diag
[] Show signals

(No parameters) »

reg3?_avalon_interface_0

clock reset

reset
avalon_slave 0

avalon
clock_sink

lock
conduit_end

onduit

reg32_avalon_interface

Cancel Finish

Figure 24. Adding the reg32_component to the base system.

Use the Save command in the File menu to save the defined Platform Designer system using the name embed-
ded_system. Next, in the Platform Designer window select Generate > Show Instantiation Template..., the
window in Figure 26 will show up. This window gives an example of how the embedded system defined in the
Platform Designer tool can be instantiated in HDL code. Note that the clock input of our embedded system is called
clk_clk, the reset input is called resetn_reset_n, and the conduit output is named to_hex_readdata.

Intel Corporation - FPGA University Program 25
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

% Platform Designer - embedded_system.qsys (D:\QuartusProjects\component_tutorial\embedded_system.qsys) - [m} x
File Edit System Generate View Tools Help

“ IPCatalog il = tf System Contents &% 1 Address Map &% | Interconnect Requirements 53 il =
- | K5 % & W system: embedded_system Path: reg32_avalon_interface_0.conduit_end
4
Project ~ F |use connections HName Description Export Clock Base End
. Alew Component... L) oo dkn (Clock Input clk exported ~
y Own IP Cores % =8 dk_in_reset Reset Input reset
L. ® reg32_new_component = —_— dk (Clack Qutput dk_o
_— dkc_reset Reset Output
= B nios2_gsys_0 IMios IT (Classic) Processar
a dk (Clock Input ck_o
torface Profocols - reset_n Reset Input [ck)
o Power - —_— data_master |Avalon Memory Mapped Master [dk]
lemory Interfaces and Controllers — instruction_master |Avalon Memory Mapped Master [ck]
rocessors and Peripherals d_irg [nterrupt Receiver [ck] IRQ O IRQ 2
sys Interconnect — jtag_debug_module_r... Reset Output [ck)
ri-5tate Components v jtag_debug_module \Awalon Memory Mapped Slave [ick] 0x2800 Ox2E£E
custom_instruction_m... [Custom Instruction Master
s Edit... 4 Add... E onchip_memory2_0 (On-Chip Memary (RAM or ROM) Intel ...
dk1 (Clock Input ck_o
sl \Avalon Memory Mapped Slave [clk1] 0x1000 0x1EEE
o HiEra a Device Fe 2% -go resetl Reset Input [cki]
I embedded_system [embedded syste E reg32_avalon_interf...reg32_new_component
-k dock_reset Reset Input [dock_sink]
B= reset avalon_slave_0 \Avalon Memory Mapped Slave [clock_sink] 0x0000 020003
“m= o_hex clock_sink iClock Tnput clk_o
i deo concit_end
-4k nios2_gsys_0
¥ onchip_memory2_0 < i
=-4F reg32_avalon_interface_0 - 4 W Current filter:
Ei-B= avalon_slave_0
= clock_reset 2 Messages m |
Type Path Message
Connections =Y |1Warn\ng |
oy |embeddedisvstem.niosziqsvsio |Nios 11 Classic cores are no longer recommended for nev
< > (I < >

0Errors, 1 Warning Finish

Figure 25. Required connections for the new component.

== Instantiation Template x
You can copy the example HDL below to declare an instance of embedded_system.
HOL Language: |Verilag ~~

Example HOL

embedded_system ul (
.clk_clk {<connected-to-clk_clk>}, L clk.clk
.FESet_reset_n {<connected-to-reset_reset_n:), // reset.reset n
.to_hex readdata (<connected-to-to hex readdata>) // to_hex.readdata

Copy Close

Figure 26. The HDL Example tab.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Finally, open the Generation window in the Platform Designer tool, shown in Figure 27 by selecting Generate
> Generate HDL, and then click the Generate button. This action causes the Platform Designer tool to generate
HDL code that specifies the contents of the embedded system, including all of the selected components and the
Avalon interconnection fabric.

+= Generation =

|~ synthesis |

Synthesis files are used to compile the system in a Quartus project.

Create HDL design files for synthesis: Verilog ~
] create timing and resource estimates for third-party EDA synthesis tools.
Create block symbol file (.bsf)

|~ simulation

The simulation model contains generated HDL files for the simulator, and may include simulation-only features.
Simulation scripts for this component will be generated in a vendor-specific sub-directory in the specified output directory.

Follow the guidance in the generated simulation scripts about how to structure your design's simulation scripts and how to use the
[p-setup-simulation and jp-make-simscript command-line utilities to compile all of the files needed for simulating all of the IP in your design.

Create simulation model: Mone

|~ output Directory
Path:

C:/Desktop/component_tutorial/fembedded_system

Generate Cancel

Figure 27. The Generation tab.

Intel Corporation - FPGA University Program 27
March 2019

https://www.altera.com/support/training/university/overview.html

28

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Close the Platform Designer tool to return to the main Quartus Prime window. Next, select Project > Add/Re-
move Files in Project... from the main Quartus Prime window, and then browse on the (=] button to open the
window in Figure 28. Browse to the folder called embedded_system/synthesis and then select the file named embed-
ded_system.qip. This file provides the information needed by the Quartus Prime software to locate the HDL code
generated by the Platform Designer tool. In Figure 28 click Open to return to the Settings window and then click
Add to add the file to the project. Click OK to return to the main Quartus Prime window.

Select File X
« v <« component_tutorial * embedded_system * synthesis » v Search synthesis PR
Organize ~ New folder =~ @ @

o figures ~ Name Date modified Type Size
& OneDrive submodules 5/16/2018 3:25 PM File folder
| | embedded_system.qip 5/16/2018 3:25 PM QIP File 179 KB
P Syncplicity . —
| embedded_system.v 5/16/2018 3:24 PM V File 28 KB
= This PC
@m Desktop
#= Documents
& Downloads
& Music
= Pictures
B Videos
2 OSDisk (C)
>
File name: |embedded_system.qip V| Design Files (*.tdf *vhd *vhdl *. ~

Figure 28. Adding the .gip file to the Quartus Prime project.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

7 Implementing the Embedded System in an FPGA Chip

To implement the Platform Designer-generated embedded system in an FPGA chip, we need to create a top-level
HDL module which instantiates the embedded system and has the appropriate input and output signals. A suitable
HDL module is given in Figures 29 and 30, in Verilog and VHDL. The module connects the 50 MHz clock signal,
CLOCK_50, on the DE-series board to the clock input of the embedded system, and connects KEYj to the reset
input. The external conduit from the embedded system is connected to the seven segment displays HEXO, ..., HEX3.
The HDL code for the 7-segment display code converter, called hex7seg, is provided in Appendix A, in Figures 35
and 36.

Store the code for the top-level module in a file called component_tutorial.v (or .vhd), and store the code for the
seven-segment code converter in a file called hex7seg.v (or .vhd). Include appropriate pin assignments in the Quar-
tus Prime project for the CLOCK_50, KEY,, and HEXO, ..., HEX3 signals on the DE-series board. If all the necessary
pin assignments are not made, it may not be possible to connect to the board (from the Quartus Prime software, or the
Intel FPGA Monitor Program). For instructions on adding pin assignments, see the Quartus Introduction tutorial.

Compile the project. After successful compilation, download the circuit onto the DE-series board by using the
Quartus Prime Programmer tool. See the Quartus Introduction tutorial for instructions on downloading a circuit to
a board.

module component_tutorial (CLOCK_50, KEY, HEXO, HEX1l, HEX2, HEX3);
input CLOCK_50;
input [0:0] KEY;
output [0:6] HEX0, HEX1, HEX2, HEX3;

wire [15:0] to_HEX;

embedded_system U0 (
.clk_clk (CLOCK_50), .reset_reset_n(KEY[0]), .to_hex_ readdata (to_HEX));

hex7seg hO (to_HEX[3

hex7seg hl (to_HEX[7:

hex7seg h2 (to_HEX[11:
endmodule

Figure 29. Verilog code for the top-level module.

Intel Corporation - FPGA University Program 29
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS

For Quartus® Prime 18.1

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY component_tutorial IS

PORT

(CLOCK_50 : IN STD_LOGIC;
KEY : IN STD_LOGIC_VECTOR (0 DOWNTO O0);

HEXO0 : OUT STD_LOGIC_VECTOR(0O TO 6);
HEX1 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX2 : OUT STD_LOGIC_VECTOR(0 TO 6);
HEX3 : OUT STD_LOGIC_VECTOR(O TO 6);

14

END component_tutorial;

ARCHITECTURE Structure OF component_tutorial IS
SIGNAL to_HEX : STD_LOGIC_VECTOR (31 DOWNTO O);
COMPONENT embedded_system IS

END

PORT (clk_clk : IN STD_LOGIC;

resetn_reset_n : IN STD_LOGIC;

to_hex_readdata: OUT STD_LOGIC_VECTOR (31 DOWNTO O0)
COMPONENT embedded_system;

COMPONENT hex7seg IS

END

BEGIN

Uo:

hO:
hl:
h2:
h3:

PORT (hex : IN STD_LOGIC_VECTOR (3 DOWNTO O);
display : OUT STD_LOGIC_VECTOR(0 TO 6));
COMPONENT hex7segqg;

embedded_system PORT MAP (

clk_clk => CLOCK_50,

resetn_reset_n => KEY(0),

to_hex_ readdata => to_HEX);

hex7seg PORT MAP (to_HEX (3 DOWNTO 0), HEXO);
hex7seg PORT MAP (to_HEX (7 DOWNTO 4), HEX1);
hex7seg PORT MAP (to_HEX (11l DOWNTO 8), HEX2);
hex7seg PORT MAP (to_HEX (15 DOWNTO 12), HEX3);

END Structure;

30

Figure 30. VHDL code for the top-level module.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS

For Quartus® Prime 18.1

8 Testing the Embedded System

One way to test the circuit is to use the Intel FPGA Monitor Program. Open the Monitor Program and create a new
project called component_tutorial and select Nios Il as the architecture. In the New Project Wizard, for the Specify
a system screen choose <Custom System>. As shown in the figure, under System details browse to select the
system description file called embedded_system.sopcinfo. Also, browse to select the FPGA programming file
called component_tutorial.sof, as illustrated in Figure 31. Select Not Required for the Preloader. For the screen
titled Specify a program type in the New Project Wizard, choose No Program. On the next screen, specify
the System Parameters according to your board, and then press Finish. When prompted to download the system,
as shown in Figure 32, press No since we have already done so with the Quartus Prime Programmer. For a more
detailed look at the FPGA Monitor Program, see the Introduction to the Platform Designer Tool tutorial on the
University Program website.

New Project Wizard

rSelect a system

Specify a system

|<Cust0m System > v| | Documentation

Specify a system by selecting a system description (SOPCInfo) file, preloader and optionally a
programming file (SOF).

rSystem details

System description file (SOPClnfa):

|C:/Desktop/component_tutoriaI/embedded_system.sopcinfo ‘ ‘ Browse... |

FPGA programming (SOF) file:

|C:/Desktop/c0mp0nent_tutoriaI/output_fileslcomponent_tutorial.sof ‘ ‘ Browse... |

The SOF file represents the FPGA programming file for the hardware system. If it is specified here, then
the Monitor Program can be used to download this programming file onto the board. Otherwise, the
system will need to be downloaded using some other method (for example, by using Quartus II).

Preloader

Mot Required =

||< Back" ‘ MNext >| | Finish || Cancel |

Figure 31. Specifying the system description file and Quartus Prime programming file.

Intel Corporation - FPGA University Program

March 2019

31

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS

For Quartus® Prime 18.1

Download System - Prompt *

Would you like to download the system associated with this project onto the board?
* If so, make sure that the board is connected via the correct cable and is powered up.

[yes ||| mo |

Figure 32. Press No to this prompt.

After successfully creating the Monitor Program project, click on the command Connect to System in the Actions
menu. Open the Memory tab in the Monitor Program, and click the setting Query Devices, as indicated in Fig-
ure 33. Now, click the Refresh button to see that the content of address 0X00000000, which represents the 32-bit
register component, has the value 00000000. Edit the value stored in the register, as illustrated in Figure 34, and
observe the changes on the seven-segment displays on the DE-series board.

32

lMemory _X‘

Goto address (hex or symbol name)‘-| o| @. ¥ Query Devices | Refresh || Hide

0x 00000000 Q0000000
0x 00000010
0x00000020
0x00000030
0x 00000040
0x 00000050
0x 00000060 2 E
0x00000070 >
0x 00000080
0x 00000030
0x 00000040
0x 0000000
0x000000CD
0x000000D0

4/

) — Dl

Figure 33. Using the Memory tab in the Momitor Program.

Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Memory -
Goto address (hex or symbol name): o QO]E Query Devices .R!flﬁh .Hide

000000000 12345678
0x000000L0 ?
000000020

Ox00000030

0x00000040

000000050 2 2

Ox00000060]
0x00000070 : 2 |
0x00000080
0x000000390
0x000000AD
0x000000BD
Ox000000CD
0x000000D0

i —— B

4

Figure 34. Changing the value stored in the 32-bit register.

9 Concluding Remarks

In this tutorial we showed how to create a component for use in a system designed by using the Platform Designer
tool. Although the example is for a slave interface, the same procedure is used to create a master interface, with the
only difference being in the type of an interface that is created for the component.

Intel Corporation - FPGA University Program 33
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

10 Appendix A

The HDL code for the seven-segment code converter that is instantiated in Figures 29 and 30 is shown in Figures 35

and 36.

34

module hex7seg (hex,

input [3:0] hex;
output [0:6] display;

reg [0:6] display;

always @ (hex)
case (hex)
4"h0:

4"hl:

4'h2:

4"h3:

4" h4:

4" h5:

4" ho6:

4"h7:

4" h8:

4"h9:

47 hA:

4" hb:

4" hC:

4" hd:

47" hE:

47 hF:

endcase
endmodule

display =

display
display
display
display
display
display
display
display
display
display
display
display
display
display

display =

display);

7"p0000001;
7"p1001111;
7"pb0010010;
7"pb0000110;
7"01001100;
7"p0100100;
7"p0100000;
7"pb0001111;
7"pb0000000;
7"b0001100;
7"b0001000;
7"p1100000;
7"p0110001;
7"p1000010;
7"b0110000;
7"b0111000;

Figure 35. Verilog code for the seven-segment display code converter.

Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS

For Quartus® Prime 18.1

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY hex7seg IS
PORT (hex
display
END hex'7seg;

ARCHITECTURE Behavior OF hex7seg IS

BEGIN

PROCESS (hex)
BEGIN

CASE hex

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

WHEN

END CASE;

END PROCESS;

END Behavior;

Figure 36. VHDL code for the seven-segment display code converter.

Intel Corporation - FPGA University Program

March 2019

IN STD_LOGIC_VECTOR (3 DOWNTO O0) ;
OUT STD_LOGIC_VECTOR(0O TO 6));

Is
"0000"
"0001"
"0010"
"0011"
"0100"
"0101"
"0110"
"0111"
"1000"
"1001"
"1010"
"1011"
"1100"
"1101"
"1110"
"1111"

display
display
display
display
display
display
display
display
display
display
display
display
display
display
display
display

"0000001";
"1001111";
"0010010";
"0000110";
"1001100";
"0100100";
"0100000";
"0001111";
"0000000";
"0001100";
"0001000";
"1100000";
"0110001";
"1000010";
"0110000";
"0111000";

35

https://www.altera.com/support/training/university/overview.html

MAKING PLATFORM DESIGNER COMPONENTS For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

36 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 Introduction to Platform Designer
	3 What is a Platform Designer Component?
	4 Avalon® Memory-Mapped Interface Details
	5 Adding a New Component to the Platform Designer IP Catalog
	6 Instantiating the New Component
	7 Implementing the Embedded System in an FPGA Chip
	8 Testing the Embedded System
	9 Concluding Remarks
	10 Appendix A

