
Using Library Modules
in VHDL Designs

For Quartus® Prime 18.1

1 Introduction

This tutorial explains how Intel’s library modules can be included in VHDL-based designs, which are implemented
by using the Quartus® Prime software.

Contents:

• Example Circuit

• Library of Parameterized Modules

• Augmented Circuit with an LPM

• Results for the Augmented Design

Intel Corporation - FPGA University Program
March 2019

1

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

2 Background

Practical designs often include commonly used circuit blocks such as adders, subtractors, multipliers, decoders,
counters, and shifters. Intel provides efficient implementations of such blocks in the form of library modules that
can be instantiated in VHDL designs. The compiler may recognize that a standard function specified in VHDL
code can be realized using a library module, in which case it may automatically infer this module. However, many
library modules provide functionality that is too complex to be recognized automatically by the compiler. These
modules have to be instantiated in the design explicitly by the user. Quartus® Prime software includes a library of
parameterized modules (LPM). The modules are general in structure and they are tailored to a specific application
by specifying the values of general parameters.

Doing this tutorial, the reader will learn about:

• Library of parameterized modules (LPMs)

• Configuring an LPM for use in a circuit

• Instantiating an LPM in a designed circuit

The detailed examples in the tutorial were obtained using the Quartus Prime version 18.1, but other versions of the
software can also be used. When selecting a device within Quartus Prime, use the device names associated with
FPGA chip on the DE-series board by referring to Table 1.

Board Device Name
DE0-CV Cyclone® V 5CEBA4F23C7

DE0-Nano Cyclone® IVE EP4CE22F17C6
DE0-Nano-SoC Cyclone® V SoC 5CSEMA4U23C6

DE1-SoC Cyclone® V SoC 5CSEMA5F31C6
DE2-115 Cyclone® IVE EP4CE115F29C7

DE10-Lite Max® 10 10M50DAF484C7G
DE10-Standard Cyclone® V SoC 5CSXFC6D6F31C6

DE10-Nano Cyclone® V SE 5CSEBA6U2317

Table 1. DE-series FPGA device names

3 Example Circuit

As an example, we will use the adder/subtractor circuit shown in Figure 1. It can add, subtract, and accumulate n-bit
numbers using the 2’s complement number representation. The two primary inputs are numbers A = an−1an−2 · · ·a0

and B = bn−1bn−2 · · ·b0, and the primary output is Z = zn−1zn−2 · · ·z0. Another input is the AddSub control signal
which causes Z = A+B to be performed when AddSub = 0 and Z = A−B when AddSub = 1. A second control input,
Sel, is used to select the accumulator mode of operation. If Sel = 0, the operation Z = A±B is performed, but if Sel
= 1, then B is added to or subtracted from the current value of Z . If the addition or subtraction operations result in
arithmetic overflow, an output signal, Overflow, is asserted.

2 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

To make it easier to deal with asynchronous input signals, they are loaded into flip-flops on a positive edge of the
clock. Thus, inputs A and B will be loaded into registers Areg and Breg, while Sel and AddSub will be loaded into
flip-flops SelR and AddSubR, respectively. The adder/subtractor circuit places the result into register Zreg.

Figure 1. The adder/subtractor circuit.

The required circuit is described by the VHDL code in Figure 2. For our example, we use a 16-bit circuit as specified
by n = 16. Implement this circuit as follows:

• Create a project addersubtractor.

• Include a file addersubtractor.vhd, which corresponds to Figure 2, in the project.

• Select the FPGA chip that is on the DE-series board. A list of device names on DE-series boards can be found
in Table 1.

• Compile the design.

• Simulate the design by applying some typical inputs.

Intel Corporation - FPGA University Program
March 2019

3

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

-- Top-level entity
ENTITY addersubtractor IS

GENERIC (n : INTEGER := 16) ;
PORT (A, B : IN STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;

Clock, Reset, Sel, AddSub : IN STD_LOGIC ;
Z : BUFFER STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
Overflow : OUT STD_LOGIC) ;

END addersubtractor ;

ARCHITECTURE Behavior OF addersubtractor IS
SIGNAL G, H, M, Areg, Breg, Zreg, AddSubR_n : STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, carryout, over_flow : STD_LOGIC ;
COMPONENT mux2to1

GENERIC (k : INTEGER := 8) ;
PORT (V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;

END COMPONENT ;
COMPONENT adderk

GENERIC (k : INTEGER := 8) ;
PORT (carryin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
carryout : OUT STD_LOGIC);

END COMPONENT ;
BEGIN

PROCESS (Reset, Clock)
BEGIN

IF Reset = ’1’ THEN
Areg <= (OTHERS => ’0’); Breg <= (OTHERS => ’0’);
Zreg <= (OTHERS => ’0’); SelR <= ’0’; AddSubR <= ’0’; Overflow <= ’0’;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
Areg <= A; Breg <= B; Zreg <= M;
SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;

END IF ;
END PROCESS ;
nbit_adder: adderk

GENERIC MAP (k => n)
PORT MAP (AddSubR, G, H, M, carryout) ;

multiplexer: mux2to1
GENERIC MAP (k => n)
PORT MAP (Areg, Z, SelR, G) ;

AddSubR_n <= (OTHERS => AddSubR) ;
H <= Breg XOR AddSubR_n ;
over_flow <= carryout XOR G(n-1) XOR H(n-1) XOR M(n-1) ;
Z <= Zreg ;

END Behavior;

Figure 2. VHDL code for the circuit in Figure 1 (Part a)
4 Intel Corporation - FPGA University Program

March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

-- k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
ENTITY mux2to1 IS

GENERIC (k : INTEGER := 8) ;
PORT (V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;

END mux2to1 ;

ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS (V, W, Selm)
BEGIN

IF Selm = ’0’ THEN
F <= V ;

ELSE
F <= W ;

END IF ;
END PROCESS ;

END Behavior ;
-- k-bit adder
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
USE ieee.std_logic_signed.all ;
ENTITY adderk IS

GENERIC (k : INTEGER := 8) ;
PORT (carryin : IN STD_LOGIC ;

X, Y : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
S : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;
carryout : OUT STD_LOGIC) ;

END adderk ;

ARCHITECTURE Behavior OF adderk IS
SIGNAL Sum : STD_LOGIC_VECTOR(k DOWNTO 0) ;

BEGIN
Sum <= (’0’& X) + (’0’& Y) + carryin ;
S <= Sum(k-1 DOWNTO 0) ;
carryout <= Sum(k) ;

END Behavior ;

Figure 2. VHDL code for the circuit in Figure 1 (Part b).

Intel Corporation - FPGA University Program
March 2019

5

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

4 Library of Parameterized Modules

The LPMs in the IP Catalog are general in structure and they can be configured to suit a specific application by
specifying the values of various parameters. We will use the lpm_add_sub module to simplify our adder/subtractor
circuit defined in Figures 1 and 2. The augmented circuit is given in Figure 3. The lpm_add_sub module, instantiated
under the name megaddsub, replaces the adder circuit as well as the XOR gates that provide the input H to the adder.
Since arithmetic overflow is one of the outputs that the LPM provides, it is not necessary to generate this output with
a separate XOR gate.

To implement this adder/subtractor circuit, create a new directory named tutorial_lpm, and then create a project
addersubtractor2. Choose the same device as we previously selected (Refer to Table 1) to allow a direct comparison
of implemented designs.

Figure 3. The augmented adder/subtractor circuit.

The new design will include the desired LPM subcircuit specified as a VHDL component that will be instantiated in
the top-level VHDL design entity. The VHDL component for the LPM subcircuit is generated by using a wizard as
follows:

1. Select Tools > IP Catalog, which opens the IP Catalog window in Figure 4.

6 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

2. In the IP Catalog panel, expand Library > Basic Functions > Arithmetic and double-click on LPM_ADD_SUB

Figure 4. Choose an LPM.

Figure 5. Create an LPM from the available library.

Intel Corporation - FPGA University Program
March 2019

7

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

3. In the pop-up box shown in Figure 5, choose VHDL as the type of output file that should be created. The
output file must be given a name; choose the name megaddsub.vhd and indicate that the file should be placed
in the directory tutorial_lpm as shown in the figure. Press OK.

Figure 6. Specify the size of data inputs.

4. In the box in Figure 6 specify that the width of the data inputs is 16 bits. Also, specify the operating mode
in which one of the ports allows performing both addition and subtraction of the input operand, under the
control of the add_sub input. A symbol for the resulting LPM is shown in the top left corner. Note that if
add_sub = 1 then result = A +B ; otherwise, result = A −B . This interpretation of the control input and the
operation performed is different from our original design in Figures 1 and 2, which we have to account for in
the modified design. Observe that we have included this change in the circuit in Figure 3. Click Next.

8 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

Figure 7. Further specification of inputs.

5. In the box in Figure 7, specify that the values of both inputs may vary and select Signed for the type of
addition/subtraction. Click Next.

Intel Corporation - FPGA University Program
March 2019

9

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

Figure 8. Specify the Overflow output.

6. The box in Figure 8 allows the designer to indicate optional inputs and outputs that may be specified. Since
we need the overflow signal, make the Create an overflow output choice and press Next.

10 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

Figure 9. Refuse the pipelining option.

7. In the box in Figure 9 say No to the pipelining option and click Next.

8. Figure 10 shows the simulation model files needed to simulate the generated design. Press Next to proceed to
the final page.

Intel Corporation - FPGA University Program
March 2019

11

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

Figure 10. Simulation model files.

9. Figure 11 gives a summary which shows the files that the wizard will create. Press Finish to complete the
process.

12 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

Figure 11. Files created by the wizard.

10. The box in Figure 12 may pop up. If it does, make sure to press No, since adding the newly generated files to
the project is not needed when using VHDL (in fact, this may cause compilation errors).

Figure 12. Do not add the new files to the project.

5 Augmented Circuit with an LPM

We will use the file megaddsub.vhd in our modified design. Figure 13 depicts the VHDL code in this file; note that
we have not shown the comments in order to keep the figure small.

Intel Corporation - FPGA University Program
March 2019

13

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.all;
ENTITY megaddsub IS

PORT (add_sub : IN STD_LOGIC ;
dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC;
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END megaddsub;
ARCHITECTURE SYN OF megaddsub IS

SIGNAL sub_wire0 : STD_LOGIC ;
SIGNAL sub_wire1 : STD_LOGIC_VECTOR (15 DOWNTO 0);
COMPONENT lpm_add_sub
GENERIC (lpm_direction : STRING;

lpm_hint : STRING;
lpm_representation : STRING;
lpm_type : STRING;
lpm_width : NATURAL);

PORT (
dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
add_sub : IN STD_LOGIC ;
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC ;
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT;

BEGIN
overflow <= sub_wire0;
result <= sub_wire1(15 DOWNTO 0);
lpm_add_sub_component : lpm_add_sub
GENERIC MAP (lpm_direction => "UNUSED",

lpm_hint => "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO",
lpm_representation => "SIGNED",
lpm_type => "LPM_ADD_SUB",
lpm_width => 16)

PORT MAP (dataa => dataa,
add_sub => add_sub,
datab => datab,
overflow => sub_wire0,
result => sub_wire1);

END SYN;

Figure 13. VHDL code for the ADD_SUB LPM.

The modified VHDL code for the adder/subtractor design is given in Figure 14. It incorporates the code in Figure 13
as a component. Put this code into a file addersubtractor2.vhd under the directory tutorial_lpm. The key differences
between this code and Figure 2 are:

14 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

• The statements that define the over_flow signal and the XOR gates (along with the signal H) are no longer
needed.

• The adderk entity, which specifies the adder circuit, is replaced by megaddsub entity. Note that the dataa and
datab inputs shown in Figure 6 are driven by the G and Breg vectors, respectively.

• AddSubR signal is specified to be the inverted version of the AddSub signal to conform with the usage of this
control signal in the LPM.

LIBRARY ieee ;
USE ieee.std_logic_1164.all ;

-- Top-level entity
ENTITY addersubtractor2 IS

GENERIC (n : INTEGER := 16) ;
PORT (A, B : IN STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;

Clock, Reset, Sel, AddSub : IN STD_LOGIC ;
Z : BUFFER STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
Overflow : OUT STD_LOGIC) ;

END addersubtractor2 ;

ARCHITECTURE Behavior OF addersubtractor2 IS
SIGNAL G, M, Areg, Breg, Zreg : STD_LOGIC_VECTOR(n-1 DOWNTO 0) ;
SIGNAL SelR, AddSubR, over_flow : STD_LOGIC ;
COMPONENT mux2to1

GENERIC (k : INTEGER := 8) ;
PORT (V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;

END COMPONENT ;
COMPONENT megaddsub

PORT (add_sub : IN STD_LOGIC ;
dataa, datab : IN STD_LOGIC_VECTOR(15 DOWNTO 0) ;
result : OUT STD_LOGIC_VECTOR(15 DOWNTO 0) ;
overflow : OUT STD_LOGIC) ;

END COMPONENT ;
BEGIN
-- Define flip-flops and registers

PROCESS (Reset, Clock)
BEGIN

IF Reset = ’1’ THEN
Areg <= (OTHERS => ’0’); Breg <= (OTHERS => ’0’);
Zreg <= (OTHERS => ’0’); SelR <= ’0’; AddSubR <= ’0’; Overflow <= ’0’;

ELSIF Clock’EVENT AND Clock = ’1’ THEN
Areg <= A; Breg <= B; Zreg <= M;
SelR <= Sel; AddSubR <= NOT AddSub; Overflow <= over_flow;

END IF ;
END PROCESS ;

Figure 14. VHDL code for the circuit in Figure 3 (Part a)

Intel Corporation - FPGA University Program
March 2019

15

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

-- Define combinational circuit
nbit_addsub: megaddsub

PORT MAP (AddSubR, G, Breg, M, over_flow) ;
multiplexer: mux2to1

GENERIC MAP (k => n)
PORT MAP (Areg, Z, SelR, G) ;

Z <= Zreg ;
END Behavior;
-- k-bit 2-to-1 multiplexer
LIBRARY ieee ;
USE ieee.std_logic_1164.all ;
ENTITY mux2to1 IS

GENERIC (k : INTEGER := 8) ;
PORT (V, W : IN STD_LOGIC_VECTOR(k-1 DOWNTO 0) ;

Selm : IN STD_LOGIC ;
F : OUT STD_LOGIC_VECTOR(k-1 DOWNTO 0)) ;

END mux2to1 ;
ARCHITECTURE Behavior OF mux2to1 IS
BEGIN

PROCESS (V, W, Selm)
BEGIN

IF Selm = ’0’ THEN
F <= V ;

ELSE
F <= W ;

END IF ;
END PROCESS ;

END Behavior ;
-- 16-bit adder/subtractor LPM created by the MegaWizard
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.lpm_components.all;
ENTITY megaddsub IS

PORT (add_sub : IN STD_LOGIC ;
dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC);

END megaddsub;

Figure 14. VHDL code for the circuit in Figure 3 (Part b).

16 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

ARCHITECTURE SYN OF megaddsub IS
SIGNAL sub_wire0 : STD_LOGIC ;
SIGNAL sub_wire1 : STD_LOGIC_VECTOR (15 DOWNTO 0);
COMPONENT lpm_add_sub
GENERIC (lpm_width : NATURAL;

lpm_direction : STRING;
lpm_type : STRING;
lpm_hint : STRING);

PORT (dataa : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
add_sub : IN STD_LOGIC ;
datab : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
overflow : OUT STD_LOGIC ;
result : OUT STD_LOGIC_VECTOR (15 DOWNTO 0));

END COMPONENT;
BEGIN

overflow <= sub_wire0;
result <= sub_wire1(15 DOWNTO 0);
lpm_add_sub_component : lpm_add_sub
GENERIC MAP (lpm_width => 16,

lpm_direction => "UNUSED",
lpm_type => "LPM_ADD_SUB",
lpm_hint => "ONE_INPUT_IS_CONSTANT=NO,CIN_USED=NO")

PORT MAP (dataa => dataa,
add_sub => add_sub,
datab => datab,
overflow => sub_wire0,
result => sub_wire1);

END SYN;

Figure 14. VHDL code for the circuit in Figure 3 (Part c).

Ensure addersubtractor2.vhd has been included in the project. To do so, select Project > Add/Remove Files in
Project to reach the window in Figure 15. If the file addersubtractor2.vhd is not already listed as being included in
the project, browse for the available files by clicking the button ... to reach the window in Figure 16. Select the file
addersubtractor2.vhd and click Open, which returns to the window in Figure 15. Click Add to include the file and
then click OK. Now, the modified design can be compiled and simulated in the usual way.

Intel Corporation - FPGA University Program
March 2019

17

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

Figure 15. Inclusion of the new file in the project.

18 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

Figure 16. Specify the addersubtractor2.vhd file.

Intel Corporation - FPGA University Program
March 2019

19

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

6 Results for the Augmented Design

Compile the design and look at the summary, which is depicted in Figure 17. Observe that the modified design is
implemented with a similar number of logic elements compared to using the code in Figure 2.

Figure 17. Compilation Results for the Augmented Circuit.

20 Intel Corporation - FPGA University Program
March 2019

https://www.altera.com/support/training/university/overview.html

USING LIBRARY MODULES IN VHDL DESIGNS For Quartus® Prime 18.1

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Avalon, Cyclone, Enpirion,
MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications
in accordance with Intel’s standard warranty, but reserves the right to make changes to any products and services
at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers
are advised to obtain the latest version of device specifications before relying on any published information and
before placing orders for products or services.

*Other names and brands may be claimed as the property of others.

Intel Corporation - FPGA University Program
March 2019

21

https://www.altera.com/support/training/university/overview.html

	1 Introduction
	2 Background
	3 Example Circuit
	4 Library of Parameterized Modules
	5 Augmented Circuit with an LPM
	6 Results for the Augmented Design

