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Summary. The relative linear polarization of protons from two-
quantum annihilation of positrons in copper was measured by Compton
scattering. Measurements of the angular distribution of Compton-scattered
photons arriving in coincidence were carried out over a wide range of
scattering angles, both polar and azimuthal. The results agree with
standard quantum-mechanical calculations assuming opposite parity of the
electron and the positron. This result has implications regarding hidden-
variable theories in quantum mechanics. A theorem by Bell restricts the
values that any local hidden-variable theory can predict for certain rela-
tions between measurements made on correlated systems such as the
photon pair from positron annibilation. It is shown that the distribu-
tions we observed could not give results allowed by Bell’s theorem if
the photons were measured by ideal polarization analyzers, assuming
the correctness of the usual quantum-mechanical Compton-scattering
formulae. Our results are thus evidence against local hidden-variable
theories.

1. — Introduction.

A measurement has been made of the relative linear polarization of the
photons emitted when a positron annihilates at rest. The results of this exper-

(*) To speed up publication, the authors of this paper have agreed to not receive the
proofs for correction.
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iment have implications regarding the belief of EINSTEIN and others that it
is possible to find a theory which provides more than the statistical predictions
of quantum mechanics.

When a positron annihilates at rest, conservation of linear momentum re-
quires the creation of more than one photon, usually two photons with equal
and opposite momenta. The polarization states of the two photons are also
related, as was first show by WHEEFLER (}). YANG (2) showed that this was
a eonsequence of invariance under rotation and parity transformations. Sup-
pose that the two annihilation photons are moving in opposite directions along
the z-axis, and assume that the electron and positron have opposite parities.
The allowed linear polarization state is

XY —|YX)
— 5 :

(1)

where the symbol | XY) denotes a state with photon No. 1 polarized in the
a-direction and photon No. 2 polarized in the y-direction, and |YX) denotes
a state with photon No. 1 polarized in the y-direction and photon No. 2 polar-
ized in the x-direction. The linear polarizations of the two photons are some-
times said to be «at right angles to each other ».

It would be very convenient to demonstrate this with standard optical
tools like polaroids or birefringent crystals. However, such ideal polarization
analyzers do not exist for the high-energy gamma-rays emitted in positron
annihilation. Therefore, one must use Compton scattering to measure the rela-
tive polarization of the photons. To see why Compton scattering acts like a
linear-polarization analyzer, consider the classical analogue of Compton scat-
tering, which is Thompson scattering. When a linearly polarized wave hits
an electron, the electron vibrates in the direction of the electric vector and
radiates like a dipole, so that scattered rays tend to be perpendicular to the
electric vector. Returning to the quantum-mechanical description, one might
guess that finding a scattered photon at a certain angle corresponds to finding
the linear polarization at the perpendicular angle. Thus, in the case of the two
photons, which are « polarized at right angles », one might guess that the scat-
tered photons would tend to scatter in perpendicular directions.

The experimental arrangement used to investigate this is shown schemat-
ically in Fig. 1. The positrons annihilate between two scatters. The emerging
annihilation photons are scattered by them into two detectors. If the two
photons are polarized at right angles to each other, then one expects a maximum
coincidence counting rate when the difference in azimuthal angle (p,— ¢;)
between the detectors is 90°.

() A.WHEELER: Ann. New York Adcademy of Sciences, 48, 219 (1946).
(3) C. N. YanG: Phys. Rev., 77, 242 (1950).
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Fig. 1. — Schematic view, to scale, of the experimental arrangement. The lead col-
limator is omitted. @) Fourfold coincidence event (N-event); b), ¢) threefold coincidence
events (n;- and n,-event respectively); d) detail of scatterers S, S,.

The explicit expression for the probability of detecting a pair of scattered
photong in this geometry given polarization states before scattering as in
eq. (1) was first worked out by PrYCE and WARD (3).

Let the line connecting the source and the two scatterers be the z-axis.
When a pair of annihilation photons moving in opposite directions along the
z-axis scatter off electrons in the scatterers §; and 8,, let the scattering angles
with respect to the z-axis be 6, and 0, and let the azimuthal scattering angles
be @, and D,, as shown in Fig. 1. Since the kinematics of Compton scattering
give a definite relation between the scattering angles 0, and 0, and the energies
of the two photons after scattering F, and E,, one can write the probability of
finding the two scattered photons as a function of E,, E,, @, and &,:

@) PEBG,D) = FE)FE)L—n(B)n(E,) cos2(@,— By,

(3) M. H. L. Pryce and J. C. WARD: Nature, 160, 435 (1947); see also H. 8. SNYDER,
S. PasTERNAK and J. HORNBOSTEL: Phys. Rev., 73, 440 (1948).
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where F(F) is the usual Klein-Nishina cross-section for Compton scattering
of a photon with initial energy equal to one electron rest mass and final
energy K, and m(E) is a function plotted in Fig. 6 whose explicit form is
given in the Appendix. For photons from two-quantum annihilation, m(E)
has a maximum value when E is just above half an electron rest mass
(6 = 82°). The @-dependence of the countingg rate is therefore of the form
[1+ A cos2(P,— P,)], with the coefficient A of the cos 2@ term depending
on the energy (or angle 0) of the scattered photons.

Using aluminum scatterers and anthracene detectors, WU and SHAKNOV (%)
meagured this @-dependence is early as 1950 and found good agreement with
theory, showing that the electron and positron did have opposite parity.
However, the inefficient detectors available at the time required collection of
events over a wide range of scattering angles and thus large corrections for
geometrical effects. Later, in 1960, LANGHOFF (°) did a thorough measurement
with good geometry at many azimuthal angles, but it still might be argued
that the agreement he found at one particular value of ¢ (polar angle § = 82°)
was fortuitous. Our aim was to test the predictions of quantum mechanics
for this distribution over a range of scattering angles with as few uncertainties
about normalization or geometrical corrections as possible.

The reason why it is worth-while to lavish so much attention on this measure-
ment is because it is often referred to in discussions of « hidden ~variable »
theories in quantum mechanics. The implications of this experiment for such
theories have been discussed by one of us elsewhere (%?), so we will only out-
line them briefly here.

In a well-known paper published in 1936 EINSTEIN, PODOLSKY and ROSEN (3)
critically examined the usual quantum-mechanical treatment of measurement
of two noncommuting variables in a system of two particles which had in-
teracted in such a way that measurements on them were correlated even though
the particles had separated before the measurement. They conclude that
the «real, factual situation » which they assumed must exist independent of
our observations could not possibly be completely described by quantum me-
chanics. They were answered by many critics but the argument remained
mostly on a philosophical level, without any experimental tests being proposed.
Then in 1957 BoaM and AHARONOV (*) pointed out that the relative polariza-

(Y) C. 8. Wu and I. SHAEKNoOV: Phys. Rev., 77, 136 (1950). Earlier measurements were
made by: E. BLeurer and H. L. BRaDT: Phys. Rev., 73, 1398 (1948); R. C. HaANNa:
Nature, 162, 332 (1948).
() H. LANGHOFF: Zeits. Phys., 160, 186 (1960).
L. Kaspay: Rendiconti S.I.F., Course IL (New York, N. Y., and London, 1971).
L. Kaspay: Thesis, Columbia University (1972).
(8) A. EinstEIN, N. RosEX and B. Poporsky: Phys. Rev., 47, 777 (1935).
D. BOHM and Y. AHARONOV: Phys. Rev., 108, 1070 (1957); Nuovo Cimento, 17,
(19
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tion of annihilation photons was an example of the kind of situation discussed
by EINSTEIN, PODOLSKY and RoSEN. They were able to show that the measure-
ments of WU and SHAKNOV were sufficient to rule out certain hypothetical
modifications of quantum mechanics motivated by Einstein’s ideas. In 1964
BELL (1%) showed that a whole class of such theories, known as local hidden-va-
riable theories, could be tested by experiment. Bell’s theorem placed limits
on the values that any such theory could predict for certain correlations among
measurements that might be made on system of the Einstein-Podolsky-Rosen
type. We will show in Sect. 3 that this experiment is not ideal for testing Bell’s
theorem, but it does make any theory that satisfies Bell’s theorem and repro-
duces our results look quite artificial.

2. — Methods and results.

2'1. Experimental method. — The experimental arrangement is shown in
Fig. 1 and 2. Positrons were emitted by a radioactive source, stopped and
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Fig. 2. — a) Collimator, source holder and source. The 0.5 in diameter cavity prevents
events of the type shown in b). Note the expanded horizontal scale in b).

annihilated (in copper) at 0. The annihilation gamma-rays were emitted in
all directions; the vertical direction was selected by a lead collimator which is
omitted in Fig. 1 but is drawn in Fig. 2. Events were sought in which the

(19 J. 8. BELL: Physics, 1, 195 (1964).
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annihilation photons Compton-scattered off electrons in S, and 8, and entered
detectors D, and D,, which measured their energies. Lead slits selected the
range of azimuthal angles @, and @, which were accepted. The top slit-detector
assembly was rotated to vary the relative azimuthal angle.

False background events were virtually eliminated by making the scat-
terers out of plastic scintillators (!): we required a 4-fold time coincidence
among the two scatterers and the two detectors, and also imposed a «sum
energy requirement » that the total energy deposited in each scatterer plus
detector equal the energy of the annihilation photon.

Instead of simply measuring the coincidence rate as a function of azimuthal
angle (&, — @,), we measured the quantity R defined by

N|N
3) Rippsesed) = G s
where
N, =number of times the two photons Compton-seatter,
N = number of times the two photons Compton-scatter and both photons

are dectected,

n, = number of times the two photons Compton-scatter and only photon 1
is detected,

n, == number of times the two photons Compton-scatter and only photon 2
is detected,

@1, .= the azimuthal angles at which the lead slits are positioned (to be
distinguished from @,, @, which refer to the photons);

e,, e, — the outputs of the energy detectors D, and D, (to be distinguished
from E, and FE,, the «real » photon energies).

If it is assumed that the source, scatterers and detectors are very small, the
polarizations of the photons are as in eq. (1) and each photon Compton-scat-
ters once in each scatterer, calculating R with the appropriate Compton-
gcattering cross-section gives

(4) B(p1@,) = 1 — m(e;) m(e,) o8 2(p, — ;) .

This is just the @D-dependent term of eq. (2). For comparison of our results
with theory, the quantity R has a number of useful properties:

1) If the momenta of the scattered photons were uncorrelated, B would
equal 1. Deviations of B from 1 correspond to correlations between the mo-

(11) This arrangement had been used earlier by LANGHOFF (see note (5)).
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menta. Assuming constant source strength and geometry, R is proportional
to the coincidence counting rate, as measured in earlier experiments.

2) A number of instrumental effects that would disturb a simple measure-
ment of the coincidence counting rate cancel out of the expression for R, for
example, variations in source strength and slit width (to first order).

For our experiment with real slits and detectors the expression for B must
be moedified by a number of geometric eorrections of the order of a few percent
in size. These will be discussed in Subsect. 2°3.

2'2. Detailed description of the experiment.

2'2.1. Radioactive sources. °®*Cu positron sources were used for the
data-taking runs. Their 3t-activity at the beginning of the runs was 10 mCi.
The main features of the ¢¢Cu decay scheme, Fig. 3, are a 12.8 h half-life, a

12.8h

05%BhHEC

1.34 MeVv

19°/op+

43°%EC

;L_L

64, .
zeN'

Fig. 3. - Decay scheme of %Cu.

19 %, B* branching ratio, and ~1 MeV gamma-rays accompanying 0.5 % of
the positron emissions. The sources were made of ¥in. diameter, % in.
thick natural-copper discs, which were neutron irradiated. Natural copper
could be used since it contains 69 %, ¢*Cu. (The irradiation was performed at
the Industrial Reactor Laboratories.)

For energy calibration we used the 122 keV *’Co line and the 511 keV 22Na
line. Two pairs of sourees were made, one for each counter. These pairs were
held at standard positions with respect to the counters during calibration runs.
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2'2.2. Sourece holder and collimator. The source was supported by
a brass holder which slid into a rectangular hole in the lead collimator,
Fig. 2. (This rectangular hole is perpendicular to the plane of the paper.) The
positrons were stopped and annihilated in the source and in a thin layer of
the surrounding holder material. Holes in the lead of 0.2 in. diameter colli-
mated the annihilation photons; these holes were enlarged to 0.5 in. diameter
near the source to avoid the events shown in part b) of the Figure.

If one of the annihilation photons underwent large-angle Compton scat-
tering inside the collimator, its momentum would no longer be opposite the
other photon’s momentum, so both photons could not escape the collimator.
This event would not be counted and was of no concern.

A photon could scatter through a small angle in the collimator, emerge
and reach the scatterer. To set a limit on how many did so, we examined the
energy spectrum of the emerging photons, using a lithium-drifted germanium
detector. We required a coincidence between the Ge(Li) detector and a plastic
scintillator placed below the collimator. The spectrum was compared to the
spectrum taken without the collimator. Scattered photons comprised at most
a few percent of all those reaching the scatterer position. Furthermore, photons
scattering through such small angles lose only a few percent of their polariza-
tion. Hence, the net effect of small-angle Compton scattering in the collimator
is only (a few per cent)?~10-3, which is negligible in this experiment.

2'2.3. Scatterers. The length of each scatierer was large enough (1.5in.)
for 33 9, of the entering photons to Compton-secatter, but it was necessary to
keep the diameter small to minimize the chance of the photons seattering a
second time.

We used a conical scatterer surrounded by a slightly larger econical light
reflector, coated on the inside with MgO (for efficient, diffuse reflection), ¥ig. 1.
Total internal reflection in the scintillator tends to send light toward the light
pipe, and the MgO reflects most of the remaining light. The resolution for 90°
scattered photons was 309, full width at half the maximum of the peak.

2'2.4. Azimuthal angle defining slits. The slits were made of lead
and were 0.48 in. thick. The inside edges were « aimed » at the axis of the col-
limator to minimize scattering. The top slit and the detector behind it were
mounted so they could rotate about the axis of the collimator. The slits sub-
tended an angle of about 20° at the source.

2'2.5. Detectors and electronics. The detectors were 2 in. diameter
by 2in. long Nal ecrystals made by Harshaw, used with Radio Corpora-
tion of America (R.C.A.) type 8575 bi-alkalai 12 stage phototubes. The func-
tion of the electronies was to collect the numbers required to calculate R
(defined in eq. (3)) for a given set of values of ¢, and ¢,, the measured energies
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of the two scattered photons after scattering. These include a two-parameter
¢, vs. e, spectrum of the 4-fold coincidence events, ¢, and e, spectra for the 3-fold
coincidence events and the total number of 2-fold coincidences between the
scatterers only.

A simplified block diagram of the electronies is shown in Fig. 4. Discrim-
inators connected to the fast outputs of the photomultipliers generated the
fast logie pulses §; and 8, from the two scatterers, and D, and D, from the two
Nal detectors. The fast (8,8.) logic pulses were generated from the 8, and
S, pulses by a fast AND (21 ns resolving time) and counted by a scaler. The
fast logic pulses (8,8,D;) and (8,8.D,) were also generated.

The slow outputs of the photomultipliers were stretched and amplified to
form the slow analogue pulses s, and s, from the scatters, and d, and d, from
the Nal detectors. Because of the high singles rate in the scatterers, the
s; and s, stretchers were gated by the (8,8,D,) and (8,8,D,) coincidence
pulses respectively. This made it necessary to run the inputs of these two
stretchers through delay lines.

The s, and d, analogue pulses were then summed. This gave the total energy
left in the scatterer and detector by a scattered photon, which should add up
to e,,— one electron mass (0.511 MeV). An observed spectrum of these sum
pulses is shown in Fig. 5. The sum was fed to a single-channel analyzer (SCA).

countsfchannel

] L
0 0.5 1.0 1.5
ele,

Fig. 5. — Typical sum energy spectrum. e=energy deposited in scatterer and energy
deposited in detector; e, —=energy of annihilation gamma-ray.

When the sum pulse was between 0.83e, and 1.17e, the logic pulse X, was
generated. Then the slow logic pulse (S,8,D,2,) was generated, and sent to
a scaler and the gate of the ¥ ADC (analogue to digital converter) of the MCA
(multichannel analyzer). Similar, the slow logic pulse (8,8,D,2,) was gen-
erated and sent to a scaler and the X ADC gate.

The analogue pulses d;, and d, were fed to the analogue inputs of the Y
and X ADC’s respectively. The ADC’s digitized d, and d, to form e, and e,
whenever a logic pulse appeared at their respective gates. If one and only
one of the ADC gates was opened, the corresponding e, or e, pulse would be
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added to the appropriate 1-parameter spectrum. If both ADC gates were
opened in coincidence (within 1.5 us), the (e, ¢,) pulse pair would be added
to the 2-parameter spectrum. Thus, the logic requirement on the pulses in
the 2-parameter spectrum was

[(SIS2D121) : (S1S2D222)] == (3182D1D2)2122 ’

the desired 4-fold coincidence requirement. The 1-parameter spectra did not
actually contain all the pulses which satisfied the 3-fold coincidence requirements
[(8,8,D,2)), (8,8, D, %,)]; the 4-fold coincidence events were missing, The
missing events were added later using the computer in the MCA.

The scalers were gated with the « busy » output of the MCA so that they
would only count when the MCA was accepting pulses.

2'3. Corrections to R.

2'3.1. Types of corrections considered. With point scatterers and
detectors and perfect collimators, the measured ratio of coincidence eounting
rates R as defined in eq. (3) would be given by eq. (4), which may be rewritten as

R= A+ Bcos2(p,— 1)

with 4A=1 and B = m(e,)m(e,).

Our nonideal geometry introduced two classes of corrections to this ex-
pression. First there are effects which simply change the value of 4 and B.
These include the effective angular widths of the slits which select photon
azimuthal angle, the combined effect of the finite-energy resolution of the
detectors and the energy intervals selected for analysis, the possibility of pho-
tons scattering more than once in the scatterer and the «axial » correlation
between the points where the two photons scatter. Then there are corrections
for factors which change the form of the angular dependence of EB. These factors
include the «radial » correlation between the points in the two scatterers where
the photons scatter, caused by the 180° angular correlation between the photons,
chance coinecidence rates which apparently vary with angle because the average
source strengths happened to be different when measurements were made at
different angles, and apparent variation with angle of the energy intervals
selected by the multichannel analyzer because of electronic drift.

All of these effects were carefully considered and are discussed elsewhere (7).
Most of them gave corrections at the 19, level or lower. The most important
of them will be discussed below.

2'3.2. Effect of angular widths of the slits. The effective widths
of the slits which selected photon azimuthal angles were measured two ways.
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First the slit dimensions were measured with a ruler to obfain « geometric
widths ». Then the « bottom » slit and detector were moved to the top of the
collimator, keeping the distance between the slit and the collimator axis
constant. They were rotated to a pogition approximately opposite the « top »
slit and detector, and & 22Na source was placed on the collimator axis. Since
the annihilation photons emerge at 180° from the 22Na source, « empirical »
slit widths could be obtained by measuring the coincidence rate in the two
detectors as the angle between the detectors was varied. Simple calculations
showed that the geometric and empirical widths led to 6 %, and 59%, reductions
in B respectively; a value of (5 4 0.5) 9% was used.

2'3.3. Effect of multiple scattering in the gcatterers. It is dif-
ficult to compute the effect on R of photons that scatter more than once in
the scatterer, and this was responsible for the major part of the uncertainty
in B. The number of photons which scatter twice and emerge with an energy
of e,/2 (the same energy as photons which scatter once through 90°: ¢,,— one
electron mass) was computed, assuming that the cross-section for each of the
two scatterings was independent of the azimuthal scattering angle, in other
words, polarization information was assumed lost.

The value of B was accordingly multiplied by {1— (no. double scattered)/(no.
single scattered)} to give an upper limit on the reduction in B. The limit
obtained was 79%,: accordingly, we took the reduction in B fo be (3.5 £ 3.5)%,.

2'3.4. Effect of chance coincidences. These were calculated for all
of the AND gates and for each run. Necessary corrections were made; the
maximum correction was 1.3 9.

2'4. Data reduction and results.

2'4.1. Energy spectrum of triple-coincidence events. A typical
energy spectrum of the triple-coincidence events is shown in Fig. 6, with sche-
matic drawings of events associated with different parts of the spectrum. The
factor m{e) of the angular dependence term of eq. (2) is also shown in the Figure.
For single scattered photons the spectrum should have the shape of m(e) multi-
plied by the effect of solid angle and efficiency of the detectors for scattered
photons of energy e. The spectrum should go to zero at ¢, and ¢, where the
photons will miss the counters. A typical true event, with scattering angle
= 90°, hag an energy of 0.5¢, (e, is one electron mass) and is shown as ¢)
in the Figure. However, there is a bump at e= 0.2be¢,, which cannot be
caused by true events.

There are two major contributions to this bump. First, there are events
in which the photon which has scattered in the scatterer proceeds to Compton-
geatter in the detector and escape, thereby leaving only part of its energy in
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the detector as shown in @) in the Figure. These events have a spectrum which
would normally extend from 0 to about 0.25e¢,, except that the lower-energy
events are vetoed by the sum energy requirement. Of the order of 159, of
the events with energy 0.25e¢, leak through because of the finite resolution of
the detectors. The common event shown, in which a photon scatters through
90° and then backscatters out of the detector, has an energy of exactly 0.25¢,,,
the energy of the bump.

h
m(e) L
- —
i a)
0.5+
. —)4
a”)
i e
++
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o+t g
0 { Y, ! 1 >

b) ¢) d)

Fig. 6. — Spectrum of threefold «n, »-coincidence events n(e) and typical events con-
tributing to various parts of the spectrum. The amplitude of the (cos 2¢)-dependence
of R is proportional to the theoretical function m(e) shown as a solid line.

Then there are events in which the photon scatters twice in the scatterer
before being totally absorbed by the detector as shown in a’). These have
an energy spectrum which extends from 0.2 to 1.0¢,,. The energy spectrum
of these events rises at low energies, with peaks expected near 0.25¢,, and 0.5¢,,.
Thus these events, especially the event shown as a'), contribute to the 0.25¢,
bump. In Subgect. 2°3.3 and upper limit of 79, for the contribution of the
false events near 0.5¢, was obtained.

2°4.2. Measured angular correlations of scattered photons (R).
First the angular-correlation function R was computed using the total numbers
of threefold and fourfold coincidence events in eq. (3). That is, included in ¥,
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n, and n, were all events which satisfied the appropriate time coincidence and
sum energy requirements. The numbers were obtained from the correspond-
ing scalers.

There were corrections which changed the form of the theoretical R wvs.
@ curve (see Subsect. 3'3.1) due to correlation between the points where the two
photons scatter, and accidental coincidences. Each experimental value of R
was moved by an amount equal in magnitude but opposite in sign to the cor-
rection to the corresponding theoretical value of R. These corrections were
small, ~ 0.01, but comparable to the statistical accuracy. After these cor-
rections are made, R should exhibit a (cos2¢)-dependence; therefore, the ex-
perimental values of B were plotted against ¢. As expected, the points could
be fitted by

R=A-—-Bcos2¢, A=1.0071 4- 0.0036 (corrected data),
B =0.3419 4 0.0051
(y2/degrees of freedom = 0.84 (10 degrees of freedom: p = 0.6)) .

The observed R vs. ¢ is plotted in Fig. 7. Agreement with the expected cosine
behavior is excellent: indeed, better than we would have expected, since de-
viations due to misalignments were estimated to be a few percent. We there-
fore neglected any error in B due to misalignment.

It was also our intention to measure the angular correlation as a function
of the energy e (or scattering angle 0) of the scattered photons so R was also
calculated for restricted regions of the energies ¢, and e, of the two scattered

0.5 1 | L | |
—%0 —60 —30 0 30 60 90

p(degrees)

Fig. 7. — Plot of experimental values of R vs. relative azimuthal angle. E was computed
from the total numbers of fourfold and threefold coincidence events. These data verify
the prediction of quantum mechanics that B vs. ¢ can be fitted by A+ B cos2¢,
with§4, B adjustable. The best fit is shown as a solid line (y2?/degrees of freedom =0.84).
@=@¢,— @, o typicalk lo error.
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photons. The coefficient B in the angular-correlation function R is larger for
these restricted regions than for the average over the whole distribution, but
the statistics are naturally not as good.

1.0 —
e, /ey
7 32
114
065-——
_l T 1 1 l T 1 T T
0 0.5 efe, 10

Fig. 8. — The four energy regions chosen to study the amplitude of the cosine depen-
dence of E. The quantities e, e, are the energies of the scattered photons; e, =1
electron mass.

We chogse four energy regions, as shown in Fig. 8. With the techniques
just described B was computed for each region and corrections were applied.
One additional correction was needed. The limits of the energy regions
were fixed at certain channels in the MCA, and as the experiment progres-
sed, the actual energies corresponding to these channels drifted by several
percent. To compensate for this, calibration spectra were taken before and
after each run; the change in R which was caused by the drift was caleulated
using the theoretical R vs. energy spectrum. The data points were then moved
the same amount in the opposite direction. The theoretical and experimental
values of the parameters A and B of the straight-line fits are displayed in
Table I. Region 1 was chosen at the maximum of m(e). Since regions 3 and 4
are symmetric when the energies of the two scattered photons are interchanged,
the R’s of these regions were added. Any systematic deviations from the cosine
form are less than or equal to the statistical uncertainties, so they cannot be

TaBLE 1. — Comparison of experimental A and Bj4 with theory.

Region Theory Experiment 23
A B/A 4 B/A

1 1.004+0.05 0.415+0.015 1.0214+0.010 0.4094-0.018 1.1

2 1.004-0.05 0.37240.010 0.9844-0.019 0.392 +0.030 0.7

344 1.0040.05 0.395+0.015 1.0204-0.010 0.3904-0.017 1.5

(n'= degrees of freedom = 2)
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parametrized. Therefore, the errors quoted in the straight-line fits, which are
purely statistical, would be doubled to account for the possible systematic errors.

2'4.3. Comparison with the predictions of quantum mechanics.
The form of R given in eq. (4) must be modified by the corrections discussed
in Subsect. 2°'3.1 to compare our results with the predictions of quantum me-
chanics. When this is done, R takes the form

(5) R=A— Bcos2gp,

with BjA = (m,+ Am,)(,-+ Am,)A — &,)(1 — e.)(1 —¢,), and A= 1 correc-

tions due to Z-correlations,

Am,, AT, are the finite-energy regolution corrections,

M is the correction for finite angular resolution,

Em is the correction for photons scattering more than once in the
scatterer and

& is a correction due to correlation between the points where the two
photons scatter.

The values of m,, m,, Am,, AT, were found by numerical integration over
the spectra of the triple-coincidence events. The integration used to find these
quantities can be viewed as finding the weighted average of m(¢), using the triple-
coincidence spectrum as the weighting function. For the evaluation of R over
the entire spectrum we refer again to Fig. 6, containing a triple-coincidence
spectrum and a plot of m(e). The events in and near the bump at ¢, , discussed
above, had an unknown angular distribution. Therefore, we used the value
of m, obtained by integrating from e¢= 0.33¢, to H = ¢,: m,= 0.601. Since
0<m<0.69 and the events below 0.33¢, amounted to 159, of the total counts,
the possible error caused by the pump is given by

0.51 <m;<0.60,
or
m,= 0.56 4 0.04,
similarly
m,= 0.58 + 0.03 .

The values of Am, and Am, were found to both be 0.016. The finite-angle
factor e, was found to be

£, = (4.5 + 0.5)%.
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Also, the reduefion in the effect due to the annihilaiion photons scattering
more than once in the scatterer was found to be

em= (3.5 + 3.5)%,.

The correction to B due to correlation between the points where the two photons
scatter was found to be

e,—= 0.006 .
The net result for the theoretical B is
B=10.32 +£0.05,
thus the theoretical prediction becomes

BJ/A=0.32 4 0.05,
A=1.0040.05.

There is agreement within the quoted uncertainties between the theoretical
and experimental values of A and B/A.

Similar calculations of A and B where carried out for the restricted energy
regions and the results are given in Table I. In these cases the theoretical un-
certainties were smaller, though the experimental statistics are not as good.
Here also our results are in good agreement with the predictions of guan-
tum mechanics.

Detailed evidence for the theoretical R vs.cos2¢ dependence is best pro-
vided by the excellent fit to R for the total region Fig. 7, because of its good
statistics and freedom from uncertainties due to energy vs. channel drift. Evi-
dence that the magnitude of the cosine dependence is in accordance with
the quantum-mechanical prediction is provided by the excellent agreement
between the theoretical and experimental values of B/A for the energy regions,
Table I.

3. — Conclusions,

3'1. Bell’s theorem. — As was mentioned in the Introduction, our results
are related through Bell’s theorem to the possibility of constructing a physical
theory that describes the «real factual situation » of EINSTEIN, POoDOLSKY and
RoSEN. We will very briefly outline the arguments leading up to Bell’s theorem,
state the theorem and define the terms used in it.

It is, of course, well known that the quantum-mechanical description of
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a given state of a physical system cannot specify with certainty the result of
all possible measurements that can be made on the system. For example, if
the position of a particle is specified with certainty, only a probability distri-
bution is specified for the momentum. EINSTEIN, PODOLSKY and ROSEN argued,
in effect, that associated with any physical system was a set of variables which
determine with certainty the results of all possible measurements. -Such va-
riables are sometimes referred to as «hidden wvariables ».

It might appear that to disprove the existence of hidden variables is to
perform the impossible task of disproving the null hypothesis. But in 1964
BELL (%) showed that a certain ideal experiment could rule out all «local »
theories of hidden variables. A local theory satisfies the locality postulate:
a measurement made on a physical system does not influence the values of the
hidden variables that determine the results of measurements on another,
« distant » physical system.

Bell’s theorem may be stated as follows: consider two measuring instru-
ments 4 and B. Instrument A performs measurements on one physical system,
and the other B performs measurements on a «distant » physical system.
Instruments 4 and B have « knobs » which are set to positions ¢ and b, respec-
tively. The locality postulate requires that the knob setting a has no effect
on measurement B and vice versa. According to the version of his theorem that
BELL proved in 1970 and discussed in his review of the hidden-variables ques-
tion (12), when locality holds

(6) |t B | -+ oo — o By <2,

where

o, is an output of A and when its knob is at position 4,
B, is an output of B when its knob is at position §,

a,f, is the mean over many trials of «.f,.

BELL pointed out that his inequality would be violated if instruments A
and B «perfectly » measured the spin components (selected by knob settings
a and b) of two spin-7 particles in a state of zero total spin. (« Perfect » measure-
ments are defined to produce the value +1 or —1 when either value of a two-
value observable, such as the z-component of spin of a spin-3 particle, is en-
countered.) BoHM (%) had previously shown that such measurements demon-
strated the Einstein-Podolsky-Rosen « paradox ». BoHM and ABARONOV (?)
pointed out that «perfect » measurements of the linear polarization of pho-
tons produced in positron annibilation were essentially equivalent to such spin
measurements. Suppose we place a source of annihilation photons between

(**y J. 8. BELL: Rendiconti S.I.F., Course IL. (New York, N. Y., and London, 1971).
(1*) D. BouM: Quantum Mechanics (New York, N. Y., 1951).
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two « perfect » detectors of linear polarization. Define the quantities o and S
in eq. (6) as the outputs of the two detectors, and & and b as the angles the
detectors’ axes make with the horizontal plane. A simple quantum-mechanical
calculation yelds

af = — cos2(a—b);

if we substitute
2a=0°, 2b=135°, 2¢=45°, 2d=90°
into Bell’s inequality, eq. (6), we obtain
2v/2<2.

The inequality is violated. Therefore if the quantum predictions are correct,
a hidden-variable theory would be ruled out.

Unfortunately, this experiment cannot be realized. No ideal polarization
detectors (1¢) have yet been found for annihilation photons (or for the optical
photons involved in an analogous experiment discussed by HORNE (*) and
CLAUSER, HORNE, SHIMONY and HoLt (**)). Consider, for example, Compton
polarimeters. The output of a Compton-polarization measurement is either
« a photon was scattered into the gamma detector » or «the photon was not
scattered into the gamma detector ». In order to apply Bell’s inequality directly
to the polarimeter outputs, it is necessary to assign numerical values to the
possible outputs. For example, the output A of one detector might be defined
as 4 1 (— 1) when the scattered photon hits (does not hit) the gamma detector;
and the output B of the other detector can similarly denfied. Also, the quanti-
ties a, b in P(a,b) can be taken as the angular placements of the gamma
detectors. But when this is done, it turns out that the P(ab) that results does
not violate Bell’s inequality (*). Hence, for these definitions of A and B, a
direct application of Bell’s inequality to the instrumental outputs cannot rule
out local hidden-variable theories.

One might think that some other definitions of A and B, or some clever
arrangement of many gamma detectors could circumvent this difficulty. But
this is not the case, for it is possible to construct an ad hoc local hidden-va-
riable theory that reproduces all the results of Compton scattering of annihi-

(%) Actually an ideal analyzer need not exist. There could in principle exist an « almost
ideal analyzer » which not be perfectly efficient but would produce outputs which would
violate Bell’s inequality. But no one has found such an « almost ideal analyzer » either.
(**) M. A. HorNE: Thesis, Boston University (1969).

(*¢) J. F. CLAUSER, M. A. HORNE, A. SHIMONY and R. A. Hour: Phys. Rev. Leit., 23,
880 (1969).
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lation photons. Therefore, no direct analysis of Compton scattering eould
possibly violate Bell's inequality. BELL (") has produced a counter-example
in which the correlation between the scattering events at the two detectors
arises from their dependence on a single hidden variable. The model repro-
duces the quantum predictions for all momentum measurements that could
be made on the two scattered photons. Clearly no function of momentum meas-
urements, including any P(ab), could ever violate Bell’s inequality. Hence,
no such Compton-scattering experiment can absolutely rule out a local hidden-
variable theory. Bell’s counter-example does not apply when the photons
have energies somewhat lower than the masses of the particles which scatter
them. For this reason BELL suggests that it might be useful to perform the
experiment on photons of different energy. It should be noted, though, that
another counter-example, simpler if perhaps more artificial than Bell’s, is not
subject to this restriction on the photon energy: it is given elsewhere (*7).

Even though a Compton experiment cannot rule out hidden-variable the-
ories, it ean provide strong evidence against them. The following assumptions
can be made:

1) it is possible in principle to construct an ideal linear-polarization
analyzer,

2) the results obtained in an experiment using ideal analyzers and the
results obtained in a Compton-scattering experiment are correctly related by
quantum theory.

Assumption 2) may be clarified as follows. Suppose one or more photons
Compton-scatter. It can be shown that, according to quantum theory, the
angular distribution of the scattered photons ean be computed from the results
which would have been obtained in an ideal polarization analysis of the photons
and wvice versa. The computation involves only the Compton-scattering results
and the ideal-polarization results. No specification of the photon state is neces-
sary. The basis of this proof is given in the Appendix, and the details of the
proof are given elsewhere (7). Assumption 2) is that this relation between the
ideal-measurement results and the Compton results is correct.

SNYDER ¢i al. (2) showed that this relation is possible because when the
photons’ polarizations are resolved into components parallel and perpendicular
to the scattering planes, interference effects between the components vanish
when the Compton scattering is computed. The Appendix uses an alternative
argument, involving parity and angular-momentum conservation. The exper-
imental evidence for the validity of the theory of Compton scattering is dis-
cussed elsewhere (7).

With the aid of assumptions 1) and 2) Bell’s inequality for ideal polarization

(*y J. S. BELL: private communication. Bell's example has been outlined by one of
us elsewhere: see notes (57).
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Fig. 9. — Comparison between experimental (exp) results and quantum (QM) pre-
dictions for B, and the upper limits on B derived from Bell’s inequality and the Bohm-
Aharonov hypothesis. This error bars on the experimental points indicate uncertainties
in instrumental corrections of the various theoretical predictions.

analyzers was used to calculate corresponding restrictions on the angular distri-
bution of Compton-scattered photons. The result was that the value of B
in our expression for R was limited to no more than 1/4/2 of the value predicted
by quantum mechanics. This is shown in Fig. 9.

3’2, The Bohm-Aharonov hypothesis. — Consideration of the FEinstein-
Podolsky-Rosen situation have led BorM and AHARONOV (°) to consider the
hypothesis that quantum theory breaks down in a particular way for widely
separated particles. JAUCH (*8) has shown how considerations involving the
notion of a state in axiomatic quantum theory can also motivate the hypothesis.

BouMm and AHARONOV examined the following hypothesis: that quantum
theory is valid for particles which are close together, but that after the photons
are some «large distance» apart their state vector changes into a product
of state vectors for the individual photons. Then a measurement on photon 1
would effect the state vector of 1 but not the state vector of 2. JAUCH (1)

(18) J. M. JavucH: Rendiconti S.I.F., Course IL (New York, N. Y., and London, 1971).
(1% J. M. JaucH: private communication.
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has remarked that in the case of positron annihilation the «large distance »
involved might be much larger than the coherence length (~ 7 em) of the
annihilation proecess.

BouM and AHARONOV showed that it is impossible in practice to rule out
this hypothesis by means of position and momentum measurements on the
annihilation photons (or on the particles involved in any scattering experiment).
However, the hypothesis can be tested by measuring the linear polarizations of
the annihilation photons. A direct calculation (®)) shows that all mixtures
obeying this hypothesis (with rotational and reflexive symmetry) lead to a
value of B in our expression for R which is less than 1 the value predicted by
quantum mechanics, as shown in Fig. 7 (29).

3'3. Conclusions. — It would be pleasing to be able to say that the results
of this experiment rule out local hidden-variable theories. We cannot say that,
and in fact it appears that no experiment done with currently available tech-
niques could lead to such a definite conclusion. There are two main difficulties,
which will now be discussed with reference to other experiments as well
a8 our own.

First, polarization measurements that are perfect, or sufficiently close to
perfection to directly demonstrate Bell’s inequality, cannot be made. One
must make a measurement with an imperfect instrument and infer from the
measurement what the output of a perfect instrument would have been. The
reasons why this is true for a Compton polarimeter have been discussed here.
One might hope to avoid this problem by doing an experiment at optical fre-
quencies, where better polarimeters are available. This has been done. KOCHER
and CoOMMINS (?!) showed that linear-polarization correlation measurements
on certain atomic cascades demonstrated the Einstein-Podolsky-Rosen « para-
dox ». CLAUSER et al. (1) related this directly to Bell’s theorem and FREEDMAN
and CLAUSER (22) carried out the optical experiment, getting results in agree-
ment with quantum mechanics. However, as CLAUSER et al. point out, the
efficiency of present-day detectors does not allow a direct violation of Bell’s
inequality when polarizing filters and optical photon detectors are used to
measure polarization correlations. The assumption they must make to infer the
response of ideal analyzers from the response of their real ones is that the prob-
ability of detection of a photon is independent of whether it has passed through
a polarizer or reached the detector directly. It would seem that Nature would
be very peculiar if this agsumption were violated. However, the question raised

(*9) It has also been pointed out by J. F. CLAUSER: Phys. Rev. 4, 6, 49 (1972), that
semi-classical radiation theory gives the same prediction as the Bohm-Aharonov
hypothesis.

(?*) C. A. KocrEr and E. D. CommINs: Phys. Rev. Lett., 18, 575 (1967).

(?2) 8. J. FrREEpMAN and J. F. CLAUSER: Phys. Rev. Lett., 28, 938 (1972).
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by this assumption is not trivial. It has been pointed out by PEARL (22) that
unless measurements are made without polarizers, and without making such
an assumption, a hidden-variable theory could be constructed which repro-
duces the predictions of quantum mechanies for such experiments.

In our experiment we do not have to assume anything about the efficiency
of our detectors for photons which do not scatter. However, we must make
two different assumptions: first, that the Compton-scattering equation cor-
rectly relates the distribution of momenta of the scattered photons to the
result that would have been obtained in an ideal experiment (see Appendix),
and, second, that the probability of detecting a photon is independent of the
direction in which either photon scatters. The first of these assumptions looks
less intuitively axiomatic than the one assumption necessary for the Freedman
and Clauser experiment. However, if it were not true, our experiment would
be consistent with a local hidden-variable theory only if there were a large error
in the predictions of quantum mechanics for Compton scattering (if nowhere
else) that had not yet been noticed. We believe that the two experiments re-
quire different assumptions and complement each other as tests of local hidden-
variable theories.

Another problem is: how far apart must the measuring instruments be to
satisfy the locality postulate? This problem has been considered by McGUIRE
and Fry (2¢), who show that it is difficult to construct even a nonlocal hidden-
variable theory if this distance is much larger than the coherence length of the
process that creates the photons. If the coherence length is taken as the length
of the wave train produced during the mean life of the state whose decay pro-
duces the photon, this is about 7 em for positrons annihilating in copper and
more than 1 m for the photons in the cascade described by KoCHER and CoM-
MINS (21) and used in the experiment of FREEDMAN and CLAUSER (22). MCGUIRE
and FRY state that the source-detector distance in the Freedman and Clauser
experiment is larger than the coherence length, but it would appear that this
is not so if the polarization analyzer is included as part of the detector (3).
In our experiment the scatterers are distant from the source by about one
coherence length, and the detectors from the scatterers by about another
coherence length.

APPENDIX

The relation between ideal-polarimeter and Compton-polarimeter results.

Linear-polarization measurements can be made on a photon with either
1) an «ideal » polarization analyzer (in principle), or 2) a Compton polarimeter.

(23) P. M. PEARL: Phys. Rev. D, 2, 1418 (1970).
(3%) J. H. McGuire and E. S. FrY: Phys. Rev. D, 7, 555 (1972).
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An ideal polarization analyzer is defined to produce a unique output,
viz. + 1 (—1), upon measuring a photon with linear polarization parallel
(perpendicular) to the analyzer axis. In contrast, a Compton polarimeter does
not give a unique output for any particular polarization state of the photons.
Instead, such a polarimeter Compton-scatters the photon, and the polarization
of the incoming photon determines the probability that the scattered photon
will be found with various directions of momentum.

There exists a function @ relating ideal and Compton polarization measure-
ments. The existence of @ for measurements on a single photon shall now be
shown to follow from general principles of quantum mechanics, plus parity
and angular-momentum conservation. This existence proof may be extended
to measurements on systems of more than one photon and, if we use the Klein-
Nishina formula, the explicit form of  may be written for such systems. The
details are given elsewhere (7).

A.1. The existence of the relation. — Consider a photon which Compton-seat-
ters off an electron which is initially at rest. The initial state ¥, of the electron-
photon system is given by

(A1) W, = [i>[q| X + | ¥)] = ¢|Xi> + 7| Vi)
where
&> = an electron with zero linear momentum and spin state 1,

|X>, |¥> = a photon with momentum along the z-axis and linear polarization
in the x, y-direction,

q, 1 = numbers, complex in general, normalized so that
(A.2) qq*+rr¥=1.
The final state ¥, of the system is given by

(A.3) v, = |ik> ,
where
k = the momentum of the scattered photon,

j = the polarizations of the recoil electron and scattered photon.

These are the variables which will be summed over to find the final result.
Also let

E, 6, @ = the energy, polar scattering angle and azimuthal scattering angle
of the scattered photon.

The probability dF, for finding a scattered photon with momentum k
is given by

(A4) AFu(gr) = o(B)} 3 3 KPLIS P [2aBdd s,
£ 37
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where

o(&) = the density of final states,
8 = the scattering matrix,

1> = the average over initial electron spin states.
£

Substituting for ¥, and ¥, from eqs. (A.1) and (A.3) we obtain

(A.5) dFy(gr) = o(E)} g |<jk|S|(¢|X> 4+ r|X>)

i PABAD .

657

The differential d0 does not appear in eq. (A.5) because energy and momentum

conservation relates 6 to E. Equation (A.5) may be expanded as

(A.8)  dFu(gr) = $o(B) g{QZQ*IOkISIX@'\/ |-+ rr¥[GGRIS| Y5 P+

+ qr* (kS| XT (RIS | X6 * 4 rg* GE|S| X (jR|S| X *}AE 4D

which is of the form

(A.7) AF,=[alq

2+ Biri2+ 2 Re (ygr*)]dE AP,

with « and § real (and positive). y would be complex in general. However,
we shall now show that, because of conservation of parity and angular mo-

mentum, 4 is real.

Now, the electromagnetic interaction is invariant under rotation and parity
transformation. Therefore (since the electrons are not polarized) the scattering
probability must be the same for right- and left-hand circularly polarized

photons. Since

g,7=1, 4 for right circular polarization and

q,r =1, —i for left circular polarization,

we have

(A.8) AF(1, 1) = dFW(1, —9) .
Substituting eq. (A.8) into eq. (A.7) yields

a4 B+ 2 Re(yi) = a+ f+ 2 Re (y[—il)
or
2Re(iy)=0.

Hence y is real and may be taken outside of the « Re» in eq. (A.7) to yield

(A.9) dFy = [«|q]*+ B

r)24+ 2y Re(gr*)] dE dD

42 ~ Il Nuovo Cimento B.
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or

(A.10) iz =" *][y ﬂ][q]

Now rotate the » and y axes along which polarization is measured through an
angle £ about the z-axis. Call the new axes ' and y’. The quantities ¢’ and »

are related to ¢ and r by
q'] _[eos& —sin &|fq
»| |siné cosé&llr|’

Since the matrix in eq. (A.10) is real, it follows that there exists a £ such that
dFy is diagonal in ¢’ and ¢#'. Calling the elements of the diagonal matrix &’
and f’, we have

(A.11) AFy(gr)= («'|¢' )P+ B |?) AB AD = AFi(g'r") -

Note that we have introduced and defined the quantity dFy(¢'r').

Since dF depends only on |¢'|* and |r'|%, dFy can be related to measure-
ments made with the ideal analyzer defined above. An «ideal analyzer » gives
an output L' =+ 1 (—1) for photons polanzed along (or perpendicular to) the
analyzer axis. Now let the ideal-analyzer axis be oriented parallel to the z'-axis,
which was defined just under eq. (A.10). Then clearly the mean value of L'
for a photon with polarization components ¢’ and r' is

(A.12) Lig'r) = g’ (1) + ' |*(=1)

But eq. (A.11) may be written

dFu(g'r') = %[+ B¢+ I']*) + (& — B (lg' | — r'[*) 4B AP .
If we use eq. (A.12) this becomes
(A.13) AFi(q'r') = 4l + '+ (' — ') [']dBAD .

This proves what we set out to show that there exists a function relating Fy
(the probability of a photon Compton scattering in the direction k) and L’
(the average output of an ideal analyzer oriented along the x'-axis.)

The result of extending this existence proof to measurements made with
two polarization analyses on two photons is given by (%)

(A14) dF(kik) = {(B,){(H,)[1 + m(E,)m(E,) P(D,D,)] dE, dE, 4P, dP,/4n* ,

where

dF(k1k;) = the probability of finding the photons scattered in directions
k; and k;,
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P(D,®,) = L, L, with L; and L, the outputs of the two analyzers,

2 2

i@ =2,

m(B) = —sin®0/y(B,B),

B, = the energy of the incident photon,

E = the energy of the scattered photon,

@ = the angle between the incident-photon polarization and the
scattering plane,

7o = the classical electron radius (~2.82:10-1 ¢m),

m, C? = the electron rest mass energy,

0 = the scattering angle related to E by

m,C*1/E -+ 1/E,) = 1 —cosf,
1 EByE) = E,/E+ E[E,—sin%§ .

For positron annihilation, P(D,P,) = cos2(P,— @D,); when this is substi-
tuted into eq. (A.14), eq. (2) of the text follows (7).

Note added in proofs.

Since this paper was submitted, a report of another measurement of the same angular
correlation has appeared in this journal (G. Faracr, D. GUTKOWSKI, S. NOTARRIGO
and A. R. PexNisi: Lett. Nuovo Cimento, 9, 607 (1974)). We would like to add an
addendum to our paper on that work here.

It is stated in the paper of Faract ef al. that their results agree with our results,
as reported in Varenna in 1970 (ref. (*)). This is not correct. Our results are in formal
disagreement with theirs. The preliminary report of 1970 may not have explicitly
stated that our experiment is different in a very important way from most other measure-
ments of this correlation. The scattering angle 0 is not defined by the size of the counter,
requiring averaging over a wide range of angles. Instead, it is measured for both scat-
terings and, for each event, by recording the energy of the scattered photons. Therefore,
our average over all gcattering angles, which FaracI et al. plot on their Fig. 2 as a
measurement taken at a scattering angle of 90°, should not be interpreted as a correla-
tion at any particular angle 6. The values of 8, and 0, for each event had actually been
measured, but results were summed together for all 8, and 6, only to better test the
@-dependence of the results. A proper measurement of the correlation af a particular
scattering angle 68 would be our data for particular energy regions, as shown in our
Fig. 8 and 9. In region 1, corresponding to a scattering angle region centered on
8 = 82°, we have 8= 0.400 |- 0.018, corresponding in the notation of Fig. 2 of Farac:
et al. to BR=2.33 4 0.10, not the value of approximately 2.05 at 90° which is shown.
This result is nearly three standard deviations above their value as plotted at about
the same angle, without applying any geometrical corrections. When geometrical correc-
tions are included for both results, the discrepancy becomes greater.

In essence: With geometrical corrections, our results agree with the predictions of
quantum mechanics. Without corrections, they still significantly disagree with the
results of FaracI et al. One possible reason for this disagreement might be the effect
of the length of the flight path of the annihilation photons, as discussed in both of our
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papers. However, the range of flight paths investigated by FArAcI el al. included the
values used in our work, so a disagreement remains. There appear to be two possible
reasons for this:

A) because of some error, our correlation is too large;

B) because of some error, the correlation of FARACI et al. is too small.

If we assume A4) is the case, there are very few possible explanations, since most
experimental effects tend to weaken a correlation. One might suppose that perbaps
there was some effect, such as misalignment of the apparatus or variations of counting
rate from run to run due to some random displacements of the source, which happened
to increase the counting rate near = 90° or decrease it near p=10°. We were
aware of this possibility during our experiment and took precautions to avoid it. With
the normalization deseribed in Subsect. 21 of our paper, any effect influencing the
annihilation rate or the rate at which photons struck the two scatterers would be removed
from our results.

There are several reasons why B) could be the case. We will here discuss only the
two that appear to us to be the most important. In our experiment the largest cox-
rection after that for geometrical effects was the correction for multiple scattering in
the scatterer (see Subsect. 2'3.3 of our paper), although our apparatus was designed
to minimize this effect. FARACI e al. do not discuss this correction. We are not able
to estimate how large it would be without more detailed information than is given in
the brief paper of Faraci et al. If it was not considered in designing the apparatus,
it could significantly weaken their correlation.

Furthermore, FARACI et al. do not mention any check on the total energy left in
the detectors in their fourfold coincidence events. If in fact there was no sum energy
requirement, events in which a photon has suffered an additional Compton scattering
between scatterer and detector will be counted. These will also weaken the measured
correlation. The number of these events would tend to increage as the distance between
scatterer and detector was increased. This could explain the weakening of the correla-
tion with increased scatterer-detector distance shown in Fig. 4 of FArAcr et al.

® RIASSUNTO (%

Si & misurata per mezzo dello scattering di Compton la polarizzazione lineare relativa
dei fotoni provenienti dall’annientamento in due quanti di positoni nel rame. 8i sono
eseguite misure della distribuzione angolare di fotoni che arrivano in coincidenza dopo
aver subito lo seattering di Compton in corrispondenza di un esteso intervallo di angoli
di scattering, sia polari che azimutali. I risultati concordano con misure standard
della meecanica quantistica supponendo che elettrone e positone abbiano parita opposte.
Questo risultato ha dei risvolti che riguardano le teorie delle variabili nascoste della
meceaniea quantistica. Un teorema di Bell restringe il campo dei valori che una teoria
locale delle variabili nascoste pud prevedere per certe relazioni fra misure esegnite su
sistemi correlati come le coppie di fotoni provenienti dall’annientamento di positoni.
Se si suppongono corrette le abituali formule della meccanica quantistica per lo scat-
tering di Compton, si mostra che le distribuzioni che si sono osservate non possono
dare risultati compatibili col teorema di Bell se si misurano i fotoni con analizzatori
ideali di polarizzazione. I nostri risultati quindi forniscono argomenti contro le teorie
delle variabili nascoste,

(*) Traduzione a cura della Redazione.
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YriioBas Koppensus aHHHMUISIUHOHHBLIX (DOTOHOB, HCNILITABIIAX KOMITOHOBCKOE paccesHue,
M CKDBITHIE NepeMeHHbIE.

Pestome (*). — UVcrionb3yss KOMNOTOHOBCKOE PpAacCCesHUE, H3MEPACTCA OTHOCHTENbHAS
NUHEHHAs mosApu3anusg GoTOHOB, 06pa3OBaHHBIX B pe3ylbTaTe ABYX-(OTOHHON aHHM-
THISIVY HO3UTPOHOB B Meau. F3MmepeHus yIJIOBoTO pacmpenencHuss (OTOHOB, HCIThI-
TaBIIMX KOMIITOHOBCKHE PACCCAHUS, B CX€ME COBIACHHH MPOBOAATCA B IIMPOKOM MHTED-
Balie YIJIOB pacCesiHus, IMOJNAPHOTO H a3uMyTanbHOro. Ilojy4yeHHBIE pe3yibTaThl COT-
J1aCyIOTCA ¢ OOBIYHBIMHM KBAHTOBOMEXAHHYECCKMMM BBIYHCIICHHSMH, IIpeamofarast Ipo-
THBOIIOJIOKHYIO YETHOCTHh JJICKTPOHA ¥ MO3MTPOHA. OTOT PE3yJibTaT MMEET CIEeACTBUS
IIJIAL TEOPHH CKPBITBIX IEPEMEHHBIX B KBAHTOBOM Mexanuke. Teopema Bera orpanmyuBaeT
3HAYEHUS, KOTOPKIE JIE0Oast JIOKAIbHASI TEOPHS CKPBITHIX TIEPEMEHHBIX MOXKET IPEUCKa3aTh
IS HEKOTOPBIX COOTHOWICHUU MEKIY H3MEPCHUSAMU, TIPDOM3BCICHHBIMHU C KOppenupo-
BaHHBIMU CHUCTEMaMy, TaKMMH Kak (OTOHHAs mapa, OoOpa3oBaHHAs TPH AHHUTAISIUMA
nosurpoHa. I[ToKa3bIBaeTCsi, YTO HAGJIOOCHHBIC HAMU pacHpefeNeHHss He MOryT HaTh
pe3ynbTaToOB, KOTOPBIE COOTBETCTBOBaM Obl TeopeMe Benna, ecmi GOTOHBI perucTpu-
PYIOTCS C IIOMOMIBIO MIEaNbHBIX MOJSIPU3ALMOHHBIX aHAMH3ATOPOB, IpeAnmosnaras Ipa-
BUJIBHOCTb OOBIYHBIX (JOPMYJI KBAHTOBOM MEXAHHKM AN KOMITTOHOBCKOTO PACCESHUS.
TaxuMm 06pa3oM, HallM Pe3yNbTATHl CBUACTENECTBYIOT IPOTHB OKANBHBIX TEOPHA CKPHITHIX
TIepEeMEHHBIX.

(*) Iepegedeno pedaryuei.



