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shadow of the sphere plays no signi6cant role in
this case as the points of interest are far from
the sphere. In the second case the shadow of the
sphere is important as the points of interest are
close to the boundary. In the limit, the region
c&e for p. &0 disappears. The distribution func-
tion at points near the sphere may be discussed
from the point of view of this approximation.

Because of the existence of the shadow and
the discontinuity in f, measurements of the
critical angle 8, and 6 can, in principle, determine
the radius e of the sphere and the mean free path
1 of the neutrons. If it is supposed that p,„ is
determined at two positions along a radius so

that br=re r—~ is known, then, from (16),

&'=rP(1 —~.~') =r~'(1 —~ ')

There are three equations for the three unknowns
u, r~, and r~ In .(15), r is expressed in terms of X

as the unit of length. We then write, from (15),

ink = —(1/X) rp, +InF.

The slope of the line obtained from a plot of ink
against rp, , determines ). The quantity 6 may
be measured in an arbitrary unit and the
quantity rp, , is provided by the measurements of
p, and br.
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If the two photons emitted in an annihilation process are scattered, their initial cross-
polarization leads to an angular correlation of the scattered radiation. This correlation effect is
calculated, and yields a substantial azimuthal asymmetry. It is shown that one may regard
the scattering of one photon as performing a partial analysis of the polarization of the other
photon.

j.. INTRODUCTION

CCORDING to pair theory' the dominant
type of annihilation is one in which the

positron-electron pair has zero relative angular
momentum. Associated with this is the cross-
polarization of the two quanta emitted in the
annihilation process. If one photon is linearly
polarized in one plane, the other photon, which
goes oK in the opposite direction, is linearly

s,

FIG. i. Schematic diagram of experimental arrangement.

~ Research carried out at the Brookhaven National
Laboratory under the auspices of the Atomic En~
Commission.

~ P. A. M. Dirac, Proc. Camh. PhiL Soc. 26, I& (1930)

polarized in the perpendicular plane. A similar
relation exists for any state of polarization of
one photon.

%heeler' has suggested an experiment to test
this prediction, involving coincidence measure-
ments of the scattering of both of the annihilation
photons, The arrangement is represented sche-
matically in Fig. i.

A source 5 of annihilation radiation (a radio-
active source of slow positrons covered with a
foil) is placed at the center of a lead sphere with
a narrow channel drilled through it. The photons,
each of energy mc', passing through the channel
are scattered by scatterers Sj and 5& and recorded
by gamma-ray counters C& and C&. Coincidences
between the two counters are recorded when the
azimuths of the two counters are identical
(y=O) and when the azimuths differ by a right

& J.A. %'heeler, Ann. N. Y. Acad. Sci. 48, 219 (1946).
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angle (pp=s/2), and the ratio is determined.
According to Wheeler, the calculated ratio
(X~,~p/Xp~) for the case of ideal geometry is
j..080 when the scattering angles 8~ and 82 are 90',
and the theoretically most favorable ratio of
1.100 is obtained when the scattering angles are
reduced to 74'30'.

The theory of this proposed experiment has
been re-examined, using two diferent approaches,
and results diferent from those of VVheeler are
obtained. ' The following ratio is obtained for
the case in which the .two photons are scattered
through the same angle 8:

2 sin48
p= =1

s

y' —2y sin'8 1—jf(' ' '1kpl, Okpp, ' ' 'O-apl, 1-ipp, ')
(1)'r =2 —cose+

2 —cos8 +f(' ' 'Okpl, 1kp2, ' ' ' 1 —apl, O-hp2, ) I, (2)

analysis of the polarization of the other photon.
That is, the observation of one scattered photon
gives information about the initial state of
polarization of the other photon.

The statement that the two light quanta are
polarized at right angles to each other is readily
expressed in terms of the Schroedinger wave
functionals. Let f(,%., ) denote the wave
functional for the light quanta when there are
Nm quanta, having mdmenta k and polarization
indicated by the index ). The annihilation radi-
ation consisting of two quanta having rnomenta
lrp and —lrp may then be described by the follow-

ing wave functional

For scattering angles of 90' the ratio reduces to
2.60. The maximum ratio of 2.85 is obtained for
scattering angles of 82'. The asymmetry ratio p
is plotted as a function of 8 in Fig. 2.

2. PARTIAL POLAMZATION ANALYSIS METHOD

One approach to the problem is to view the
scattering of one photon as performing a partial

with arguments of 0 for all quanta not explicitly
indicated. The polarization indices 1 and 2 for
lrp and —lrp refer to the plane-polarization direc-
tions as shown in Fig. 3, in which the a's are
unit vectors.

For the above expression to represent correctly
the fact that the quanta with the momenta lrp

2.8 =

2.8 =

Fro. 2. Asymmetry of coinci-
dence counting rate, p, for ideal
geometry, as a function of the
scattering angle 8.
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'Since these results were obtained there has appeared a brief article by M. H. L. Pryce and J. C. Ward (Nature
160, 435 (Sept. 27, 194'l)) in which the result of similar calculations is reported. Their formula agrees with theone
obtained here (Eq. (19)).
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It is now clear on inspection that this wave
functional represents two light quanta with
opposite momenta; each quantum is unpolarized,
but the two quanta are polarized at right angles
to each other.

%'e now consider the manner in which the
scattering of a light quantum by an electron
partially analyzes the polarization of the original
quantum. According to the Klein-Nishina for-
mula4 the polarization dependence of the difkr-
ential scattering cross section for a photon of
momentum Ira scattered into a photon of mo-
mentum It is given by the factor k/ko+k~/k
—2+4 cos'0, in which 0 is the angle between
the direction of polarization of the incident
quantum and the direction of polarization of the
scattered quantum. If we average this over the
polarization directions of the scattered quantum
we 6nd for the polarization dependence of the
initial quantum the factor

k ko—+——2 sin'8 cos'@,
ko k

(3)

-koa

Fu'. 3. Coordinate systems for representing polarization
directions of the initial quanta. ¹Qadded ie proof: ko, the
subscript to the 6rst unit vector from the right, should
read kgb.

O. Klein and Y. Nishina, Zeits. f. Physik 52, 853 (1929);
Y. Nishina, ibid. 52, 869 (1929).

and —Iro are polarized at right angles to each
other, the phases of the wave functionals
are chosen so that l//(' ' ' lhp1, Ohg2, ' ' ') cosp
+f( Ogt, is02, ) sing represents a plane-
polarized quantum making an angle p with the
ssoi direction, and an angle s/2 —p with the a~
direction for all momenta Ita. It may now be
easily verified for a new system of axes for the
resolution of the polarization of the light quanta,

Ehgl'= a-apl' = Rhpl cosy, +eke sing, ,
akp'= —a-~'= —a~i sinp, +e~ cosy,

that the wave functional above becomes

in which 8 is the angle of scattering and P is the
angle between the plane of the scattering and
the direction of polarization of the incident
quantum. For a quantum polarized in the plane
of scattering (3) gives us the factor k/ko+ko/k
—2 sin'0; for a quantum polarized perpendicular
to the plane of the scattering we obtain k/k,
+ka/k. If the quantum is polarized making an
angle p with the plane of scattering„ then the
probability that it is polarized in the plane of
the scattering is cos'p and the probability that it
is polarized at right angles to the plane of scatter-
ing is sin'p. Factor (3) may now be obtained by
multiplying the probability that the light is
polarized in the plane of the scattering by the
factor k/ko+ko/k —2 sin'8, and adding to this
product the product of the probability that the
light is polarized at right angles to the plane of
scattering by its corresponding factor k/kp+kg/k.
The fact that the relative intensity for an arbi-
trary angle of polarization can be computed in
terms of the probability of polarization in the
plane and at right angles to the plane of scatter-
ing shows that the scattering of a quantum by
an electron produces a partial analysis in terms
of plane-polarized light in the plane of scatter-
ing, and at right angles to this plane. This result
holds if and only if the polarizations of the
quanta are resolved in this particular way.

We now suppose that the quantum with mo-
mentum Iro is scattered through an angle 8~ into
a photon of momentum It~. The a priori proba-
bility that this light quantum had its plane of
polarization in the plane of scattering is one-half,
and that it had its plane of polarization at right
angles to the plane of scattering is one-half.
Thus, as a consequence of the scattering the
a posteriori probability that this quantum had
its plane of polarization in the plane of the
scattering is

(kg ko ) (kg ko

(
—+——2 sin'8~

( 2) —+——sin'8& (,
(k0 k) ) Eko kg

and the a posteriori probability that its plane of
polarization was perpendicular to the plane of
scattering is

(k& ko) (kg ko
2] —+——sin'8~ /.

Eko kg) &kg k, )
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g
lf we no+ apply the above probabilities to the

(kg kg) (ky ko calculation of the scattering of the second quan-—+—, 2, —+——Sill Hy )i turn by an electron we 6nd that the normalized
probability distribution, dr', for the two light

and the probability that the second light quan- quanta, assuming that both the quanta are
turn's plane of polarization is perpendicular to scattered, is given by

According to the wave functional (2) this means the plane of scatteringof the firs light quantum is

that the probability that the second quantum,
whose momentum is —lro, has its plane of Polar-

I + 2 28
~

2~ + 28
ization in the plane of scattering of the first (ko k& ) (ko kq )
li ht uantum is

kq'kq'(yqym —yq sin'Hq —yq sin'8~+2 sin'Hq sin'Hs sin'$)dQqdQ,

(40
4~'k, '( ——3 ln3

&9 )
kg nfl

yl =—+—,
ko k)

kQ ko
72 =—+—.

kf) k..

In this equation dQ~ and dQ~ are differential solid
angles for the scattered 6rst and second light
quanta, k~ and k2 are the magnitudes of their
mornenta, 8~ and 82 are their scattering angles,
and q is the angle between the two planes of
scattering. Also, for the case of practical interest,
in which the kinetic energies of' the positron and
electron are small, the two quanta have an energy
of mc' each and the Compton formula gives

theory' the perturbation H' is replaced by )H',
and the wave function P is expressed as a pown.
series in X.

f—f(0) +/pe) +$2/(2) +. . . (6)

where/'o' is the wave function of the unperturbed
state. The f'& are then expanded in terms of the
eigenfunctions of the unperturbed time-depend-
ent wave equation

ko
kg- k2=

2 —cosOy 2 —cos8~

y(e) p a (e)~ p iE„&ls—(s=0, 1, 2, ).

Equations (5) were used in the normalization
of (4). When Hg 82 ——8, Eq——. (4) leads to the ratio
given in Eq. (1).

Substitution into the perturbed wave equation,
equating coeScients of equal powers of X, and
setting X = 1, yields the equations

3. PERTURBATION THEORY METHOD
(i. &") =0, (8+1) ~ II~ g (s)piosgt~f

mt t
ik ~

It is of interest to verify the above conclusion
by a direct application of time-dependent per-
turbation theory. The process involved is a
four-quanta process, corresponding to absorption
and emission of quanta by the two electrons
involved in the scattering. However, since the
scattering processes are independent (except for
the connection between polarizations of the
initial quanta) the problem reduces to considera-
tion of a pair of two-quanta processes.

j:n the standard time-dependent perturbation

where

~ .=(I &.)/k;—
For a two-quanta process, the solution of these

' See, for example, O'. Heitler, The Quantum Theory af
Radietioe (Oxford University Press, New York, 1944),
second edition, p. 87. We shall follow essentially Heitler's
aotation in the remainder of this section. In particular,
the wave functions of the plane waves involved in the
determination of matrix elements are normalized to unit
volume, and the momenta are expressed in energy units
(i.e., the quantity c X momentum is called momentum).
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FIG. 4. Asymmetry in coincidence counting rates,
p~ E„~ I/E ~i, for finite geometry, as function of
half-span in 8 for various half-spans in azimuth, o. Curve for
a 0 also represents asymmetry ratio pi=82'y p/AI'y~.

equations subject to the initial conditions

a =b„g,(0)—

lO' RO' M' 40' 50' 60'

SKMl-SPAN OF 6&

FtG. 5. Geometric efficiency, HI, of coincidences in
orthogonal position, as function of half-span in 8 for
various half-spans in azimuth, a.

+X2H'(2), the wave functional for the complete
system may be written in the form

a& &'&(t, I') =—Q H'I~'
fj2 n

(10)

ps(e&el'+a&En) & $ g&a&Ea&

X ~ (t)
where f,(1), &t,(1) may separately be expanded as
power series in 4 of the form (6), and f~(2),
fg(2) may be expanded as power series in Xn, and

Here the wave functional of the unperturbed
state is (deleting for convenience the functions

representing the electrons)

4""&(1)=4'~(1) 6"&(2)=4»(2),
4""'(1)=4c(1) A"&(2) =In(2).

where

—(4~(1)4s(2)+4c(1)fn(2) l
v2

The usual reduction procedure then replaces
(&) by

a&" '&(t&, t&) a& "&(t&, A)a& (t~, 8)
+a& &"(ti, C)a& a&(tg, D). (12)

if'(1) =P( ~ ig&, Os&s, ~ ~ ),
ps(2) =p( .O-so&, 1-g2, ~ ),
fc(1)=f(. ~ Ogi 1s&s ~ ~ )
k(2)=f( 1-& &, 0-~, . ).

The Hamiltonian of the unperturbed system and
the perturbation Hamiltonian may both be
written as sums of Hamiltonians for the two sub-

systems. If we replace H'(1)+H'(2) by X~HI(1)

The transition probability for the joint scatter-
ing process (if one observes one sub-system at
time t~ and the other at time t~) is [a& a'& )'. It
may be reduced in the usual manner, by assuming
for each sub-system that in the neighborhood of
the 6nal state there are a large number of states
with the same physical properties and that p~dE
represents the number of these states with energy
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dP' =,
I
a p~o Pi

I

P pzi(1) pzp(2)dZidEp

4x'~tjt2
pzgpzp -',

I R(1)S(2)+S(1)R(2)I

'

2x~t)t2
pzi p» I I R(1) I

'I S(2) I
'

where

+ IS(1)I'IR(2) I'

+R(1)S*(1)R*(2)S(2)

+Ro(1)S(1)R(2)S*(2)}, (13)

between 8 and Z+dE. The probability dP' of
6nding the system with the photons in any one
of the appropriate states is

retaining, however, the order of absorption and
emission of quanta by each electron. If in
summing over intermediate states we sum Grst
over such permutations, the resultant terms in-
volving exponentials in t factor into a product of
two terms of the form given in Eq. (I). The
coeScient up&'&(t) is thus reduced to ay&op& as
given in Eq. (12), with t& ——tp ——t. The transition
probability dI" is then proportional to t'.

The matrix elements R and 8 may be reduced
by the procedure used in treating the scattering
of one photon, and yield

2se'kpcp [(uo aoxu)(u au)
R(p) =

(kok~) & I u+ko —&'

p ~P e~g

R=Q
n' QP —gni

~ Ce'+ n'FS=g

P., =p+k, k; ('=1,—2), (14)

2s epkpc' (up*aopu') (u'*au)
S(p) =

(kpk;) P p+kp —Z'

(uo'au") (u"*aopu)
[+ (15)

and the arguments refer to the two photons. The
electronic mass p and the momenta kp, ki, and k2

are expressed in energy units in accordance with
Heitler's notation.

It is of interest to note here that for small
times tj and fp (but ti and tp»k/Zp) the transi-
tion probability dP is proportional to the prod-
uct tit2. This is to be expected, since we deal
here with a joint probability of two scattering
processes. It is therefore inappropriate to de6ne
a transition probability per unit time. Similarly,
it is not appropriate to call dP'/cotitp, which has
the dimensions of (length), ' a "diA'erential cross
section" for the scattering. However, the difh-

culty is of no consequence in the problem we
are treating, since we are concerned only with
the relative probability of different angular rela-
tions of the scattered photons.

A result equivalent to (12) and (13) could also
be obtained by regarding the process as a four-
quanta process, corresponding to absorption and
emission of quanta by the two electrons involved
in the scattering. For any sequence of absorptions
and emissions there are 6ve other sequences
involving the same energy differences, namely
those in which the same four absorption and
emission processes take place in a different order,

p k 8
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FIG. 6. Geometric eKciency, IIg, of coincidences in
coplanar position, as function of half-span in 8 for various
half-spans in azimuth, a. Ordinate scale at right for curve
a 40', 8&50'.
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FIG. 7. Relative geometric eSciency for coincidences
following single counts, E~, in orthogonal position. Dashed
curves connect points p~ =constant.

The terms in Eq. (13) may be evaluated in

the usual way, by summing over the spin direc-
tions of the scattering electrons, averaging over
their spin directions in the initial state, and
evaluating spurs. For instance, the Klein-Nishina
formula derivation gives

~a'h'c'
/R(1) f'=

2pEokoky

t'ki ko
)( (

—+——2+4 cos Oi ol I'
(ko ki

where i takes the values 1 and 2. The symbols
0!oy and clog represent the components of the Dirac
vector e in the directions erg and evo2, respec-
tively. The densities pz; are given by the usual
expression

EP; [k odQ;
ps;= - (i=1, 2).

yko (2orkc)'

where

—y. sin"-8i+2 sin'-8i sin'8. sin'y), (19)

ro = e-'/y = e-'/mc',

y, = (k;/ko) + (ko/k;),
k„=ko/(2-cos8. ;) (i=1, 2). (20)

Since we are interested only in the correlation of
the scattering quanta when both original quanta
are known to be scattered, Eq. (19) should be
normalized so that the integral over all direc-
tions of scattering of both quanta gives unit
probability. This yields the result given in

Eq. (4).

where O~, o~ is the angle between the polarization
direction of k~ and e g. Similar expressions hold
for (R(2) [', ~S(1)~', and (S(2) ~'. We must also
sum over the states of polarization of the
scattered quanta, since we are interested in all
the photons of momenta k~ and k&.

The evaluation outlined in the preceding para-
graph is simplified considerably by the proper
choice of two mutually perpendicular directions
for the polarization of one of the scattered
photons. For instance, if the polarization direc-
tions of k~ are taken to be perpendicular to the
scattering plane (si= eko2) and in the scattering
plane (ai = quoi cos8i —stos sin8i) the cross-prod-
uct terms in Eq. (13) vanish. For these terms
reduce in the usual way to an evaluation of
spurs of which a typical example is

spur ~02K ~1(+ Pp ~ pl)~1+ ~01(1+0) (18)

where
EC' = p(1+P) +ko+u .ko,

pi =ki-ko.

The given choices of polarization directions give
u~ =no2, and o.i = noi «ski —O.o3»nei
either case it is evident that the spur (18)
contains an odd number of O.o2 terms and hence
vanishes. We may now choose also any two
mutually perpendicular polarization directions
for the scattered quantum k2. A convenient pair
are perpendicular to the scattering plane of —ko
and in its scattering plane.

Combining Eqs. (13), (16), and (17), and
summing over the polarization directions of k&

and k2, we obtain

dP' 1 k'k'
rdOojdD ——

o
—(ri ro —rl sin'8o

c'tgt2 16 kp'-' A. o'-'
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In Eq. (13), it is evident that the sum of

I R(1) I

' over the polarization states of ki will give
the same value no matter which two perpen-
dicular directions are chosen for st (so long as
they are perpendicular to ki, of course). Similar
statementsholdfor IS(1)I', IR(2) I' and IS(2) I'.
The cross-product terms must therefore vanish
when summed over the polarization states of the
final quanta. (However, it is only for the choices
of a~ mentioned above that they vanish before
the sum is taken. ) This reduction of the expres-
sion in brackets in Eq. (13) to I IR(1) I'IS(2) I'
+ I S(1)I'I R(2) I

'} is equivalent to the conclusion
in Section 2 that the scattering of one quantum
by an electron produces a partial analysis in
terms of plane-polarized light in the plane of
scattering and at right angles to this plane, and
hence gives a partial analysis also of the second
quantum emitted in the annihilation process.

J= I y(k/ks) ' sin 8d8 = lnx —1/2x',
aJ

J' = JI (k/ks) s sin'8d8 = —x+4 lnx+3/x,

(21)

4. FINITE GEOMETRY

If an experimental verification of the expected
asymmetry in coincidence counting rates is at-
tempted, it will be found that a close approach
to ideal geometry is impractical. It is, therefore;
desirable to extend the calculations to the case
where the gamma-ray counters subtend 6nite
angles.

We set q = @2—q~, with q~and q2 the azimuths
of an element of counters 1 and 2, respectively,
relative to the axis of counter j.. In integrating
Eq. (4) over finite ranges in 8i, 8s, and tsi, ass it
will be sufficient to consider the arrangement in
which the two counters subtend equal angles.

First we perform the integration over 8. With
dQ;=sin8, d8;dss;, (s = 1, 2), 1/g=4ir'(40/9 —3 ln3)',
and the abbreviations x = 2 —cos8, y =x+ 1/x and

and for the asymmetry for finite range in 8 but
in6nitesimal range in y

The integrals J and J' were evaluated for in-

tervals symmetrical about 8=82' which is the
approximate location of the maximum of p
(see Fig. 2). pi as a function of the half-span of
such intervals is included in Fig. 4 (rt =0).

The calculations are then extended to finite
ranges in q ~ and q 2. We obtain P~ by integrating
Eq. (22) over the intervals —n&tsi&rs and
s./2 —a&ps&sr/2+cr, and Ps for the intervals
—n& pq, 2&0.. With

~a +a

J
sin'(ass —tsi)drptdps =2u' —s sin'2rs =I,

—R —CC

cos ((ps —
gent)d tstd tss = 2a +$ slil 2a =w¹

—a —aJ

cs|.'* 40'

E

,4=25'

san*20

$n

.¹¹t~ to

we obtain from Eq. (4)
l0' 20' 30' 40' 50 SO 70 80

DP=dq ides Jt dPd8id8i SEMI-SPAN 0F y

FlG. 8. Relative geometric efficiency for coincidences
following single counts, E~, in coplanar position. Dashed

=g(J —2'' —2J'-' sin ts)dsstdrps, (22) curves connect points ps=constant.
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2 ( Qgi slgo
Ho= —

! +s' &&+&/pio &+pio)
(24)po=(s+ pi)/(&+spi).

and s=oo/w, the asymmetry po=Pi/Po can be azimuth and covering the saine range in 8.)
written 88

Curves of p2 as a function of the above-men-
tioned half-spans in 8 and for various values of 0,

are shown in Fig. 4.
In setting up the experiment it is also required

to know the efFiciencies. We shall here give the
geometric part of the efFiciencies, which are
de6ned as the number of pairs of scattered
quanta reaching both counters divided by the
number of all scattered pairs. To obtain over-all
efFiciencies, the geometric factors must, of course,
be multiplied by the efFiciencies of the counters'
and the fractions of the incident intensities
scattered by the targets.

Using, as before, subscripts 1 and 2 for the
orthogonal and coplanar positions, we derive
from Eq. (22) the eSciencies g, for "semifinite"
geometry

J' —2JJ' J" (plo —1)
!2

Jo' —2JoJo' Jo" 0 pi —1)
(25)

Pl
nl = 112~

Plo

Here, the p's have been normalized to unity for
the range 0(8(or, i.e., g;=dd';/APo, the sub-
script 0 referring to this range.

Integration of Eq. (22) leads to the following
expressions for the geometric efFiciencies H; for
finite longitudinal and azimuthal apertures: (In
the following equations we assume two detectors
on each side, relatively displaced by 180' in

~See, for example, Bradt, Gugelot, Huber, Medicus,
Preiswerk, and Scherrer, Helv. Phys. Acta. L9, 'll (j,946}.
Note that our calculations do not take into account ihe
energy dependence of the counter sensitivity which results
in a dependence of detector sensitivity on 8.

2 ( w'gi Qso
~1 poH o +~' & &+&/pio &+pio~

(26)

2u( J—J')
~ &Jo—Jo')

(28)

Equation (28) is, of course, directly obtained by
integration of the Klein-Nishina formula with
respect to 8 (after summing over polarization
directions of the incident and scattered quanta).
The factor of 2 enters since there are two single
scattering processes for each scattered pair.

The functions E; are plotted in Figs. 7 and 8.
The dotted curves in these plots connect the
points p2=constant. It is seen that for a given
value of p2 best efriciencies are obtained for
approximately square apertures.

ACKNOWLEDGMENTS

We are indebted to Dr. E. 0. Salant and Dr.
H. Primako& for some stimulating discussions on
this problem. We also wish to express our appre-
ciation to Miss Jean Snover who performed the
numerical computations for the 6nite geometry
case.

The functions Hl and H2 are shown, for the
same intervals as before, in Figs. 5 and 6.

Also needed in designing the experiments are
the relative geometric eSciencies 8;, i.e., the
probabilities of' registering a coincidence once a
single count has been observed. These are ob-
tained in terms of H; and the efFiciency D for
single counts

Zi =Hi/D,
Zo =Ho/D,

with


