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Scattering of Longitudinally Polarized Fersilions
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Cross sections for scattering of longitudinally polarized Dirac particles are calculated. The results are
presented in terms of the ratio of cross sections p„/g, . (The cross section is denoted by go when the spine of
the particles before scattering are parallel, by p, when antiparallel. ) In the case of scattering of indistin-
guishable particles 4 o/44 is different from unity at all energies and scattering angles and can be as small as
zero. For particle-antiparticle scattering @„/p, is close to unity at nonrelativistic energies, but at rela-
tivistic energies approaches the value of the corresponding ratio for indistinguishable-particle scattering.
Thus, in both these cases, the scattering process provides a method for measuring longitudinal polarization.
Thirdly, y„/p, is calculated for two particles of different masses m and t4. It is shown that also in this case,
in principle, 4 „/4, could be used for polarization measurements.

L INTRODUCTION

~~NE of the implications of parity nonconservation
in weak interactions is that the emerging fermions

will be longitudinally polarized. This polarization may
be detected in several ways. Mott scattering by a
Coulomb potential may serve as an analyzer but then
it is first necessary to change the longitudinal polariza-
tion to a transverse one. ' One can observe the longi-
tudinal polarization directly by measuring the circular
polarization of the bremsstrahlung photons produced
by the fermion. ' In the case of a positron one may simi-

larly establish its longitudinal polarization by measur-

ing the circular polarization of the annihilation photons. '
In the present paper we wish to report calculations on
still another method; namely, scattering of longi-
tudinally polarized fermions by longitudinally polarized
fermions.

In Sec. II we present the results of the calculation
when the two fermions are indistinguishable. The
fermions are referred to as electrons, but of course
they could be any two indistinguishable fermions. In
Sec. III we present the results when the two fermions
are each other's antiparticles; they are referred to in
this case as positron and electron. In Sec. IV we present
the results for diferent fermions, called nowpmesonand
electron. Throughout, the only interaction assumed is
the electromagnetic interaction and the results are
based on lowest order perturbation theory.

II. ELECTRON —ELECTRON SCATTERING

given by'

(24&1 (pl )Volt&1(pl))(24&2 (p2 )Vol&2(p2) )
%re' k k

(tt&2 (p2 )Vol&1(pl) )(24&1 (pl )Vol&2(p2))

k= p p' t=—p -p' (—1)-

a „N, (p) = ett, (p), (2)

where e takes on the values +1 or —1. We define for-
ward (backward) longitudinal polarization as 4=+1
(—1). (That is, 4=+1 means spin and momentum
parallel. )

We are interested in the diGerential scattering cross
section, 1t (el, e2), independent of the polarizations of
electrons Pl' and P2' but for a given longitudinal po-
larization of electrons Pl and P2, i.e., we want

P(el, es) = (2n) 'E '1' '(E +E2) 'dQ P P ~
M ~' (3)—

The first term in Eq. (1) is the so-called direct term,
the second is the so-called exchange term. We are using
a system of units in which h=c= i. All repeated Greek
indices are to be summed over from 1 to 4 (thus k k
=k„k„=k k+k4k4); V=irrP and V4 ——P, are the usual
Dirac matrices; N, (p) and 24, (p)=2N, *(p)V4 are the
electron spinors (24* is the Hermitian conjugate of I).
The subscript e indicates that we are dealing with an
eigenstate of the operator o.o—=o p/~ p~ to the eigen-
value ~, i.e.,

The matrix element M for scattering from an initial
state of two electrons with four-momenta pl and ps
into a final state with four-mornenta pl' and p2' is

We may formally sum over the polarizations of elec-
trons Pl and P2 as well, if in M we replace 24.1(P1) and
24~2(P2) according to the identities* Under contract with the U. S. Atomic Energy Commission.' N. F. Mott, Proc. Roy. Soc. (London) A124, 425 (1929), and

A135, 429 (1932). Frauenfelder, Hobone, von Goeler, Levine,
Lewis, Peacock, Rossi, and DePasquali, Phys. Rev. 106, 386
(1957).' K. McVoy, Phys. Rev. 106, 828 (1957); Goldhaber, Grodzin
and Sunyar, Phys. Rev. 106, 826 (1957).' Lorne A. Page, Phys. Rev. 106, 394 (19S7).

Nal(pl) =
2 Q e(1+elaol)sty(pl))

Ne2(p2) 2 Qe(1+42&o2)st&(p2) ~

Ss
4 W. Heitler, The Quantum Theory of Radhatfon (Oxford Uni-

versity Press, New York, 1954), third edition, p. 238.
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Finally we may extend the summation to include
negative-energy states by introducing into M appro-
priate projection operators. This may be done by the
use of the relation'

invariant under any Lorentz transformation and the
equality of pl ps and pl' ps', etc. , follows from the
energy and momentum conservation laws.

Evaluation of the traces in Eqs. (8) and (9) yields

Z.(~.(p)QN. (r))
= (2 IP4I) ' Z~(~.*(p) (v &+i~)QN. (r)), (5)

where gp denotes a sum over all four solutions corre-
sponding to a given three-momentum y. Using Eqs. (4)
and (5) and the completeness theorem

Z».*(p)N, (p) =8",

A =2{a'+2ffs'(yg'+b)+c +slee[ad+ (fls+b)sj) (11)

C= 2(—a'+ m'(a+b+c) +f14

+ere&[a'+fm'( —a+A+ C+d)+m'j}, (12)

and therefore

we obtain
e'EgE2d0

(6) 8=2(a'+2m'(ffs'+c)+b'+siss[ad+(fN'+c)')), (11')

D= C. (12')

@(el e2)
El'Es'(Ei+Es)'

a=pl'p2 pl 'p2

b=pl'pl ps'ps ~

C=Pl'Ps P2'Pl q

if—= (yl')' (ys'). ,

(10)

where (y')l denotes the part of p' transverse to the
line defined by the spins. The quantities a, b, and c are

where

A = s Tr[(pl'+ifN) y„(1+elo' pl) (pi+im) 7.j
X-', Tr[(p, '+in) y„(1+eso r s) (ps+i') y,), (g)

C= —,', Tr[(pl'+inst)y„(1+ sion 1) (pl+iffs)
Xy„(ps'+im)y„(1+es&r s) (ps+ifm)V. ), (9)

and 8 and D are obtained, respectively, from A and C
by interchanging P 1' and P&'. The symbol P denotes p P.

There are essentially two frames of reference in
which the calculation is of interest; the center-of-mass
frame and the frame in which one of the electrons is at
rest (this being usually the laboratory frame). These
two frames can be transformed into each other by a
Lorentz transformation, the velocity of the transforma-
tion being along the line defined by the spins of the
electrons. We therefore calculate A, 8, C, and D in
terms of quantities that are invariant under such a
Lorentz transformation. They are

We notice the absence of terms containing either e~

or c2 alone. This means that if one of the electrons, for
instance ps, were unpolarized then the polarization of

pl could not be measured by this method. One could
anticipate this result by the following argument: in
order to obtain a term containing only e& it must be
possible to form a scalar containing s~, the spin vector
of electron pl, but not ss. Such a scalar would nave to
be of the form sl (y, Xy, ') and this vanishes for longi-
tudinal polarization.

We use as a measure of polarization the ratio of the
scattering cross section p„(spins initially parallel) to
the cross section p, (spins initially antiparallel):

p&——$(el, es) lf el= —es,

If&~—$(el&e2) lf el +es
(13)

(14)

a = E'(1+P'), —
b = —E'(1—P' cosg),

c= E'(1+P' cosg)—,
ci= E'p' sin'8—

k k= —2(m'+b) =2E'p'(1 —cosg),

f, f= —2(nP+c) =2E'P'(1+cosg),

(15)

where 8 is the energy of any one of the electrons.
Therefore

In the center-of-mass frame of reference this ratio
may be conveniently expressed in terms of the angle 0
between yl and yl', and the velocity P of any one of the
electrons. One has

2 cossg+Ps (3 cossg+ cos'8) +P4(1+cos'8)4u

1+cos'8+P'(2+3 cos'8 —cos'8)+P'(5 —4 cos'8+cos'8)
(16)

We need only investigate Eq. (16) for 8 between 0
and —,m since it is invariant under the substitution
tY ~ x —0 as a consequence of indistinguishability of the

' Reference 4, p. 109.
'If we let electron p2 be at rest in the laboratory frame, we

must modify Eq. (2) to read: 0 p&ria&(p&) = e;sc.& (p&); —&rp&I~2(p2)
= ed~2(p2). This definition remains meaningful even if ys=0, and
reduces to Eq. (2} in the center-of-mass frame since there
&P1= —&PS

p'

Qo minimum 1+2P +5P ~ g as P ~ 1.

—+0 asP~O
(17)

two electrons. For no scattering, i.e., 0=0, the ratio
takes on its maximum value of unity. Otherwise it is

always less than unity, the minimum value being
reached at 0=-',x, when it becomes
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I.Q and zo:

Hence

P'= (y —1)/(y+1), cos8= 1—2w.

.8
q'(1+6m+x') —2q (1—x)+1—x'

'Sq '—2y (4—5a+x') +4—6m+ 2m'

x—= (1—2w)'. (19)

Equation (19) is invariant under the substitution
w —& 1—w. The ratio P„/p, reaches its minimum value
at ~=-', when it becomes

(7-1)' —+0 as 7 —+14'n

Pu minimum 4(2q' 2q'+1) ~ s as 7 ~ no.
(20)

We note that when I=-,' the two electrons in the
6nal state have equal energies, and come out on either
side of the incident electron's direction at an angle g*
to it, where

sin'fl*= 2/(7+ 3) . (21)

Figure 1 depicts the behavior of p„/@. as a function
of 5).

0
0 .2 .3 .5

III. POSITRON —ELECTRON SCATTERING

Corresponding to Eq. (1), we have now

Fro. 1. The ratio pn/p for electron-electron scattering. (y
equals E/ni of the incident electron in the laboratory frame and
m is its relative kinetic energy transfer. ) The numbers on the
abscissa can be interpreted as either m or 1—m.

(u" (p')7.u. (p))(u. (—q) V.u. (—q') )
4ze'

The reason why the minimum value occurs at cos8=0
is to be found in the exclusion principle. For the case
described by g„ the spins of the two electrons in the
initial state are parallel and hence the exclusion prin-
ciple requires that the space part of the wave function
be antisymmetric. If one assumes no spin Rip in the
interaction, the same requirement holds for the final-
state wave function. If we expand this wave function
in partial waves, only odd angular momenta can con-
tribute. But all Legendre polynomials of odd order
vanish at cos0=0. Thus we obtain the value zero in
the nonrelativistic limit when the assumption of no
spin Qip is valid. Equation (17) shows further that even
in the relativistic limit the amount of spin Qip is small.

As mentioned before, another frame of reference
where the ratio i/„/p, is of interest is the laboratory
frame in which, say, electron ps is at rest. A convenient
set of variables here is y and I, where y is the total
energy of electron pt in units of fN. The relative kinetic-
energy transfer, w, is equal to W/T, where W is the
kinetic energy lost in the collision by electron pt and
T=ffs(p —1) is its kinetic energy before the collision.
One has the following relation between the center-of-
mass variables P and ff and the laboratory variables q

)ll
0 =—p —p', /= p+ q. (22)

Equation (22) refers to scattering from an initial
state of an electron with four-momentum p, polariza-
tion e, and a positron with four-momentum (t, polariza-
tion g,

' into a Anal state where all the corresponding
quantities are written with primes on them. The
second term in Eq. (22) is the annihilation term corre-
sponding to the exchange term in Eq. (1). Since the
four-momenta q, q' have fourth components corre-
sponding to positive energies E„E,, the spinors
u( —q), u(—q') are the negative-energy solutions.
Hence, corresponding to Eq. (5) we now use'

Z.(u. (—q) Qu. (~))
= (2~q4~) ' gs(u, *(q) (y q

—An)Qu, (r)). (23)

Therefore
$a'EE,dQ A B C+D

t~( ~)=, '
— +

E'Eu (E+E,)' (0 0)s (/. /)' k. k/. /I

~ We'de6ne longitudinal polarization for positrons in the same
way as for electrons. Thus q =+1 means spin parallel to the posi-
tron's momentum.
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mr here

A = ~4 TrL(P'+im)y„(1+so. „)(P+im)y„)
X4 Tr/( q—+im) (1+rto,)y„(—q'+i m)p, ), (25)

8= r4 TrL-( —q+im) (1+sio,)y„(1+so~)(P+im)y„)
X4 Tr/(p'+i m)y„( q—'+im)7„), (26)

C=—,', TrL(P'+im) y„(1+eo,) (P+im)
Xy, (—q+im) (1+ l4o,)y„( q—'+im)p, ), (27)

D= —,', Tr/( q+—im) (1+rio,)y„(1+eo,)
X (P+im)y„(P'jim)7„( q'+i—m)y.). (28)

Evaluation of the above traces gives

4p

4g 4

0
0

A =2{a'+2m'(m'+b)+c'+ertfad+ (m'+b)')}

&=2{bs+2ms(ms+a)+c'
+crt Lbs+c' —2 (m'+a) (a—d))},

C=D= 2{c'+m—s(a+b+c)+m4
+est[ a'+ ad+—b'+m'( a+ b+—c+d))},

where

(29)

(30)

FIG. 2. The ratio p„/p, for positron-electron scattering. (y and
m refer to the positron in the laboratory frame and have the same
meaning as in Fig. 1.)

we are specifying the polarization of the incoming

(31) particles always.
In the center-of-mass frame, one has

p w= p'

p'0= p'q
(32)

a=E'(1+P')

b =E'(P' cos8—1),

c=E'(P' cos8+1),
d= E'P' sin'8

(33)

We see that the polarization-independent parts of
A, 8, C, and D are obtainable from the corresponding
expressions of Sec. II if use is made of the substitution
law. ' For the polarization-dependent parts the substitu-
tion law cannot be used since it relates outgoing posi-
trons with incoming electrons (and vice versa) whereas

k k= —2(ms+b) =2E'P'(1 —cos8),

f t= —2(m'+a) =—4E'.

The ratio of cross sections for spins parallel (e= —sl)

and antiparallel (e=rt) becomes now:

1+6p' cos'8+p' cos'8+ (1—p') $1—4p'+ p'+2p'(4 —p') cos8+p' cos'8+2p' cos'8)4y

g+ (1—P')L —6—7Ps+P +6P'(1 —Ps) cos8 —P'(1 —7P'+P4) coss8 —2P4(1.—Ps) coss8 Ps cos4—8)
(34)

One translates Eq. (34) into the frame where the
electron is initially at rest by use of Eq. (18), where p
is now the positron's E/m and w the relative kinetic
energy transfer from the positron to the electron.

Equation (34), unlike Eq. (16), is not invariant
under the substitution g-+ m —8. This is an expression
of the fact that electrons and positrons are distinguish-
able. In the relativistic limit, however, we obtain from
Eq. (34):

@s,/P, ~ s (1+6cos'8+cos'8) as P -+ 1. (35)

This expression is identical with the relativistic limit
of Eq. (16) and has the same minimum value of s at

' J. M. Jauch and F. Rohrlich, The Theory of Phones ced Elec-
trons (Addison-Wesley Press, Inc. , Cambridge, 1955), p. 161.

cos8=0 (to=-,'). In the nonrelativistic limit we have, on
the other hand, independent of 0,

g /d, -+1 as P -+0. (36)

The general behavior of P„/P, as a function of w is
depicted in Fig. 2.

IV. p-MESON —ELECTRON SCATTERING

We are now dealing with entirely diGerent fermions;
hence neither the exchange nor the annihilation term,
but only the direct term contributes. Thus it is neces-
sary to calculate only the quantity A of Secs. II and
III. We obtain

A =2{a'+ (m'+ts') (m'+ b)+os

+sr)Lad+ (m'+b)')}, (37)
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p=o

e2

I.O .6
cos g

-.6 - I.O

Fio. 3. The ratio p„/p, for Ie-meson-electron scattering when
the electron's rest mass is neglected. (P equals p/8 of the Ie-meson
and B is the scattering angle. ) All quantities are in the center-of-
mass frame of reference.

where
+—=Pe'P=Pe P 1

b= P,—P,'=P P'+fi' m'—,
(38)

C=—Pe'P =Pe Pt

d=—(1')' (1').,
with p (p') and p, (p,') the p, -meson and electron in the
initial (final) state. The quantities li and m are the rest
masses of the p, meson and electron. The polarizations
of the initial state are specified by e and g.

In the center-of-mass frame, we have

a= p' E,—E-
$=p' cos8—E '

(39)c=—p' cos8 E,E, —
d= —p' sin'8

with
P2 —E 2 m2 —Es ~2

Thus the ratio @~/et, is given by

(Ps+EeE)'+ (P' cos8+E.E)' P(m'+ p ) (1——cos8) —P'(P'+E, E) sin'8 —P'(1 —cos8)'

(P'+E E)'+ (P' cos8+E E)' P'(m'+—f ') (1 cos8)+P'(P'+—E E) sin'8+P'(1 —cos8)'

Here, as in the positron-electron case, the eGect is a relativistic one; that is

y„/y. ~1 as ps~0.
If the electron can be taken as relativistic, we can rewrite Eq. (40) as follows:

(1+cos8)L1+P(1+cos8)+P' cos8]

1+cos8+P (1+cos8) (3—cos8)+P'(4 —3 cos8+cos'8)

(40)

(41)

(42)

where p stands for p/E. Equation (42) is plotted in
Fig. 3 and it is seen that, in principle, @~/P, provides a
method for measuring longitudinal polarization. One
encounters, however, difficulties due to the kinematics
of the problem. Ke see from Fig. 3 that, for instance,
at cos8=0 we need P&0.1 for the effect to be appreci-
able. This can be accomplished if in the laboratory
frame the p, meson is at rest and the electron has a
momentum of the order G.1 p. However, the experi-
mental situation is much more likely to be such that

the electron is at rest in the laboratory frame. In this
case we require a p, meson in the laboratory frame of
momentum of the order 0.1 ys/m 2 Bev.
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