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Down Rutherford’s path
Scattering of point-like fermions off a structured target (such as a nucleus or nucleon)

reveals its internal structure

g + matter  matter has substructure

(atoms and molecules)

distances probed ~ 10-10 m

a + atom  atom has structure

(electrons + nucleus)

distances probed ~ 10-13 m

e + nucleus  nucleus has substructure

(protons + neturons)

distances probed ~ 10-14 m

e + proton  proton has substructure

(partons, i.e. quarks + gluons)

distances probed ~ 10-15 – 10-18 m

pp jets (qq scattering) 

distances probed ~ 10-20 m

No evidence for quark nor electron substructure found so far: pointlike down to 10-20 m

cfr. electron classical radius re = 2.8  10-15 m

200MeV fmhc

Q Q



 distance probed
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point-like point-like

inelastically scattered

charged beam particle

reveals atom substructure

inelastically scattered

proton beam reveals

proton substructure
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Structure – Form Factors
Study the internal structure of a “particle” by analyzing the cross section

of the electromagnetic scattering, i.e. observe only the scattered electron.

To be sensitive to the internal structure of a target, the wave length of the probe ,

in this case the virtual photon, must be smaller compared to the charge distribution, 

 an incredible amount of information can be extracted from

the scattered particle angular and energy distribution

For a cloud of static charge, the angular distribution of the

scattered electron results from a convolution of the point-like

cross section - Mott scattering - with the charge distribution:

if we know the force at work (i.e. EM) can study the structure

r(x)

q = ki – kf

e-(ki) e-(kf)
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Mott Scattering
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The reference process is the

elastic scattering of electrons off a point-like and infinitely heavy target.

We call such process the Mott scattering.

In this process the target does not move nor it is excited or modified, and Ei = Ef.

Let’s start with the scattering amplitude for a static (no recoil), spinless point-like charge

How to determine Am(x)?

The charge current 4-vector of a static, spinless point charge is 

Since uf and ui depend only on momentum,

the integral in Tfi leads to the Fourier transform of Am(x):

For a static source, Am(x) does not depend on time and

4d ( ) ( )  fi fi iq x
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m m mg
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From Maxwell equations

Integrating by parts (two times) gives

Therefore the scattering amplitude for a time-independent potential is

with the invariant amplitude given by

In the static case, the momentum direction changes, but the energy of the scattered

particle is conserved, i.e. Ei = Ef , thus q0 = 0 and q2 = -|q|2

For a static point charge Ze, its Fourier transform is                     and the amplitude

becomes
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With

where q is the electron scattering angle

we find a strong angular dependence

of the Rutherford scattering cross section

(low energy approximation, neglecting the recoil of the target).

For a cloud of static charge r(x), replace Ze with r(x)

The scattering amplitude for a time-independent charge distribution r(x) becomes

with

the Fourier transform of the normalized spatial charge distribution r(x).

 
22 2 24 sin / 2 i fq q k k p p    
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The Cross Section
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The cross section in the laboratory frame is (setting V = 1, the target is fixed)

Recall

we obtain

The sum over spins (k/E = b = v/c) 

and finally
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Summary of Cross Section – Spinless Target
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Mott cross section

non relativistic limit b  0: Rutherford cross section

Ultra-relativistic limit b  1
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The Form Factor
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For relative small momentum transfers (small angle scattering) we can expand

the form factor

For a spherically symmetric distribution r(x) = r(x),                                     for n odd.

Then

Low energy scattering measures basically

the quadratic mean radius            of the target.

If the charge distribution is exponential,

r(x) ~ exp(-Lr),

we obtain the so called dipole form factor
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Electromagnetic Structure of Hadrons
Hadrons are composite objects and have structure:

magnetic moment point-like Dirac particle (mid ´30s)

proliferation of hadrons (50’ …)

elastic electron – Nucleon scattering (low energy !) (mid ´50s)

quark model (p = |uud>, + =|ud>) (´60s)

deep inelastic scattering (´70s …)

protons are stable, proton targets OK

neutrons are unstable (decay after ~15 min)  no neutron targets, use D and 3He instead

(though nuclear model corrections are required …)

Observe only scattered electron (elastic scattering, inclusive scattering)

 incredible amount of information can be extracted from the

scattered electron angular and energy distribution

Note that this distribution depends on the force and structure

 if we know the force at work (i.e. g probe) can study the structure

Elastic scattering: explore global properties of charge (and magnetization) and current dist.

Inelastic scattering: probe internal structure

One photon exchange approximation (Born approx.):

Is one photon exchange good enough (a = 1/137) ? to 1%.

Probability of exchanging 2 or more photos is very small (< 1%).

For Q2 < 1000 GeV2 Z0 (EW) effects are negligible. 11

pi

pf
E, q



e – Nucleus Scattering
The effective probe is the exchanged

virtual photon of wave length                   .

(Q2 = -q2)

For low Q2 (~0.01 GeV2) the nucleus

tends to recoil as a whole with  = Q2 / 2MA .

( = Ei – Ef)

As Q2 increases nuclear states are excited.

At higher Q2 (~0.1 GeV2)

the nuclear structure is resolved,

and the electron scatters elastically off the

constituent nucleons (protons) with  = Q2/2Mp

(broad distribution due to Fermi motion).

At even higher Q2 (> 0.1 GeV2) the nucleon

structure is revealed

(first nucleon resonances are excited).

12
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e – Nucleon Scattering

Elastic scattering

proton remains intact

W = M

Inelastic (resonance) scattering

produce “excited states”

of the proton e.g. D+(1232)

W = MD

Deep Inelastic Scattering

proton breaks up resulting

in a many particle final state 

DIS = large W

Scattering of 4.879 GeV electrons from protons at rest

Place detector at 10
o

to beam and measure the energy of scattered e–

Kinematics fully determined from the electron energy and angle!

For this energy and angle determine the invariant mass W of the final state hadronic sys.
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Due to the proton internal structure, elastic scattering at high Q2 is unlikely and

inelastic reactions, where the proton breaks up dominate.

For inelastic scattering the mass of the final state hadronic system W = MX > Mp.

2 2 2 2( ) 2p pW p q M M q    



Elastic Electron – Proton Scattering

(k, ) (k´, ´)

(p, s) (p´, s´)

We cannot apply directly these results to a nucleon target because

- the spin (magnetic moment) of the nucleon contributes (nucleons have spin ½)

- the nucleon does not stay at rest but it recoils.

If the proton were point-like, with charge +e, mass M and magnetic moment e/2M,

we could use the result of the e-m- scattering at high energy (me~0, mm = M)

where E’ is the energy of the scattered electron (recoil of the target)

But the proton is not a simple point charge!

The essential point is that the electron vertex and

the photon propagator are unchanged, so we can still write

i.e. factor the cross section, with Lm the leptonic tensor

an Km a tensor describing the proton vertex (proton structure).
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elastic scattering: the nucleon remains in its ground state

g* absorbed by the nucleon as a whole 

The cross section depends on a single variable q2.

 vertex function modified by the proton structure (mp)

we follow the same procedure as for e-m- scattering,

however we need to construct a more general form

for the hadron vertex Gm and current (Lorentz 4-vector !)

with the quantities at our disposal

i.e. p, p’, and the g matrices 

(the operator gm alone cannot be use to describe

the hadron current):

The most general form for Gm is (Lorentz 4-vector)

where the factors Ki = Ki(q
2) describe the proton form (though not all independent!)

and depend on a single variable q2.

There are no terms with g5, since g* exchange conserves parity

(not true for polarized scattering or weak interactions).
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(k, ) (k´, ´)

(p, s) (p´, s´)

electronLm

protonKm
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q
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With the help of the Gordon decomposition we can eliminate one of the combinations,

for example (p’ + p)

and we are left with three independent form factors.

Rearranging the terms (q = p´ - p)

where we have introduced a new set of factors Fi = Fi(q
2) (combinations of Kj(q

2)).

We call k the anomalous magnetic moment of the proton.

Next, apply the current conservation (qmJ
m = 0 or mJ

m = 0), from which follows F3(q
2) = 0.

The most general form for the hadron current is finally

F1(q
2) and F2(q

2) are called the proton Dirac and Pauli form factors.

At small -q2 the internal structure of the proton does not appear, because the photon

cannot resolve the details of the charge distribution.

In this limit, the proton appears effectively as a point-like fermion

with charge +e and total magnetic moment mp = (1 + k)e/2M.

It follows that for the proton F1
p (0) = 1 and F2

p (0) = 1.

Experimentally we find the proton anomalous magnetic moment mp = 1.79.

( ) 2 ( )p p M i p pm m m
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To derive the cross section for ep  ep scattering follow the same procedure as for em

(calculate lepton and hadron tensors and contract them).

(def t = Q2 / 4M2)

This parametrization in terms of the form factors is known as the Rosenbluth formula (‘50). 

It reduces to what we have found for the EM scattering in the limit of point-like fermions,

with k = 0, F1(q
2) = 1 for all q2.

The Rosenbluth formula contains a cross term F1  F2, which is inconvenient for 

interpreting the measurements.

Define a linear combination of F1 and F2 (Sachs Form Factors)

then

At low Q2  0  GE(0) = 1 and GM(0) = 1 + k.

Rosenbluth Formula

GE – electric form factor

GM – magnetic form factor
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electron

proton

photon

The Breit Frame
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/ 2 / 2

/ 2 / 2
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k q k q

p q p q
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“brick wall”
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Since q2 < 0 we can boost the photon along its direction of propagation such that 

q0 vanish, i.e.  = 0: the photon carries momentum q but no energy

 no energy transfer to the proton: Ei = Ef!

The Breit frame is also know also as the infinite momentum frame,

since the proton moves with very high momentum toward the photon. 

We would like to interpret the Fourier transforms of GE and GM as the spatial charge and 

magnetic moment distributions of the proton. Because of the recoil of the proton (E´/E)

this is not possible except in a special reference system, the Breit frame, defined by

p’ = -p. In this reference system, the proton is reflected with no energy transfer,

like a ideal elastic ball on a brick wall. For each Q2, there is a Breit frame in which the 

form factors are represented as GE,M (q
2).



F1 and F2 Elastic Form Factors
The Form Factors are measured by varying Q2

i.e. by changing the beam energy E and/or by measuring at different scattering angles q.

the sign of the proton and neutron

magnetic moment is opposite
19



GE and GM Elastic Form Factors

proton

neutron

GE
n  0   interpreted as if the neutron

has a + core surrounded by a – cloud

proton

neutron

20

mp = 2.79

mn = -1.91

The Form Factors are measured by varying Q2

i.e. by changing the beam energy E and/or by measuring at different scattering angles q.



The global behavior of the proton form factors over a wide range of q2 is quite well

represented by a dipole form

This indicates an exponential spatial distribution.

Pure phenomenological observation, no strong theoretical basis!

The slopes of the form factors GE,M at Q2 = 0 measure the

mean square radii of the charge and magnetization distributions

with the following empirical values

Nucleons have a size of about 1 fm!

The Dipole Form
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Assume a general final hadronic state |X>

e + p e´ + hadrons (unobserved)

The invariant amplitude can still be factorized

In a leptonic and hadronic current.

Follow the procedure used for calculating

e + m e + m scattering

(separate sums over lepton and hadron spins)

evaluate |M|2 and sum over all possible

hadronic states

unpolarized electrons

no final state polarization observed

Electron – Nucleon Inelastic Cross Section
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The hadron tensor Wm parameterizes our ignorance of the hadron structure

at the other end of the photon propagator
average over initial proton spin states (Sspin)

sum over all hadronic final states |X> (and spins)

integrate over all final state particle momenta (only particles on mass shell can be observed!)

Q2 and  (or p and q) are independent

The lepton tensor Lm is the same as for em scattering (symmetric in m)

The most general form for Wm constructed out of gm and independent momenta p and q

(gm matrices are not included since we have already averaged over spins)

Wi = Wi (, Q2) or Wi = Wi (p, q) – proton structure functions

(W3, W6 reserved for parity-violating structure functions in  scattering, g replaced by W)

Hadron Tensor
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The hadronic tensor Wm can be simplified (not all Wi are independent), noting

parity invariance  symmetric form (not for  scattering)

current conservation

implies

Finally

Unlike for elastic scattering, there are two independent variables, e.g.  and q2 . 

Contract Lm and Wm

In lab frame we have p = (M,0):

so finally

The Inelastic Cross Section
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The flux and phase space factors are

The invariant amplitude for e + p e + X is given by

(replace the muon tensor of e + m e + m with the hadronic tensor) :

where 4M is a normalization factor for Wm.

The integration of the phase space of the hadronic system has been absorbed into Wm !

and

Finally, we obtain the angular distribution for inelastic e + p e + X scattering
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Summary of Cross Section Formulae
The structure of the target becomes apparent if we summarize the various formulae.

For all the reactions the differential cross section can be written in the form

with

em  em

elastic ep scattering

inelastic ep scattering
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The cross sections for elastic scattering can be integrating over E’ ( functions)

with the result

and the Mott cross section

(for a static target E’ / E = 1)
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