ADVANCED PARTICLE PHYSICS II

http://dpnc.unige.ch/~bravar/PPA2

Exercises - 2nd Assignment

Distributed: February 28, 2023 To be returned: March 9, 2023

Isospin

- 1. Show that $e^{i\pi\sigma_2/2} = i\sigma_2$, where σ_2 is one of the Pauli matrices.
- 2. Using isospin symmetry, show that the rates for the following strong interaction decays occur in the ratios

$$\Gamma(\Delta^{-} \to \pi^{-}n) : \Gamma(\Delta^{0} \to \pi^{-}p) : \Gamma(\Delta^{0} \to \pi^{0}n) : \Gamma(\Delta^{+} \to \pi^{+}n) : \Gamma(\Delta^{+} \to \pi^{0}p) : \Gamma(\Delta^{++} \to \pi^{+}p) =$$

$$= 3 : 1 : 2 : 1 : 2 : 3$$

3. The G-parity is defined as a rotation of 180° around the y-axis in isospin space followed by a charge conjugation:

$$G = Ce^{i\pi I_2}$$
.

The G-parity is defined such that charged particles can also be eigenstates of G-parity. Since strong interaction is invariant under isospin rotations and charge conjugation, G-parity is conserved in strong interactions. Show that for a system of n pions

$$G(n\pi) = (-1)^n .$$

What is the G-parity of the ρ^0 and ω mesons (study their decays)?

Meson decays

- 4. Show how the intrinsic parity of the π^0 meson can be determined from the decay $\pi^0 \to \gamma \gamma$ by measurements of the photon polarization. By similar measurements one can check that the electron-positron pair has odd relative parity, since the annihilation process $e^+e^- \to 2\gamma$ can occur in the 1S_0 positronium state.
- 5. How does the ρ^0 meson decay? Why the ρ^0 meson cannot decay to two π^0 's? Can it decay to two γ 's?

6. The leptonic decay of neutral vector mesons ($J^{PC}=1^{--}$) can be pictured as proceeding via a virtual photon γ^* :

$$V(q\bar{q}) \to \gamma^* \to e^+e^-$$
.

Neglecting a possible dependence on the vector meson mass, show that the leptonic decay widths are in the ratio:

$$\rho : \omega : \phi : \psi = 9 : 1 : 2 : 8$$
.

Hint: To calculate these ratios it suffices to notice that the $V-\gamma$ coupling is proportional to the charges of the quarks (the matrix element for this decay is proportional to $\langle \psi | \hat{Q}_q | \psi \rangle$, there is no need to calculate explicitly the amplitudes).

Baryon wavefunctions

- 7. Write down the proton's wave function (flavor and spin). Using isospin symmetry write down the neutron's wave function.
- 8. Derive the magnetic moment of the proton, neutron, and Λ .
- 9. If the color did not exist, baryon wavefunctions would be constructed from

$$\psi = \phi_{flavor} \chi_{spin} \eta_{space} .$$

Taking L=0 and using the flavor and spin wavefunctions derived above

- i) show that it is still possible to construct a wavefunction for a spin-up proton for which $\phi_{flavor}\chi_{spin}$ is totally antisymmetric;
- ii) predict the baryon multiplet structure for this model;
- iii) show that μ_p is negative and that $\mu_n/\mu_p=-2$ in this model (which rules it out).
- 10. The Ω^- baryon was discovered in the strong interaction process $K^- + p \to \Omega^- + X$. What is the minimal composition of X in terms of quarks compatible with the strong interaction? Show the quark composition of all interacting hadrons. Show in detail the decay chain of Ω^- and the strangeness flow.