ADVANCED PARTICLE PHYSICS II

http://dpnc.unige.ch/~bravar/PPA2
 Exercises - $3^{\text {rd }}$ Assignment

Distributed: March 7, 2023
To be returned: March 16, 2023

Miscellanea

1. When comparing $e^{+} e^{-}$to $q \bar{q}$ cross sections, we introduce the ratio

$$
R=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

Why do we use $\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)$in the denominator instead of $\sigma\left(e^{+} e^{-} \rightarrow e^{+} e^{-}\right)$?
2. What is the amplitude of the following diagram?

Hint: assign a specific color to the gluon on the left and follow the color flow.
3. From the expression of the running coupling constant $\alpha_{S}\left(Q^{2}\right)$ for $N_{f}=3$ determine the value of Q^{2} at which α_{S} appears to become infinite. Comment on this result.
4. Show that, if a particle (for instance, the neutron) has a non vanishing electric dipole moment d_{E}, both parity and time reversal invariance are violated (assuming $C P T$ invariance, violation of the time reversal invariance implies $C P$ violation).

Color Factors

5. Color factors involve always expressions of the Gell-Mann matrices in the form $\lambda_{i j}^{a} \lambda_{k l}^{a}$ (sum over the color index a). Using the expression

$$
\sum_{a=1}^{8} \lambda_{i j}^{a} \lambda_{k l}^{a}=2 \delta_{i l} \delta_{j k}-\frac{2}{3} \delta_{i j} \delta_{k l}
$$

calculate $\lambda_{11}^{a} \lambda_{11}^{a}, \lambda_{11}^{a} \lambda_{22}^{a}, \lambda_{12}^{a} \lambda_{21}^{a}$ and $\lambda_{i j}^{a} \lambda_{i j}^{a}$. These color factors will be used in the following exercises.
6. Assume that the $q \bar{q}$ potential is Coulomb-like

$$
V_{q \bar{q}}(r)=-f_{C} \frac{\alpha_{s} \hbar c}{r} .
$$

where f_{C} ia the color factor. Show that quarks and antiquarks attract each other most strongly when they are in the color singlet configuration $(3 \otimes \overline{3}=1 \oplus 8)$.
Hint: Since the color symmetry holds, it is enough to consider one octet state. Take for instance $(r \bar{r}-b \bar{b}) / \sqrt{2}$. The singlet state is $(r \bar{r}+g \bar{g}+b \bar{b}) / \sqrt{3}$.
7. Do the same calculation for the interaction of two quarks (shown in the Figure below). The decomposition of a $q q$ system is $3 \otimes 3=\overline{3} \oplus 6$. Find for which configuration the force is attractive and for which it is repulsive.

Hint: Take for instance the state $(r b+b r) / \sqrt{2}$ for the sextet and $(r b-b r) / \sqrt{2}$ for the triplet configuration.
8. Find the overall 'color factor' for $q q \rightarrow q q$, if QCD color symmetry were $\mathrm{SU}(2)$ instead of $\operatorname{SU}(3)$.

QCD amplitudes

9. The lowest-order QCD diagrams describing the interaction of a quark and an antiquark ($q \bar{q} \rightarrow q \bar{q}$) are shown in the Figure below). Calculate the amplitudes for both processes. Show that the difference with respect to QED $e^{+} e^{-} \rightarrow e^{+} e^{-}$amplitude is in the 'color factor'.

The diagram on the left has been calculated during the lesson (crossing of the $q q \rightarrow q q$ process). Assuming that the $q \bar{q}$ pair is in the color singlet configuration, calculate the amplitude of the process shown in the diagram on the right.

