ADVANCED PARTICLE PHYSICS II

http://dpnc.unige.ch/~bravar/PPA2
Exercises - $5^{\text {th }}$ Assignment
Distributed: March 21, 2023
To be returned: March 30, 2023

$e^{+} e^{-}$annihilation into hadrons

1. In a small electron-positron collider of radius $R=10 \mathrm{~m}$, each beam has a current $I=$ 10 mA and a transverse area $S=0.1 \mathrm{~cm}^{2}$. The cross-section for the reaction $e^{+} e^{-} \rightarrow$ $\pi^{+} \pi^{-} \pi^{0}$ at the peak of the ω resonance is $\sigma=1.5 \mu \mathrm{~b}$. Draw a Feynman diagram to illustrate such an event. Assuming that there is only one electron and one positron bunch and that the beams collide head-on two times per revolution, calculate the rate (number of events per second) for this process.
2. Electron and positron beams with an energy E of 4 GeV each collide head on in a storage ring. What production rate for $\mu^{+} \mu^{-}$pairs would you expect at a luminosity of $10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$? What production rate for events with hadronic final states would you expect?
3. Consider the reaction

$$
e^{+}+e^{-} \rightarrow q+\bar{q}
$$

at a collider with a CM energy $\sqrt{s}=20 \mathrm{GeV}$. Give a typical value of the hadronic jet opening angle in a two-jet event (typical transverse momenta of quarks, compatible with confinement, are $200-300 \mathrm{MeV} / c$). Let ϑ be the angle of the common jet direction w.r.t. the colliding beams. Find the ratio between the counting rates at $\vartheta=90^{\circ}$ and $\vartheta=30^{\circ}$

Fragmentation functions

4. Show that

$$
\sum_{h} \int_{0}^{1} z \cdot D_{q}^{h}(z) \mathrm{d} z=1
$$

where the sum runs over all hadrons produced in the event (this result basically says that all initial quarks fragments to hadrons).
5. Show that

$$
\sum_{q} \int_{z_{\min }}^{1}\left[D_{q}^{h}(z)+D_{\bar{q}}^{h}(z)\right] \mathrm{d} z=n_{h}
$$

where the sum runs over all quarks produced in the event and n_{h} is the avarage multiplicity of hadron h. (this result basically says that the number n_{h} of hadrons of type h is given by the probabilities of obtaining h from all possible parents).

Gluon emission

6. Show that (calculate) the gluon emission kinematics is described by the following variables

$$
\begin{gathered}
x_{T}^{2}=\frac{4}{x_{q}^{2}}\left(1-x_{\bar{q}}\right)\left(1-x_{q}\right)\left(1-x_{g}\right) \\
x_{\bar{q}}=\frac{2\left(1-x_{q}\right)}{2-x_{q}-x_{q} \cos \vartheta}
\end{gathered}
$$

where x_{T} is the anti-quark transverse momentum relative to the quark direction, x_{q}, x_{g}, and $x_{\bar{q}}$ are the quark, gluon, and anti-quark fractional momenta and ϑ the angle between the quark and anti-quark directions.
7. Derive the following expression for the gluon emission cross section in $e^{+} e^{-} \rightarrow q \bar{q} g$ (see the derivation for $\gamma^{*}+g \rightarrow q+g$ from last week):

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} x_{\bar{q}} \mathrm{~d} x_{T}^{2}}=\frac{\alpha_{s}}{2 \pi} \frac{1}{x_{T}^{2}} P_{q \leftarrow q}\left(x_{\bar{q}}\right) .
$$

$P_{q \leftarrow q}$ is the splitting function already encountered in the QCD evolution equations.
8. Show that $\mathrm{d} \sigma / \mathrm{d} x_{T}$ can be transformed in $\mathrm{d} \sigma / \mathrm{d} \vartheta$ for ϑ not too large, where ϑ is the angle between the q and \bar{q} directions

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \vartheta} \approx \frac{8 \alpha_{S}}{3 \pi} \frac{1}{\vartheta} \log \frac{1}{\vartheta^{2}} .
$$

The exact result can be obtained starting from

$$
\frac{1}{\sigma} \frac{d \sigma}{d x_{q} d x_{\bar{q}}}=\frac{2 \alpha_{S}}{3 \pi} \frac{x_{q}^{2}+x_{\bar{q}}^{2}}{\left(1-x_{q}\right)\left(1-x_{\bar{q}}\right)} .
$$

