ADVANCED PARTICLE PHYSICS II

http://dpnc.unige.ch/~bravar/PPA2

Exercises - 6th Assignment

Distributed: Mars 28, 2023 To be returned: April 6, 2023

Kinematics

1. To describe the kinematics of outgoing hadrons or jets in p + p collisions one uses the *rapidity* y defined as

$$y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right) = \tanh^{-1} \left(p_z / E \right) ,$$

where p_z is the momentum along the collision axis. How does this observable change under a Lorentz boost in the z direction? And the rapidity difference Δy ?

Express y in terms of the polar angle ϑ . Then neglect the masses of hadrons; the variable so obtained is referred to as the pseudorapidity η :

$$\eta = -\ln \tan \left(\vartheta/2 \right)$$
.

2-body QCD processes in pp collisions

- Draw the Feynman diagrams for all two body elementary sub-processes in hadron-hadron collisions between quarks and gluons (all *s*, *t*, and *u* channels). Sketch the angular dependence of the matrix elements as a function of cos ϑ_{CM}. Are the matrix elements divergent for cos ϑ_{CM} → +1 or -1? Explain.
- 3. Draw all leading order QCD Feynman diagrams that involve photons (initial and/or final state). Calculate the color factors for each diagram (sum over final state colors, average over initial state colors).
- 4. Consider the QCD Compton diagram gq → γq.
 In the detector we can measure the (direct–)γ and the away side jet. Derive the partonic centre of mass kinematics, i.e. x_g and x_q, in terms of the γ and jet kinematics. Is there a QCD sub-process with 2 isolated photons in the final state? If so, draw the corresponding Feynman diagram(s).

5. What is the main difference between a p−p and p−p̄ collider at the same c.o.m. energies? Draw the lowest order QCD Feynman diagrams for the process pp → di – jets + X and pp̄ → di – jets + X, where X represents the remnants of the colliding hadrons.

The Drell-Yan process

6. The total cross section for the Drell–Yan process $p\bar{p} \rightarrow \mu^+\mu^- X$ has been derived during the lesson. Here we assume that only $u(\bar{u})$ and $d(\bar{d})$ quarks are found in the proton:

$$\sigma_{DY} = \frac{4\pi\alpha^2}{81s} \int_0^1 \int_0^1 \frac{1}{x_1 x_2} \left[4u(x_1)u(x_2) + 4\bar{u}(x_1)\bar{u}(x_2) + 4d(x_1)d(x_2) + 4\bar{d}(x_1)\bar{d}(x_2) \right] dx_1 dx_2 \, .$$

(i) Let the sea contribution be described by a single PDF S(x) = ū(x) = d(x). Express σ_{DY} in terms of the valence quark PDFs and S.
(ii) Derive the corrisponding expression for pp → μ⁺μ⁻X.

7. The Drell–Yan production of $\mu^+\mu^-$ pairs with an invariant mass Q^2 has been studied, for instance, in π^{\pm} interactions with carbon. Explain why the ratio

$$\frac{\sigma(\pi^+ C \to \mu^+ \mu^- X)}{\sigma(\pi^- C \to \mu^+ \mu^- X)}$$

tends to unity for small Q^2 and tends to $\frac{1}{4}$ as Q^2 approaches s (s is the c.o.m. energy). Hint: Think in terms of valence quarks and sea quarks.

8. Draw all Feynman diagrams which give an $O(\alpha^2 \alpha_s)$ contribution to the lepton pair cross section.