ADVANCED PARTICLE PHYSICS II

http://dpnc.unige.ch/~bravar/PPA2

Exercises - 10^{th} Assignment

Distributed: May 19, 2023 To be returned: May 25, 2023

$\nu - e$ scattering

- 1. Draw all possible Feynman diagrams for $\nu_e e^-$, $\bar{\nu}_e e^-$, $\nu_\mu e^-$, and $\bar{\nu}_\mu e^-$ scattering (CC and NC). Sketch the angular dependence of the cross sections for all processes.
- 2. In deriving the CC invariant neutrino electron scattering amplitudes $(\nu_{\mu}e^- \rightarrow \mu^-\nu_e)$ we ignored the lepton masses. Show that

$$\sigma(\nu_{\mu}e^{-} \to \mu^{-}\nu_{e}) = \frac{G_{F}^{2}}{\pi} \frac{(s - m_{\mu}^{2})^{2}}{s}$$

- 3. Assuming that $\nu_e e$ scattering occurs only via the charged current weak interaction $\nu_e e^- \rightarrow e^- \nu_e$, estimate the probability that a 10 MeV ν_e (the neutrino could have originated from the Sun) will interact with an e^- in the Earth along a trajectory passing through the center of the Earth (radius = 6400 km, uniform desnity $\rho = 5520 \text{ kg/m}^3$).
- 4. What would be the angular dependence for

$$\bar{\nu}e^- \rightarrow \bar{\nu}e^-$$
 and $\nu e^- \rightarrow \nu e^-$

in a vector theory? Sketch it.

5. Perfrom all the steps needed to derive the NC cross section

$$\frac{\mathrm{d}\sigma(\nu_{\mu}e^{-} \to \nu_{\mu}e^{-})}{\mathrm{d}y} \qquad \text{and} \qquad \frac{\mathrm{d}\sigma(\nu_{\mu}e^{+} \to \nu_{\mu}e^{+})}{\mathrm{d}y}$$

from the invaraint amplitude M_{fi} .

π^- decay

6. Can a π^- decay to a π^0 (draw the corresponding Feynman diagram)? Show that the partial decay rate for the decay $\pi^- \to \pi^0 e^- \bar{\nu}_e$ is given by

$$\Gamma(\pi^- \to \pi^0 e^- \bar{\nu}_e) = \frac{G_F^2}{30\pi^3} (\Delta m)^5 ,$$

where $\Delta m = m(\pi^-) - m(\pi^0) = 4.6$ MeV. Compare $\Gamma(\pi^- \to \pi^0 e^- \bar{\nu}_e)$ to $\Gamma(\pi^- \to \mu^- \bar{\nu}_\mu)$ and check the branching ratios in the PDG booklet.

ν -DIS scattering

- 7. Derive the kinematical relations $(Q^2, x, y, \nu, \text{ and } W^2)$ for $\nu_{\mu}N$ Deep Inelastic Scattering. The measured quantities are E_{μ} , ϑ_{μ} , and E_{had} .
- 8. Let $\sigma(\bar{\nu})/\sigma(\nu) = R$ in ν -nucleon scattering. Show that

$$\frac{\int x \,\bar{Q}(x) \,dx}{\int x \,Q(x) \,dx} = \frac{3R-1}{3-R} \;.$$

Assume an isoscalar target, i.e. a target containing the same number of protons and neutrons.

9. Compare νN to $e^{\pm}N$ scattering (N is an isoscalar target) and show that

$$\frac{\mathrm{d}\sigma(e^{\pm}N \to e^{\pm}N)}{\mathrm{d}x\,\mathrm{d}y} = \frac{2\pi\alpha^2}{q^4} x s \frac{5}{18} [Q(x) + \bar{Q}(x)][1 + (1-y)^2] \ .$$

This is equivalent to write

$$F_2^{\nu n} = \frac{18}{5} F_2^{eN}$$