ADVANCED PARTICLE PHYSICS II

http://dpnc.unige.ch/~bravar/PPA2

Exercises - $10^{\text {th }}$ Assignment

Distributed: May 19, 2023
To be returned: May 25, 2023

$\nu-e$ scattering

1. Draw all possible Feynman diagrams for $\nu_{e} e^{-}, \bar{\nu}_{e} e^{-}, \nu_{\mu} e^{-}$, and $\bar{\nu}_{\mu} e^{-}$scattering (CC and NC). Sketch the angular dependence of the cross sections for all processes.
2. In deriving the CC invariant neutrino - electron scattering amplitudes ($\nu_{\mu} e^{-} \rightarrow \mu^{-} \nu_{e}$) we ignored the lepton masses. Show that

$$
\sigma\left(\nu_{\mu} e^{-} \rightarrow \mu^{-} \nu_{e}\right)=\frac{G_{F}^{2}}{\pi} \frac{\left(s-m_{\mu}^{2}\right)^{2}}{s} .
$$

3. Assuming that $\nu_{e} e$ scattering occurs only via the charged current weak interaction $\nu_{e} e^{-} \rightarrow$ $e^{-} \nu_{e}$, estimate the probability that a $10 \mathrm{MeV} \nu_{e}$ (the neutrino could have originated from the Sun) will interact with an e^{-}in the Earth along a trajectory passing through the center of the Earth (radius $=6400 \mathrm{~km}$, uniform desnity $\rho=5520 \mathrm{~kg} / \mathrm{m}^{3}$).
4. What would be the angular dependence for

$$
\bar{\nu} e^{-} \rightarrow \bar{\nu} e^{-} \quad \text { and } \quad \nu e^{-} \rightarrow \nu e^{-}
$$

in a vector theory? Sketch it.
5. Perfrom all the steps needed to derive the NC cross section

$$
\frac{\mathrm{d} \sigma\left(\nu_{\mu} e^{-} \rightarrow \nu_{\mu} e^{-}\right)}{\mathrm{d} y} \quad \text { and } \quad \frac{\mathrm{d} \sigma\left(\nu_{\mu} e^{+} \rightarrow \nu_{\mu} e^{+}\right)}{\mathrm{d} y}
$$

from the invaraint amplitude $M_{f i}$.
6. Can a π^{-}decay to a π^{0} (draw the corresponding Feynman diagram)? Show that the partial decay rate for the decay $\pi^{-} \rightarrow \pi^{0} e^{-} \bar{\nu}_{e}$ is given by

$$
\Gamma\left(\pi^{-} \rightarrow \pi^{0} e^{-} \bar{\nu}_{e}\right)=\frac{G_{F}^{2}}{30 \pi^{3}}(\Delta m)^{5}
$$

where $\Delta m=m\left(\pi^{-}\right)-m\left(\pi^{0}\right)=4.6 \mathrm{MeV}$. Compare $\Gamma\left(\pi^{-} \rightarrow \pi^{0} e^{-} \bar{\nu}_{e}\right)$ to $\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu}\right)$ and check the branching ratios in the PDG booklet.

ν-DIS scattering

7. Derive the kinematical relations (Q^{2}, x, y, ν, and W^{2}) for $\nu_{\mu} N$ Deep Inelastic Scattering. The measured quantities are E_{μ}, ϑ_{μ}, and $E_{\text {had }}$.
8. Let $\sigma(\bar{\nu}) / \sigma(\nu)=R$ in ν-nucleon scattering. Show that

$$
\frac{\int x \bar{Q}(x) d x}{\int x Q(x) d x}=\frac{3 R-1}{3-R}
$$

Assume an isoscalar target, i.e. a target containing the same number of protons and neutrons.
9. Compare νN to $e^{ \pm} N$ scattering (N is an isoscalar target) and show that

$$
\frac{\mathrm{d} \sigma\left(e^{ \pm} N \rightarrow e^{ \pm} N\right)}{\mathrm{d} x \mathrm{~d} y}=\frac{2 \pi \alpha^{2}}{q^{4}} x s \frac{5}{18}[Q(x)+\bar{Q}(x)]\left[1+(1-y)^{2}\right] .
$$

This is equivalent to write

$$
F_{2}^{\nu n}=\frac{18}{5} F_{2}^{e N}
$$

