ADVANCED PARTICLE PHYSICS II

http://dpnc.unige.ch/~bravar/PPA2
 Exercises - $11^{\text {th }}$ Assignment

Distributed: May 16, 2023
To be returned: May 25, 2023

1. Draw the lowest order Feynman diagram for the decay

$$
\pi^{0} \rightarrow \nu_{\mu} \bar{\nu}_{\mu}
$$

and explain why this decay is effectively forbidden. How would you design an experiment to search for this forbidden decay?
2. Assuming the Standard Model coupling, show that

$$
\Gamma\left(Z \rightarrow \nu_{e} \bar{\nu}_{e}\right)=\frac{g_{w}^{2}}{96 \pi \cos ^{2} \vartheta_{W}} M_{Z}
$$

3. Starting from the matrix element, work through the calculation for the $Z \rightarrow f \bar{f}$ partial decay rate. Express the decay rate in terms of the vector and axial-vector couplings of the Z boson. Taking $\sin ^{2} \vartheta_{W}=0.2315$, show that

$$
R_{\mu} \approx \frac{\Gamma\left(Z \rightarrow \mu^{+} \mu^{-}\right)}{\Gamma(Z \rightarrow \text { hadrons })} \approx \frac{1}{20} .
$$

4. Calculate the partial width for the $W^{+} \rightarrow e^{+} \nu_{e}$ decay mode. Then repeat the exercise for $W^{+} \rightarrow \bar{d} u$ and $W^{+} \rightarrow \bar{s} u$.
5. Predict the total width of the W^{+}in the Standard Model.
6. There are ten possible lowest order Feynman diagrms for the process $e^{+} e^{-} \rightarrow \mu^{-} \bar{\nu}_{\mu} u \bar{d}$ of which only three involve a $W^{+} W^{-}$intermediate state. Draw the other seven diagrams (they are all s-channel processes involving a single W).
7. Assuming that the electron beam is 100% polarized and that the positron beam is unpolarized, show that

$$
A_{L R}=\frac{\sigma_{L}-\sigma_{R}}{\sigma_{L}+\sigma_{R}}=\frac{\left(c_{L}^{(e)}\right)^{2}-\left(c_{R}^{(e)}\right)^{2}}{\left(c_{L}^{(e)}\right)^{2}+\left(c_{R}^{(e)}\right)^{2}}=A_{e}
$$

where σ_{L} and σ_{R} are the measured cross sections at the Z pole for LH and RH electron beams. What happens if both beams are 100% polarized?
8. Your new theroy of weak interactions asserts that the W boson has spin 0 and that the coupling is scalar / pseudoscalar (i.e. always parity violating). In this new theory the W propagator and vertex factor become

$$
\frac{-i}{q^{2}-M_{W}^{2}} \approx \frac{i}{M_{W}^{2}} \text { and } \frac{-i g}{\sqrt{2}}\left(1-\gamma_{5}\right)
$$

respectively. Consider the inverse muon decay $\nu_{\mu}+e^{-} \rightarrow \nu_{e}+\mu^{-}$. Draw the corresponding Feynman diagram and calculate M. Then calculate the spin-avereged amplitude modulo squared $\left.\left.\langle | M\right|^{2}\right\rangle$. Finally find the differential and total cross sections in the c.o.m. frame.

