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Particle Physics

Study interactions of Nature

that act on particles at distances of the size of the atomic nucleus

These would appear only if we can probe matter at very small distances  high energy.

By the middle of the 20th century

experiments have revealed a series of questions that could not be resolved without

the introduction of new particles and new interactions.

Particle physics is therefore an experimental science.

what is radioactivity? → weak interactions

what holds the atomic nucleus together? → strong interactions

what are the protons and neutrons made off? → strong interactions

Today particle physics is described by the Standard Model (of particle physics), which

is a mathematically consistent theory of electromagnetic, weak, and strong interactions

(though a coherent collection of different ideas and theories) that describes (almost)

all know phenomena and which has been verified in detail in different experiments.

With the recent discovery (2012) of the Higgs boson the Standard Model is completed.

Is this all?

This course is an introduction to the Standard Model of Particle Physics.
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Q1: What is Matter Made off?
chemical elements and molecules

~10-9 m

atom = nucleus + electrons

~10-10 m

nucleus = protons + neutrons

~10-14 m

proton, neutron = S quarks

~10-15 m

quarks, leptons < 10-20 m

(structureless)

cfr. electron classical radius: 

Ordinary matter : Quark up + Quark down + Electron (+ Neutrino)

Is that all?
(the volume of an atom corresponds to > 1027 times the “volume” of an electron!)

Classically, matter contains a lot of void.

Quantum mechanically, the void is populated by virtual particles. 4
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Q2: What are the Forces
SUN = gigantic source of energy

The very observation that the sun is shining for several millennia tells us that the source 

of energy cannot be classical (i.e. burning of oil).

Today we know that the Sun is more than 4.5 billion years old.

The Four Forces at Work

gravitation keeps the sun together   R ~ 

electromagnetic energy transport from the core to the

photosphere (several thousand years)

light!   R ~ 

strong nuclear fusion 4p → He + #g

this is the source of sun’s energy

R ~ 10-15 m

weak responsible for p → n n e+ transitions

[p + p → d + n + e+]

(slow process, otherwise the sun would

have burned all of its “fuel” and stopped

shining long time ago) R ~ 10-17 m 5



Q3: How do the Particles Interact?

The forces between particles result from the transfer of the momentum carried

by the exchanged particles (no action at a distance).

The momentum of the exchanged quantum can be positive or negative:

- the force is attractive

+ the force is repulsive

The nature of the force is determined by the propagator:

6

photon propagator

classically

Classically, the exchange of

particles leads to a repulsive force. 
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In QFT elementary particles interacts by the exchange of spin-1 gauge bosons.



Plan of the Course
1) Introduction to the Standard Model

2) The Quark Model and the Hadron Spectrum (SU(3) flavor symmetry)

3) Introduction to QCD (QCD Lagrangian, running of aS, qq scattering)

4) QCD Parton Model (scaling violations and QCD evolution equations)

5) e–e+ annihilation → hadrons (e–e+ → qq, e–e+ → qq + g, hadronization)

6) Hadron – Hadron Interactions (low energy, qq → l l (Drell-Yan), jet production, HF)

7) Phenomenology of Weak Interactions

8) Weak Decays (beta, , , n)

9) ne scattering and nq scattering (Charged and Neutral Currents)

10a) quark mixing and CKM matrix

10b) Matter – Antimatter oscillations (K0 – K0 and B0 – B0 systems) and CP Violation

11) Electro-Weak Unification and Electro-Weak Interactions (W+, W-, Z0)

12a) Spontaneous Electroweak Symmetry Breaking and the Higgs Mechanism

12b) The Higgs Boson

13) Neutrino Oscillations
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Evaluation

Written and Oral exam in June or September (must have passed PPA1)

Active participation in exercise sessions

homeworks!

You must return the exercises, at least 10 series, and solve at least 50% of problems

Halzen & Martin and Thomson textbooks are our main references for the course

(they are almost equivalent, Thomson is more recent)

For topics not covered in Halzen & Martin or Thomson,

we shall provide the reference material (lecture notes).

Evaluation of the course (you) via a questioner at the end of the semester.

During the semester one or two additional question times, if you ask for

(you ask questions, we try to answer them).

ASK QUESTIONS !!!!!
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nature is slightly more complicated (not only electrons and protons)!

there are 3 generations of pointlike spin ½ quarks and leptons (fermions)

each generation is composed of

2 types (flavors) of quarks and 2 types (flavors) of leptons

and their antiparticles

particles in the 2nd and 3rd generation are “copies” of particles in the 1st generation

differing only in mass

[missing the right-handed neutrinos]

each of 6 quarks come with 3 different colors (= strong charge)

each generation is heavier than the preceding one and

the particles of the 2nd and 3rd generation are unstable, they decay to the 1st generation

fermions are described by the Dirac equation

observed hadrons (baryons and mesons) are composite objects made of quarks

there are no composite states made of leptons

The Particles: Quarks and Leptons

Q = 2/3e

1/3e

0e

1e

quarks:

leptons:
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The Mediators
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Interactions between fermions are mediated by the exchange of spin-1 Gauge Bosons

Interactions of gauge bosons with fermions described by SM vertices

Force Boson(s) JP m [GeV]

EM (QED) Photon   g 1– 0

Weak W± / Z 1– 80 / 91

Strong (QCD) 8 Gluons  g 1– 0

Gravity Graviton? 2+ 0

g

g

STRONG EM WEAK CC WEAK NC

Only quarks 

Never changes 

flavour 

All charged fermions

Never changes 

flavour 

All fermions

Always changes 

flavour 

All fermions 

Never changes 

flavour 

q q

g

d

W

u q q

Z

+

g

+

as ~ 0.1 a ~ 1/137 aw ~ 1/40



The Standard Model (1973  …)

12

1979

impressive agreement with data

(mathematically consistent theory of

quarks and leptons and their interactions)

using 19 parameters the SM

predicts the interactions of

electro-weak and strong forces,

the properties of the 12 spin-1/2 fermions

and the 12 spin-1 gauge bosons

carrying the force between the fermions

1 spin-0 Higgs boson (origin of mass)

the SM describes all particle physics data

(almost) no deviations observed so far
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Particle Physics Goals
1. identify the basic (structureless) constituents of matter

2. identify and understand the nature of forces acting between them

3. understand how they interact

“three” distinct type of particles:

quarks and leptons – spin ½ fermions

gauge bosons – spin 1 bosons, mediate interactions between quarks and leptons

Higgs boson – spin 0 boson, origin of mass

four interactions in Nature:

strong

electromagnetic

weak

gravitational

Symmetries play a central role in particle physics: our knowledge of forces stems from

our understanding of the underlying symmetries and the way in which they are broken.

One aim of particle physics is to discover the fundamental symmetries.

Link experimental (measurable) observables with calculable quantities:

scattering

spectroscopy

decays 14



History of the Universe
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high energy ~ looking backward in time

energies we can reach in our laboratories

~ energy of the early Universe



Natural Units:
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S.I. units:   kg m s A   are a natural choice for “everyday” objects

not very natural in particle physics (1 barn = 10-28 m2), instead use Natural Units

from quantum mechanics - unit of action   ћ

from relativity - speed of light   c

from particle physics - unit of energy   GeV

energy kg m2 / s2 GeV GeV

momentum kg m / s GeV / c GeV

mass kg GeV / c2 GeV

time s (GeV / ћ)-1 GeV-1

length m (GeV / ћ c)-1 GeV-1

area m2 (GeV / ћ c)-2 GeV-2

to simplify algebra set ћ = c = 1 (loose the “tool” of dimensional cross-checks in calc.s)

to convert back to S.I. units, need to restore missing factors of   c and ћ

recall  ћ  c = 197.3 MeV fm (~ 200 MeV fm)  1 fm  5 GeV-1

ћ = c = 1

all quantities expressed

in powers of GeV

  7

2 4

3

2

24 2

F cG m





 



Natural Units: Heaviside-Lorentz Units 
Different units are used to describe charges and electro-magnetic interactions

M K S A Heaviside-Lorentz c g s

(rationalized c g s)

1 2 1 2

2 2
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We will use (rationalized) Heaviside-Lorentz + Natural Units:   ћ = c = 0 = 0 = 1
(the 4 appears in the Coulomb force and a rather than in the Maxwell equations)

c2 = 1 / 0 0

conversions

(MKSA to cgs)

0 → 1/4

0 → 4/c2

B → 1/c B

dimensionless!

same in all units



Cosmological Units
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Cosmological units or Planck units : c = kB = ћ = GN = 1

In terms of GN, ћ, c (Planck system) we obtain a unique length scale, mass, and time:

Planck length

Planck mass

Planck time

Planck energy

Planck temperature
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Fermi Golden Rule – Factors of 2
Derived by Fermi to calculate decay rates in non-relativistic Quantum Mechanics

interaction rate per target particle

transition amplitude (pert. expansion)

normalized wavefunction to 2 particles per unit volume (2 EA , 2 E1 , …)

Lorentz-invariant amplitude

Lorentz-invariant

phase space (LIPS)

decay rate

Decay A  1 + 2:

   
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Energy Frontier:
The Large Hadron Collider LHC



The Four Big Experiments at LHC
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A Bit of History of Particle Discoveries
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Relativistic Quantum Field Theory

23

The language that describes the interactions between elementary particles is

Quantum Field Theory.

The quantization of fields allow for the possibility that the number of particles changes

as in the creation or annihilation of electron – positron pairs, or in the weak decay of a 

neutron (n → p n e).

General framework to study fundamental interactions, which leads to a unified treatment

of all interactions.

Relativistic QFT combines quantum theory

relativity

the concept of field

The quantization of any classical field introduces the quanta of the field,

which are particles with well defined properties.

The electron and the positron themselves can be thought of as the quanta of an electron-

positron field. That allows the number of particles to change, like the creation or 

annihilation of an electron-positron pairs.

The electrons are the source of yet another field – the electromagnetic field, whose 

quanta are yet other particles – the photon.

The interaction between an electron and a positron is mediated by the electromagnetic

field (action at a distance, classical) or due to an exchange of photons (local, quantum).
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These processes occur through the interaction of fields.

 the solution of the equations of the quantized interacting fields is extremely difficult 

 if the interaction is sufficiently weak one can employ perturbation theory, 

like in electrodynamics (a ~1/137).

Major difficulty when calculating beyond leading order is the (almost unavoidable)

appearance of UV divergences (e.g. in loop diagrams)  renormalization

Classically: the electron is an elementary constituent of matter

and source of the electromagnetic field which carries energy

The field interacts back with the electron and contributes to its mass mc2 = DECoulomb

electron classical radius

Quantum Electro-Dynamics: the electron emits and absorbs the quanta of the EM field

2
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Lagrangians in Particle Physics

25

Formulate particle physics by giving the Lagrangian (density)

The equations of motions follow from variational principles (Euler-Lagrange).

Example: spin-1/2 fermion of mass m (Dirac Lagrangian)

Using QFT rules all observables can be calculated, i.e. the Lagrangian defines the theory.

The kinetic energy part describes the motion of free particles → Lfree . 

The potential energy part specifies the theory, i.e. the fundamental interactions of the 

theory (the forces) → Lint .

Why Lagrangians?

The Hamiltonian corresponds to a conserved quantity, the total energy,  while the 

Lagrangian does not. Hamiltonians however are not Lorentz invariant.

The Lagrangian is a single real function that determines the dynamics,

and must be a scalar invariant under Lorentz transformations, since the action is invariant.

Lorentz invariance → all predictions of the theory are Lorentz invariant.

Symmetry transformations of the fields are readily expressed via the invariance of L.

If the Lagrangian is invariant under some transformation (more precisely the action),

then there is a corresponding conserved current (Noether’s theorem).

intfreeL T V L L   

         0L i m i m 

  g  g       



Interactions – Yukawa Theory
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int ( , )L x t 

2 ( , )m x t

     

( , ) ( )x t g x 

To describe interactions, construct the interaction Lagrangian Lint, 

a Lorentz scalar, which couples the field to its source (particle).

Electromagnetic interaction: couple the spinor field Y to the vector field A :

is a 4-vector, and the scalar product                   is a Lorentz scalar.

This is the simplest interaction Lagrangian that we can construct

To see how particles and fields are thought of, let’s look at Yukawa theory.

Introduce an interaction term for the field  coupled to a “source” 

The wave equation for the field  is modified to include the source term 

By analogy to electrodynamics we think of  as the source of the field  (~ charge dist.).

Let  be a static, pointlike charge at the origin

then the wave equation reduces to

which we solve in momentum space (via a Fourier transform).

g  A

g 

intL A

g 

2 2( ) ( )m g x   

1949
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Taking the Fourier transform

(the inverse transformation is given by                                                        )

can rewrite the wave equation in momentum space

and solve for 

Then we can get back

Had we not taken a static source,

the denominator would have been

Let’s do the integral (                       )

which finally gives (residue at k = im)

Yukawa identified  as the meson field with the nucleon as the source.

The effects of the field are transmitted by mesons (particles!)  strong interaction.

For a massive field, the force has a range of r ~ 1/m ( decreased exponentially).
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To complete the picture, let’s see how two nucleons interact by sensing its meson field.

The interaction Hamiltonian between two nucleons, the first generating the field 

and the second described by               is

To make it symmetrical, put back            in 

then

Finally, the potential can be written as                                      (Yukawa potential)

This leads to the interpretation in QFT that

all interactions are due to the exchange of field quanta.

In momentum space the quantity representing the exchanged particle of mass m is 

which is referred to as the propagator.

The propagator gives the amplitude for a particle to propagate from point A to point B.

2 ( )x

1( )x
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Feynman Calculus
Relativistic quantum Field theory is a highly formal and

sophisticated discipline.

In this course we will follow a heuristic approach (as in H&M), based on solutions of 

relativistic wave equations for free particles and treat the interaction as a perturbation,

but in agreement with rigorous QFT calculations, i.e. short circuit the formalism and

reach the calculational stage more quickly by emphasizing the relevant physics aspects.

Antiparticles are introduced following the Stückelberg – Feynman prescription:

negative energy particle solutions going backward in time describe positive-energy 

antiparticles going forward in time (exp –i(–E)(–t) = exp i E t !).

 Feynman diagrams NB They are much more than simple pictorial

representations of the fundamental phys. processes

They tell us how to calculate the interactions (physics)!

The Feynman rules allow a systematic diagrammatic representation of the terms in the

perturbative expansion of the transition amplitude Mfi between an initial state i and final

state f.

Their use is quite simple and intuitive in deriving important particle physics results.

In Quantum Electro-Dynamics a complete agreement exists between theory and

experiment to an incredibly high degree of accuracy.

QED is the prototype theory for all other interactions (strong and weak). 30
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The Feynman Diagrams
The “language” we use to describe these processes are the Feynman diagrams

momentum conserved at vertices

energy not conserved at vertices

exchanged particle “on mass shell”

energy AND momentum are

conserved at interaction vertices

exchanged particle (“propagator”)

“off mass shell”

REAL PARTICLE

“Time-ordered QM”
The sum over all possible time-orderings

is represented by a Feynman diagram 

31

VIRTUAL PARTICLE



Feynman Rules for QED

32

 n
spin 1       photon

spin 1/2    fermion

spin 1/2    fermion (el. charge -|e|)

Matrix Element   -iM   =   product of all factors

External Lines

Internal Lines (propagators)

Vertex Factors

outgoing particle

outgoing antiparticle

incoming antiparticle

incoming particle

spin 1/2

spin 1
outgoing photon

incoming photon

 
i

q m

g 

2

ig

q

n


ie g
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The Feynman diagrams can be obtained by combining several vertices.

At each vertex one has to verify the conservation laws arising from Lorentz invariance,

internal symmetries, gauge invariance, … :

conservation of four-momentum

conservation of spin

conservation of electric charge

conservation of lepton and quark flavor (except for the weak charged currents)

conservation of color charge

An example: qq´ qq´ Scattering in QCD

the propagator imposes the same color ab

and same helicity gn to the exchanged gluon

at the interaction vertices

f, f´ quark flavors (i.e. ud  ud)

i, j, k, l quark colors

a, b, c gluon color combinations






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
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


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


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f p1 i f p3 j
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Mandelstam Variables s, t, u

34

Particularly useful Lorentz invariant kinematical quantities

Consider the scattering process   1 + 2 → 3 + 4

The scattering processes (described via Feynman diagrams) can be categorized

according to the four-momentum of the exchanged particles

Can define three kinematic variables from the four-momenta of interacting particles

scalar products of 2 four-vectors → Lorentz invariants

note                                          ,

1 2

4

3

e–e–

e– e–

g

e– –

e– –

g

e–e–

e– e–

g

s - channel t - channel u - channel

     
2 2 2

1 2 1 3 1 4p p ps t up p p     

 
2

2

1 2CME Es E    2 2 2 2

1 2 3 4s t u m m m m     

equivalent to q2

of the exchanged

boson



The electromagnetic fields E and B

can be expressed in terms of a potential A = (A0, A)

and the Maxwell equations follow from the field tensor 

and                           

The potentials, however, are not unique, since a gauge transformation of the form

leaves the Maxwell equations invariant (L(x) is an arbitrary differentiable scalar field).

Because of the gauge ambiguity, the potential A , corresponding to particular E and B

fields, is not uniquely defined, i.e. the potential contains “too much” information and

it is not observable!

1. The electromagnetic current 

however is conserved

2. Each component of the vector potential satisfies a Klein-Gordon equation for 

massless particles

and can be identified with the photon field. 

Gauge Invariance in Classical EM
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To understand the meaning of this gauge transformation, let’s introduce a Lorentz

invariant Lagrangian,

which will give us back the Maxwell equations via the Hamilton’s principle (S =0).

Note that we have taken the potentials as the basic fields of the theory, not E and B.

Under a gauge transformation the action S acquires an additional term

DS is zero for arbitrary L if, and only if 

Thus the gauge invariance of the action requires, and follows from, the conservation of

electric charge.

1

4
L F F J An 

n   

4 4d ( ) dS J x J x 

 D    L   L 

0J J 

    



Suppose that we know the Schrödinger equation but not the laws of electrodynamics.

Can we guess Maxwell’s equations from a gauge (symmetry) principle?

Yes! But …

QM observables are unchanged under global phase transformations of the wave function

The absolute phase of the wave function cannot be measured and relative phases

(like in interference experiments) are unaffected by this transformation.

Can we chose freely the phase in Geneva and Paris?

In other words, is QM invariant under local phase transformations?

Yes! But …

QM equations always involve derivatives

The additional term spoils the local phase invariance. Note that a(x) is a vector!

Phase Invariance in Quantum Mechanics
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( ) ( ) ( )ix x e x   
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Local phase invariance can be restored if the equations of motion and observables

involving derivatives are modified by introducing a vector field A (the EM field).

The gradient  is replaced everywhere by the covariant derivative

such that also the D transforms in the same was as Y

Then quantities such as                          are invariant under local phase transformations.

Let’s find out how the field A transforms by writing out explicitly the various terms

and solve for A

Since each term acts on an arbitrary state Y, we can drop Y and   

We reestablished the invariance under local phase transformations at the price of

introducing a vector field A and a local interaction Y* qAY,

that will be constructed to be electromagnetism.
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( ) ( )x D x 

( ) ( )( ) ( ) ( )i x i xD x iqA e e iqA   a a           

   ( ) ( ) ( ) ( ) ( ) ( )i x i x i x i x i x i xiqA e e e iqe A e iqe A a  a a  a   a a              
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The required transformation law for A is precisely the same as in classical EM,

i.e. up to a gradient of a scalar field, a(x),

and the covariant derivative corresponds to the minimal substitution p  p - qA of EM.

The form of the coupling between the EM field and matter is suggested by

DYY* qAY.

We used a local gauge invariance as dynamical principle which led us to modify the

equations of motion, i.e. we have built the interaction term D and arrived at an 

interacting theory.

Note that Maxwell by imposing local charge conservation was led to modify Ampere’s law

by the addition of the displacement current dE/dt.



Electrodynamics is invariant under gauge transformations of the vector potential

without affecting any physical laws,

which implies that the potential A(x) is not a physical observable

(E, B, Fn are gauge invariant, A is not, only potential differences are observable).

Are potentials physical or just calculational tools?

The vector potential does have a significance in quantum physics, as shown by

Aharonov and Bohm (1959).

Let’s imagine a two split experiment (i.e. split a coherent beam of charged particles

in two parts), and let’s observe the interference pattern on a far screen.

The wavefunction at a given point on the screen has the form

with

Aharonov-Bohm Effect
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Now introduce an infinite solenoid in the experiment.

There is no magnetic field outside of the solenoid (B = 0),

B is confined inside the solenoid, however A 0 everywhere

What happens to a non-relativistic charged particle moving through a static vector

potential that corresponds to a vanishing magnetic field?

If Y0(x,t) is the solution of the Schrödinger equation for A = 0,

the solution of the Schrödinger equation in the presence of the vector potential A

is with

The phase shift experienced by the particle is the change in its classical action.

The fact that the new solution differs from the unperturbed one simply by a phase factor

implies that there is no change in any physical result.
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By analogy with the Young’s experiment, the “perturbed” wave function is

The phase difference at the screen between the two paths becomes

The interference of the two components of the recombined beam will depend on

the phase difference

because the two beams followed different paths through the potential A.

The result is gauge independent, since 

Since it is not possible to eliminate A in the empty space outside of the solenoid with

a gauge transformation, the phase shift DB = qB becomes observable.

The vector potential does induce a physical observable effect.

This implies that the link between the phase transformation of the electron wavefunction

and the gauge degree of freedom of the electromagnetic field is fundamental

and goes beyond the classical predictions.

The Aharonov-Bohm effect has been confirmed experimentally in 1986.
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
    A

   
2 1

exp d d exp di iq A x iq A x i iq A x         

d 0xL  



QED: Dirac + EM Fields
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We start with the Lagrangian for a free Dirac field 

The EM field is introduced as in classical physics via the minimal substitution p → p – qA :

where A is the electromagnetic potential.

We assume that this substitution introduces correctly the EM field into the Dirac equation

The resulting Lagrangian acquires an interaction term Lint

The interaction term Lint couples the conserved current

to the electromagnetic field A.

To complete the Lagrangian we add a term Lrad describing the radiation field

with Fn the EM energy-momentum tensor

0 ( )( ) ( )L x i m x
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0 0( ) ( ) ( )( )( ) ( ) intq x xL x i D m x LLxL A





  g g      

( ) ( ) ( ) ( )i m x q A x x 

 g  g   

( ) ( ) ( )j x q x x  g 

1

4
radL F Fn
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Only the EM fields E and B have physical significance, not the potential A itself,

therefore the theory must be invariant under gauge transformations of the potentials

where a(x) is an arbitrary real scalar differentiable function.

Before quantum theory this step could be argued to be a mathematical reformulation of

Maxwell classical EM theory with no physical consequences.

The resulting Lagrangian

however, is not invariant.

Invariance can be restored by demanding that the Dirac fields transform as

i.e. undergo a local phase transformation.

We started by introducing the EM interactions in the simplest way p → p – qA

and required that the resulting Lagrangian is invariant under gauge transformations

of the EM potential A. This requires the local phase invariance of the Dirac fields.

Now that we have identified a powerful invariance principle, we can proceed the other

way by requiring that the Lagrangian is invariant under local phase transformations.

Gauge theory: any theory invariant under such coupled transformations.

QED is the simplest example of such theories.

( ) ( ) ( )L L L x x x

 g  a   

( )

( )

( ) ( ) ( )

( ) ( ) ( )

iq x

iq x

x x x e

x x x e

a

a

  

  





 

 

1
( ) ( ) ( ) ( )A x A x A x x

q
   a   



Gauge Fields
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Let’s start by requiring the invariance of the free Lagrangian L0

under global phase transformations 

L0 is invariant and this invariance ensures that current and charge are conserved:

Next we demand invariance under more general local phase transformations

The resulting Lagrangian

is not invariant (not a surprise!).

To restore the invariance of L0 we add an interaction term Lint by associating matter fields

to the gauge field A, which must transforms according to (A itself is not gauge invariant!)
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The interaction between matter and gauge fields is introduced via the minimal substitution

in the free Lagrangian L0 by replacing the ordinary derivative with the covariant

derivative

The free Lagrangian transforms into

where Lint describes the interaction between the Dirac field and the gauge field A,

known also as minimal gauge interaction.

Note that also the covariant derivative transforms in the same way as the Dirac fields

Hence the resulting Lagrangian is invariant. 

To complete the whole we add a term Lrad describing the gauge field

(for completeness, one would need to show that also this term is gauge invariant)

To summarize: by requiring local gauge invariance (phase invariance) of the Dirac fields,

we are led to introduce a gauge field A to preserve the invariance of the resulting

Lagangian. By doing so we developed the full QED Lagrangian.

Can try to extend the gauge symmetry principle (local phase invariance) to other forces …

( ) [ ( )] ( )D x iqA x x     
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Generalization
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Suppose we want to build a theory, which is invariant under some transformation U(x)

(the transformation group U in general is non-abelian)

We define the covariant derivative 

and introduce the interacting vector field A(x) to make the theory invariant.

g is the coupling constant to be determined from the experiment.

We want that the covariant derivative transforms in the same way as the spinor fields

Explicitly

and solve for A to obtain the transformation properties of the vector field A(x)

Since each term acts on an arbitrary state  (and U is not necessarily abelian)

( ) ( ) ( )x U x x  
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   igA U U igA        

   igA U U U igA U igUA                   
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Gauge Theories
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Is there a symmetry principle powerful enough to dictate the form or the interaction? 

The form of the interaction in QED is known from classical theory of Maxwell et al.

There are no classical counterparts for the Strong and Weak interactions.

In general, guess a suitable form of the interaction and confront it with experiment

(particle spectrum, known symmetries and conservation laws, cross-sections, decays, ...)

Quite generally, the form of interaction is restricted by requiring

Lorentz invariance

locality

(interaction Lagrangian involves products of fields evaluated at same space-time point)

renormalizability

QED is a gauge field theory and renormalizable theories are gauge field theories,

i.e. possessing local phase invariance.

Elementary particle physics is almost exclusively concerned with such theories:

QCD and GWS are both gauge filed theories, remarkable generalizations of QED. 

Strong interactions – quantum chromodynamics QCD

characterized by an apparently simple Lagrangian, but physical properties very difficult

to deduce because of technical problems in formulating perturbation theory and the

need of higher order corrections (aS not so small)

ElectroWeak interactions – GSW model

very complicated Lagrangian, but easy to deal with in perturbation theory



Gauge Theories: QED and Yang-Mills

SU(2) and SU(3) symmetry Lee groups

U(1) symmetry Lee group
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The Standard Model Interactions
Our knowledge of these forces stems from our understanding of the 

underlying symmetries and the way in which they are broken

strength
50



The Forces

sstrong : sEM : sweak = 1 : 10-2 : 10-13

typical cross sections

1 mbarn = 10-27 cm2

Classification of interactions into a hierarchy of

strong

electromagnetic, and

weak

is a convenient framework.
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A scattering or decay process can receive contributions from more than one of the 

Standard Model forces. See for instance the scattering process e+e- → +-,

which at low s is dominated by the electromagnetic interaction.

Weak effects are visible through interference effects only, while at the Z0 pole, the

scattering is dominated by the weak interaction (Z0 exchange).

The classification is most meaningful if one of these interactions dominates.

As the energy increases the classification becomes less distinct

(running of the coupling constants).

p-p scattering at s ~ 10 GeV is mediated by the strong interaction,

however at s ~ 1015 GeV this might not be the case.

0 decays electromagnetically into two photons

(no competing strong decay because the 0 is the lightest hadron).

The weak processes become observable when both strong and electromagnetic 

decays are suppressed or forbidden (i.e. neutrino interactions).

It would be nice to have a single theory which describes all of the fundamental 

interactions in Nature (Grand Unified Theories, s ~ 1015 GeV).
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Typical Scales

Interaction Range Lifetime Cross-section Coupling

(m) (sec) (mb) strength

STRONG 10-15 10-23 10 1

(~proton radius)

ELECTRO  10-20-10-16 10-3 1 / 137

MAGNETIC

WEAK 1 / MW ~ 10-18 10-12 – 103 10-11 10-6

very wide range

u d s c b t

quark charges +2/3 -1/3 -1/3 +2/3 -1/3 +2/3

quark masses (MeV) 3 5 100 1270 4190 172000
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Particle Lifetimes

Large range in lifetimes, due to the intensity of the force responsible for the decay.

Weak decays :  the density of final states (Q-value) determines the lifetime of a particle. 

Decay examples :

strong int.

0 → + 

D++ → p +

EM int.

0 → gg

S0 → Lg

weak int.

 → n
 → e ne n
K →  0

Weak decays become observable when both strong and electromagnetic decays are

suppressed (i.e. K →  0, strong and EM forbidden, strangeness conservation !).
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Casimir Effect (1948)

S » L2 : no boundary effect

Casimir effect

attractive force between 2 conductive plates

ideal conductors

∞ electrical conductivity

no electric charge (the planes are “grounded”)

energy of virtual photons between plates

E ↓ when L ↓   → attractive force

Force per unit area

pressure of ~ 1 atm for 10 nm separation

The quantum vacuum is not empty

d 
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vacuum fluctuations
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Divergences
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vacuum polarization (i.e. loops)

What to do about divergences? 

This loop is not by itself measurable. As long as we compute measurable quantities,

the answer will be finite.

In practice it is impossible to compute physical observables all along (perturbation theory).

Deform the theory such to make the integrals finite with some regulating parameters,

such that when all integrals are put together the result turns out to be independent of the

regulator and the regulator disappears or it can be removed (renormalization).

Let’s start with the simplest divergence, the one in the free Hamiltonian of a scalar field

The contribution to the vacuum energy of the field zero mode (zero-point energy) is

While infinite, it is also not observable. Only energy differences matter and the absolute

energy is unphysical (with the exception of the cosmological constant).
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Consider the zero-point energy in a box of size a.

If the energy changes with separation a, we can calculate the force 

F = - dE / da acting on the walls of the box.

In this case we have a natural low-energy (IR) cutoff: k > 1/a,

but not a high-energy (UV) cutoff which diverges at large k.

There is however a finite residual dependence on a, giving an observable force, because

the boundary conditions of a system can affect the zero-point energy of the system

→ Casimir force (1948)

Let’s add a second wall at L (L  ).

The zero-point energy in the one-dimensional box a is

and the total energy of the system (left side plus right side)

is

The force acting on the wall is then given by the derivative

which is diverging … what are we missing? 
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The boundaries at 0, a, and L impose the quantization of the electromagnetic waves due

to interactions with the atoms in the wall. In reality, for the very high energy photons the

walls become transparent (UV cutoff) and should be irrelevant since we are interested in

the modes that affect the walls.

Here we have a natural UV cutoff. We can introduce a regulator in our calculations,

for example an exponential attenuation of the modes into the walls with parameter L

(heat-kernel regularization):

Develop E(a)

and note that

which gives us

Finally, the Casimir force is

This is a finite result and depends only on a; the regulator L has disappeared!
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Casimir Force
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The result for the force acting on the wall is non-zero and finite

This is an attractive force. It is purely quantum mechanical in origin

(it is proportional to ћ).

The result is independent of the particular regulator used and cutoff L!

The Casimir force is independent of any regulator.

The Casimir force is an infrared effect.

(for a fermion field, the force changes sign)

In three dimensions, accounting for the two photon polarizations

the Casimir Force is

where A is the area of the walls of the box.

Although predicted by Casimir in 1948, the force has not been conclusively observed

until 1997.
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Renormalization in QED

e                       e0

physical or

effective charge
bare charge bare charge screened by e+e- loops

large Q2 leading log sum (M cutoff on loop momentum)

Subtract

infinities removed at the price of introducing the

renormalization scale 2

a(2 0 i.e. 4me
2) = measured = 1/137

running coupling constant
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Running of aEM Might worry that coupling becomes

infinite at

i.e. at Q2 ~ 1052 GeV2

But quantum gravity effects would come in

way below this energy scale and it is highly

unlikely that QED “as it is” would be valid

in this regime.

In QED, running coupling increases

very slowly

atomic physics (Q2 ~ 0):

1/a = 137.03599976(50)

high energy physics:

1/a (MZ) = 128
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Running Coupling Constants

QED
QCD
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Evolution of Coupling Constants

Classical physics:      the forces depend on distance

Quantum Physics:     the charges depend on distance

QED : virtual particles (electrons and photons)

screen the electric charge:

a ↓   distance ↑

QCD : virtual particles (quarks and gluons)

anti-screen the strong charge:

aS ↑   distance ↑

(asymptotic freedom)
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Running of aS
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Grand Unification
running of coupling constants

extrapolate to very high energies ~ 1015 GeV

 a single fundamental interaction?

 only one single bare charge?

 a singe form of matter?

(one force to rule them all)
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aEM

aweak

astrong

In reality they do not meet

at the same point:

new physics between the 

electroweak scale and GUT scale?



The Standard Model
the strong, weak and electromagnetic interactions of the elementary 

particles are described by gauge interactions

SU(3)C  SU(2)L  U(1)Y

this is a product of several symmetry groups and not of a single gauge group, 

requiring 3 different coupling constants: the interactions are not unified yet!

gauge invariance

requires all these diagrams
66

Gargamelle 1973

first neutral current ne → ne event



The Underlying Principles of the SM
With the discovery of the Higgs boson the Standard Model is now complete!

Is that all? Is there the “desert” up to GUT scales?

The beauty of the Standard Model comes form the identification of a

unique dynamical principle → local gauge symmetry describing

strong, electromagnetic, and weak interactions that seem so different from each other,

but are sufficiently similar to be developed in the same framework

gauge theory = spin–1 bosons

at the same time a particular and predictive structure still leaving room for a rich

variety of phenomena

And certainly there is physics beyond the standard model yet to be discovered

Today there are THREE compelling and firmly established

observational facts that the Standard Model does not explain:

- neutrino masses 

- the existence of dark matter

- matter over anti-matter abundance (baryon asymmetry)
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Higgs Boson Discovery

H  2 g H  ZZ* 4 l

Atlas : H  ZZ* 4 l CMS : H  2 g

68



The Dark Mystery of Matter
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For Next Week
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Study the material and prepare / ask questions

Read the introductory chapter in any Particle Physics textbook

Do the homeworks!

Next week we will study the non-relativistic Quark Model

have a first look at the lecture notes, you can already have questions

read ch. 2 in Halzen & Martin and / or ch. 9 in Thomson 


