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From Hadrons to Quarks
1932   Discovery of the neutron

(beginning of flavor physics → isospin)

1935   Yukawa postulates the existence of the pion

(strong interaction theory)

1947   Discovery of the pion (initially confused with the muon)

’50s   Discovery of hadronic resonances   

Discovery of strange particles

Proliferation of hadrons

e-p elastic scattering (→ the proton is not pointlike)

1964   Introduction of quarks

1973   e-p deep inelastic scattering

(→ the proton is made of pointlike constituents - partons)

1973   “November revolution”: Discovery of charm (J / Y)

1973 QCD and Asymptotic freedom

1977   Discovery of the bottom quark ()

1995 Discovery of the top quark 3
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Properties of Particles
What can we measure ?

mass

lifetime

decay modes and branching ratios

magnetic moment

(internal) quantum numbers

spin

flavor (quark content)

parity transformation

charge conjugation transformation

Interactions
4



Isospin
Observations

mp = 938.272 MeV/c2 mn = 939.565 MeV/c2

and

Vpp  Vpn  Vnn charge independence of the strong force

In 1932 Heisenberg proposed that, if one could switch off the electric charge,

protons and neutrons would be indistinguishable (as far as the strong force is concerned).

Think of an electron in a magnetic field: if one switches off the magnetic field,

the two spin states of the electron are indistinguishable.

The proton and the neutron are two manifestations of one and same particle: the nucleon

The nucleon may be viewed as having an internal d.o.f. with 2 allowed states, 

the proton and the neutron, which the nuclear force does not distinguish.

The new flavour symmetry of the strong interaction – isospin – has the same 

transformation properties as SPIN!

Each nucleon has isospin I = ½, 

with I3 = + ½ for protons and I3 = - ½ for neutrons.

The mathematics is a carbon copy of spin  isospin (SU(2) algebra).

The observed symmetry of Strong Interaction under isospin transformations implies

the existence of conserved quantities, i.e. the conservation of the isospin I and I3. 5
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Strong interactions conserve   I and   I3
Electromagnetic interactions conserve only I3 (i.e. the electric charge)

Weak interactions do not conserve   I nor   I3 .

analogous to conservation of   J and   J3 for angular momentum  selection rules

evidence that the strong force is invariant

under isospin transformation:

physics unchanged by a symmetry operation

if in a system all protons are replaced by neutrons

and all neutrons are replaced by protons!

nucleon – nucleon system

SU(2) algebra as for ordinary spin

(note that pp or nn systems have never been observed,

the deuton composed of a proton and a neutron

is therefore an ispospin singlet with I = 0) 

Not restricted to nucleons only

The 3 pion states p+, p0, p- form an isospin triplet with I = 1.
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Example
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Compare the cross sections for the reactions

p + p  p+ + d     and

n + p  p0 + d

(composition of angular momenta or isospin)

isospin conservation in strong interactions

Therefore

(taken the other way around, as has been the case)

It can be used to show that the isospin on the pions is 1.



Symmetries and Conservation Laws
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Suppose physics is invariant under the symmetry transformation U

Conservation of probability requires

 i.e.                     and                             i.e. U is unitary

For physical predictions to be unchanged by the symmetry transformation

all matrix elements must remain unchanged

i.e. require

i.e. U commutes with the Hamiltonian.

Consider the infinitesimal transformation (e small) 

G is called the generator of the transformation

' U   

†' ' U U U U         

† 1 †1 det( ) 1U U U U U   

†' 'H H U HU      

 † , 0U HU H H U 

1U i Ge 
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From

neglecting terms in e2

unitarity implies                                      G is hermitian, therefore an observable quantity

Furthermore

i.e. the generator also commutes with the hamiltonian

and from QM                                                           (Ehrentest’s theorem)

G is a conserved quantity

For each symmetry of nature there is an observable conserved quantity.

The finite transformation can be expressed as a series of infinitesimal transformations

and 

In general the symmetry operation may depend on more than one parameter 
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The strong interaction treats protons and neutrons (almost) equally  isospin symmetry,

i.e. for the strong interaction nothing changes if all protons are replaced with neutrons

and vice versa.                     

Isospin transformations described by SU(2) symmetry, in which the          doublet form 

the fundamental representation

nucleon                        proton                     neutron

the particle with the biggest charge (proton) has I3 = + ½,

the particle with smallest charge (neutron) has I3 = - ½

Express the invariance of the strong interaction under p  n transformation

as invariance under “rotations” in an abstract isospin space

The 2  2 unitary matrix depends on 4 complex numbers, i.e. 8 real parameters.

From unitarity                   there are 4 constraints, and 8 – 4 = 4 independent matrices.

In the language of group theory the four matrices form the two dimensional unitary 

group U(2).

Isospin Symmetry of Strong Interactions
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Under this restriction, U has the form 

One of the matrices corresponds to multiplying by a phase factor ei (Iei), i.e.

a global phase transformation and not a flavour transformation, and is of no relevance.

The remaining three matrices form the special unitary group SU(2) with

and

A linearly independent choice for the generators G are the traceless Pauli spin matrices

Define the isospin generator                   and the isospin transformation

The isospin generators satisfy the isospin algebra

with                                   and

Nonlinear functions of the generators, which commute with all the generators,

are called Casimir operators (invariants) (SU(2) has rank 1 and 1 Casimir operator I2).

Can diagonalize simultaneously I2 and I3 .
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Can also define isospin ladder operators (useful for constructing higher order 

representations) similar to angular momentum

i.e. increase or decrease the third component of the isospin by 1.

In summary:

the assumed symmetry of Strong Interaction under isospin transformations implies

the existence of conserved quantities.

In strong interactions I3 and I are conserved, analogous to conservation of Jz and J
for angular momentum.

Electromagnetic interactions conserve I3 only (electric charge).

Weak interactions do not conserve   I nor   I3 .
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Yang-Mills Gauge Theories
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Invariance under isospin transformations in SU(2) space

 conservation of isospin I in strong interactions

Has isospin a dynamical role?

Can we transform a p into a n arbitrarily at any space-time point?

Can we build a theory of strong interactions from isospin invariance?

i.e. build a gauge invariant theory under local isospin transformations

Following the EM template, introduce the covariant derivative

with Bi
m three new spin-1 vector fields, transforming as

This is the basic idea of Yang and Mills (1954), i.e. of non-abelian gauge theories.

Unfortunately, this theory is not supported by experiment, there are no such Bi
m fields.

The idea used in the late ‘60s to develop the electroweak theory (SU(2)L  U(1)Y)

and QCD (SU(3)c symmetry group) in 1973.
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Discovery of the Pion (1947)
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π+ → μ+ → e (cosmic rays)

points to note:

the pion decays at rest

dE/dx – Bragg Peak

the particle accompanying the m+

is not detected (nm)

constant range for m (~600μm)

(i.e. 2-body decay)

low dE/dx for fast e+

variable range

small angle scattering of tracks

first pion observed in emulsions

produced in interactions of cosmic

rays in the upper atmosphere
p

m

e



Consider the reaction   p+ + d  p + p   and the inversed one   p + p  p+ + d

and the cross sections 

The detailed balance principle (time reversal invariance) requires

In the c.o.m. just above threshold (the thresholds energies are slightly different)

that leads to

from measured values of this ratio, one obtains 2sp + 1 = 0.97  0.31  sp = 0

(the deuton has spin 1 ħ)

Isospin: Consider the reactions p + p  p+ + d and n + p  p0 + d (slide 6).

Pion Spin
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Isospin Representation of the Pion
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Pions form an ispospin triplet with I = 1 :

The third component of isospin

To find I1, I2 first consider the ladder operators I+ = I1 + iI2 and I– = I1 – iI2:

from which follows the matrix

representation for I+ and I–

and solve for I1 and I2

0

0 0 0 1 1 0

0 2 1 1 2 0 0 0

1 0 0 0 0 0

I I I I I Ip p p 

     

           
           

     
           
           
           

0 2 0 0 0 0

0 0 2 2 0 0

0 0 0 0 2 0

I I 

   
   

    
       

1 1
1 22 2

0 1 0 0 0

1 0 1 0

0 1 0 0 0

i

I I i i

i

   
   

  
   
   
   



Production of Resonances

mass

c.o.m. E

N*
p p

p+ p+
c.o.m

D

D0

~1950 first accelerator beams

Can produce p/p beams

In 1951 Fermi discovers the 

spin 3/2 D(1232) resonances

D++ D+ D0 D-

in pp scattering:

Afterwards,

many more resonances

have been discovered.

17
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Example
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     D 

There are four D states with I = 3/2, I3 (D) = +3/2, …, I3 (D) = -3/2

Experimentally                               at the resonance peak.

Taking into account the isospin of the pp system and that of the D

we can explain this ratio.

How can we determine the spin of the D ? 

From the angular distribution of the p – p system (p-wave)

isospin conservation



Particles that decay by the strong interaction are extremely short lived (~10-23 s).

They are called resonances and are identified by observing their decay products or

“bumps” in the cross section, as a function of the energy of the system, i.e. (E) 

pp   D  pp

The resonances are too short lived to determine precisely their mass (energy),

which is “spread” around a central value ER .

According to Heisenberg

G is the width of the resonance

This unstable particle decays according to the exponential law

with    = ħ / G the “lifetime” of the sate.

The time evolution of the particle’s wave function must include the “decay factor” G

and can be rewritten with the substitution

Resonances and Particles

/t

oN N e 

19
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2 2
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2
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Breit-Wigner Resonance 
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The state can be described by the Fourier transform of the time dependent wave function

One then observes a pp reaction rate (E) of the form

((E)  c*c)

known as the Breit – Wigner resonance

with                                         (s – wave) (opt. theo.)

The total width G of the resonance is related

to the strength of the interaction.

The resonance can decay to a number of different final states. Each individual decay

mode has a partial width Gi . 

Sum of all “partial widths” = total width

The shape is the same for all decays.

Branching Ratio: fraction of decays to the final state i BR = Gi / G
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/ 4
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E E

 
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
  G

2
2

max 2
4 4

p
 p p 

ii
G  G
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2 2 2 2 2

1 2

1 2

i

4 (2 1)

(2 1)(2 1) ( )

intial momentum

resonance spin,   , spins of incoming particles

, widths of initial and final states,  = total width

i f R

if

i R R

i

f

MJ

p s s s M M

p

J s s

p


 G G 
        G  


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G G  G

To obtain a relativistically invariant expression, multiply denominator and numerator by

(E + ER)2

and by noting that around the peak E ~ ER

The particle can decay to a number of different final states (also different initial states).

The shape, not the width, is the same for all decay modes:

Moreover, we have to take into account also the spin multiplicity factors

(sum over final spins, average over initial spin states
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Cross-section Upper Bound and MAX
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Let                    be the incoming wave

and the scattered wave                                               for large r

is the scattering amplitude and

Expand           with Legendre polynomials

where al(k) is the partial wave amplitude

Then 

Since                                                            

for partial wave l

At high energy

the state is in an s – wave

and include initial / final state spin multiplicity  
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Anti-nucleon states are obtained by applying the charge conjugation operator C to the

(p,n) doublet.

Consider the isopsin transformation

and the charged conjugated transformation

We would like that the anti-nucleon doublet to transform in exactly the same way

as the nucleon doublet to combine particle and anti-particle states in the same way,

i.e. 

Rearranging 

which means that the isodoublet            transforms in the same way as 

1. the anti-particle with biggest charge – the antineutron – has I3 = + ½

2. introduce a minus sign for the upper component, the antineutron

Note that this works only with SU(2).

Isospin of Anti-Nucleons
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L →  pp

K+ → ppp

Discovery of Strange Hadrons

24

K+

p

p

p

K+ stops and decays

K+ production

K+ decay



Associated Production : p p → L K0
s

strange particles are always produced in pairs (associated production):

strange and anti-strange hadron (i.e. strange quark pairs s and s)

Gell-Mann and Nishijima (1963): evidence of a new quantum number – strangeness S

S = 0 p, N, D, …

S = 1 K+, …

S = -1 L, S, …

strangness is conserved in strong and electromagnetic interactions

strangness is violated in weak (hadronic or semileptonic) decays

s → u + …   DS = DQ 25



Strange Particles (circa ’55)

Some regularities are visible :

hadrons can be grouped in multiplets of similar mass (isospin multiplets)

and same quantum numbers: spin, parity, isospin

Hint of some underlying symmetry →

extension of isospin to include also strange hadrons

The symmetry, however, is only approximate: mp = 938 MeV to mX = 1320 MeV.

strangness s

M
a
s
s
 [
M

e
V

]
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mesons

baryons

I = 1

I = 1

I = 0

I = ½ 

I = ½ 

I = ½ I = ½ 



Introduction of Quarks
Hadrons are extended objects and have structure:

anomalous magnetic moments (~´30s), i.e. not perfect Dirac particles

proliferation of hadrons (~´50s)

regularities in hadron spectrum

elastic electron-nucleon scattering (~´50s)

 Hadrons are not elementary particles but composed of quarks u, d, s (Gell-Mann 1964)

baryons are composed of three quarks (B = 1)

mesons are composed of quark – anti-quark pairs (B = 0) 

anti-baryons are composed of three anti-quarks (B = -1)

Quarks carry fractional electric charges

Qu = 2/3 e

Qd = -1/3 e

Qs = -1/3 e

have spin 1/2 ħ and baryon number 1/3, mu  md ~ 340 MeV, ms ~ 500 MeV

By adding up quark’s quantum #s one obtains the hadron’s quantum #s.
27
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Since ms > mu  md , we do not have an exact symmetry, ms not so different from mu, md

 can treat the hadron states as if they were symmetric under  u   d   s   u 

 assume charge independence of the strong force

Any results obtained from this assumption are only approximate (symmetry not exact).

With the introduction of a second additive quantum number S (strangness),

enlarge SU(2) isospin symmetry to a larger group of rank 2  SU(3)F.

SU(3)F flavor symmetry is far from being an exact symmetry, but allows us to organize

known hadrons into multiplets with same quantum numbers JP, and isospin sub-multiplets.

This allows us to classify all observed hadrons,

to predict some of their properties, and to predict new hadron states.

Introduce a new additive quantum number, the hypercharge Y to make the hadron

multiplets look more symmetric (nothing deeper behind it)

Y = B + S    Q = I3 + ½Y

The (u,d,s) multiplets represents the fundamental

representation of the SU(3)F flavor group 

from which all other multiplets can be built.

In group theory language

baryons: 3  3  3

mesons: 3  3 






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
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
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
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
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

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
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0

0

0

1

0

0
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sdu

Y

I3

d u

s
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Quarks and anti-Quarks in SU(3)F Flavor

29

Quarks

Anti-Quarks

The anti-quarks have opposite SU(3)F flavour quantum numbers

du

s

d u

s

3

3



Additive Quantum Numbers of Quarks

30

constituent quark masses in quark model:

mu ~ 336 MeV, md ~ 340 MeV, ms ~ 485 MeV

mc ~ 1,550 MeV, mb ~ 4,730 MeV, mt ~ 177,000 MeV



Baryon Octet and Meson Nonet

31

BARYON OCTET

(L=0, S=1/2, J=1/2, P= +1 )

PSEUDOSCALAR MESON NONET

(L=0, S=0, J=0, P= –1 )

Y = B + S

I3

The eight-fold way



SU(3)F Flavor

32

The postulated u d s flavour symmetry can be expressed as (recall isospin)

The 3  3 unitary matrix depends on 9 complex numbers, i.e. 18 real parameters.

There are 9 constraints from unitarity

Can form 18 – 9  = 9 linearly independent matrices. These 9 matrices form a U(3) group.  

One matrix is the identity multiplied by a complex phase (Iei) and is of no interest.

The remaining 8 matrices have  det U = +1  and form an SU(3) group.

Introduce the 8 generators Ta of the SU(3) by considering the infinitesimal transformation

A generic element of the group can be written as

with                     the eight hermitian generators of the SU(3) group 

and the 8  la Gell-Mann matrices (equivalent to the Pauli spin matrices for SU(2))

a are 8 “rotation angles” in the SU(3) space.

 ˆ a aa
i Ti TU e e

  
1

2a aT l

ˆ 1 ( / ,  )a aa
U i T n ne e     



The Gell-Mann Matrices
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In SU(3)F flavour, the three quark states are represented by:

The SU(3) u d s flavour symmetry “contains”  u  d, u  s, and  d  s  SU(2) symmetries.

The SU(2) u  d flavour symmetry allows us to represent the first three matrices as:

u  di.e.

The third component of isospin is now written

with

I3 “counts the number of up quarks minus the number of down quarks in a state.

3 3

1

2
I l

1 2 3

0 0 0

0 0 0

0 0 0 0 0 0 0 0 0

l l l

     
     
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     
     
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
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Similarly, the matrices corresponding to the SU(2)  u  s  and  d  s  symmetries

can be represented as  

In addition to                              we have two other traceless diagonal matrices lX and lY . 

However the three diagonal matrices are not linearly independent.

Define the eighth matrix,  l8 , as the linear combination

which determines the hypercharge

d u

s

u  s

d  s

0 0 1 0 0 1 0 0

0 0 0      0 0 0      0 0 0
4 5

1 0 0 0 0 0 0 1

i

X
i

l l l

     
     

       
          

0 0 0 0 0 0 0 0 0

0 0 1      0 0      0 1 0
6 7

0 1 0 0 0 0 0 1

i
Y

i

l l l

     
     

        
          

1 0 0

0 1 0
3

0 0 0

l

 
 

  
 
 
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1 1 1
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8 3 3 3

0 0 2
X Y
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 
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    
  
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Y u u Y d d Y s s     
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SU(3) Ladder Operators
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Consider the  u   s symmetry “V-spin” to which we can

associate the  u  s and  u  s ladder operators  

with

d u

s

s

u d

SU(3) LADDER

OPERATORS

The actions of the six ladder operators are:

0 0 1 0 1
0 0 0 0 0 0 0
0 0 0 1 0

0 0 0 1 0
0 0 0 0 0 0 0
1 0 0 0 1

V s u V u V d

V u s V d V s

     
          

       
     

     
          

       
     

 
0 0 1 0 01 1
0 0 0 0 0 0

4 52 2 21 0 0 0 0

ii
V

i
il l

   
   

    
   

  



Gell-Mann Matrices

36

u  d

u  s

d  s

and the ladder operators which step up / down 

between the states

with isospin and hypercharge

d u

s



SU(3) Algebra

fijk – anti-symmetric structure constant

of SU(3) group

dijk – symmetric structure constant

of SU(3) group

rank of SU(3) is two

 two Casimir operators: I2 and Y (S)

 can diagonalize simultaneously I2 , I3 , and Y

The SU(3) generators are the 8 la traceless Gell-Mann matrices which do not commute

     

 
cc abcabba

aabbacabcba

d

TrTrif





llll

llllll

2
3

4
,

022,

3
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Mesons are composed of a quark and an antiquark bound together.

The mesons’ quantum numbers are obtained by adding up those of the qq pair.

Meson states can be obtained by combining two fundamental representations of the

SU(3)F group

therefore there are nine states – mesons grouped in an octet and a singlet under SU(3)F.

Let us start with two flavors, u and d (4 states), and add later the quark s;

we obtain an isotriplet I = 1

and isosinglet I = 0

Now let’s us add the strange quark.

Six states are combinations of a quark and an antiquark of different flavor: 

ud,  ds,  su,  us,  du,  sd

Three sates are formed of combinations of quark and antiquarks of same flavor

and have I3 = Y = 0: uu,  dd, ss

Mesons: qq States

1833 
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
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If the SU(3)F flavour symmetry were exact, the choice of states wouldn’t  matter. 

One of the states has an equal admixture of uu,  dd and  ss quarks.

It is flavorless in the sense that is a singlet under SU(3)F flavor transformations: U1= 1:

Experimentally observe three light mesons with m ~ 140 MeV: p+, p0, p-

Identify one state (the p0 ) with the isospin triplet

The third state can be obtained by taking the linear combination of the other two qq

states which is orthogonal to the p0 and to the 1

Because SU(3)F flavour is only approximate the physical states with  I3 = 0,  Y = 0

can be mixtures of the octet and singlet states

(if SU(3) symmetry were exact, the choice of the states would not matter):

The mixing has to be determined experimentally:

q  -250 for pseudoscalar and q  350 for vector mesons

    13
1 ssdduu

  0
2

1 p dduu

  0

86
1 2   ssdduu

0111111    VVUUTT





sincos

cossin

18

18

0







Meson Quantum Numbers
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Mesons’ quantum numbers: multiplets are classified according to J, P, and C : JPC

SPIN (or total angular momentum): J = S + L

Mesons composed of 2 spin ½ quarks, S = 0 or S = 1, with orbital angular momentum L

PARITY

Parity P (space inversion q  p  q,     p, or reflection through origin)

(q and q have opposite intrinsic parity)

CHARGE CONJUGATION

Charge conjugation C (a neutral state can be an eigenstate of C, i.e. a qq state like a p0)

1( 1) 1 ( 1) ( 1)L L L

q qP P P          

11 ( 1) ( 1) ( 1)S L L SC         



PSEUDOSCALAR MESONS (L=0, S=0, J=0, P= –1, C= +1, JPC = 0-+)

PSEUDOVECTOR MESONS (L=0, S=1, J=1, P= –1, C= –1, JPC = 1- -))

In the pseudovector mesons the spins are aligned.

The physical states are found to be approximately

“ideally mixed”:

MASSES

In the pseudoscalar mesons

the spins are anti- aligned.

41



Allowed Meson States

42

JPC

Allowed JPC meson states

J = L + S



Example of a Meson Listing from PDG
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Light uds Mesons
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The three central states, all of which have                             can be obtained using the

ladder operators and orthogonality. Starting from the outer states can reach the centre

in six ways

Only two of these six states are linearly independent.

But there are three states with

Therefore one state is not part of the same multiplet, 

i.e. cannot be reached with ladder operators.

How to form the meson states? (more rigorous approach)

Use ladder operators to construct uds mesons from the nine possible  qq states.
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Therefore the combination of a quark and anti-quark yields nine states 

which break down into an OCTET and a SINGLET

In the language of group theory: 

Can compare with combination of two spin-half particles

TRIPLET of spin-1 states:

SINGLET spin-0 state:

These spin triplet states are connected by SU(2) ladder operators just as the meson

uds octet states are connected by SU(3)F flavour ladder operators.

The (spin) singlet state carries no angular momentum – in this sense the

SU(3)F flavour singlet is “flavourless”

Using ladder operator check that                                              is a flavourless state,

i.e. invariant under SU(3)F flavour transformations (U Y3 = Y3 )



Baryons are composed of 3 quarks bound together. Baryon states can be obtained

by combining three fundamental representations of the SU(3)F group

Therefore there are 27 possible qqq combinations,

but what is the difference between uud, udu, or duu?

We observe only 8 baryons with spin 1/2 ħ and 10 baryons with spin 3/2 ħ.

The states must have definite symmetry under SU(3)F transformations.

The proton is a fermion and the wave function must be antisymmetric under the 

interchange of any two quarks.

Proton wave function can be decomposed as

The colour wave-function for all bound qqq states is anti-symmetric (see later).

How to construct the baryon wave functions?

The                                   part is symmetric under interchange of any two quarks

1. Combine two u, d quarks

2. Add the third quark (u or d)

3. Combine with spin

4. Use the SU(3)F ladder operators to construct the strange baryon wave functions

Baryons: qqq States

46

(flavor(space) (colo() r)spin)p R c    

(flavor) (spin)c 

3 3 3 10 8 8 1S MS MA A     



Combining Quarks (ud)
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We can immediately identify the extremes (recall I3 is additive)

To obtain the             state use the isospin lowering ladder operator

The last state,           , can be found from orthogonality with

First combine two quarks, then add the third quark

Use the requirement that fermion wave-functions are anti-symmetric,

is symmetric.

With two quarks, we have four possible combinations: 

represents two states 

with the same value of I3

(flavor) (spin)c 
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Can move around within multiplets using ladder operators

note

States with different total isospin are physically different – the isospin 1 triplet is 

symmetric under interchange of quarks 1 and 2, whereas the singlet is anti-symmetric.

Now add the third u or d quark.

From each of the above 4 states we get two new isospin states with I´3 = I3  ½ .

The eight states uuu, uud, udu, udd, duu, dud, ddu, ddd
are grouped into an isospin quadruplet (I = 3/2) and two isospin doublets (I = 1/2) 

From four possible combinations of isospin doublets we obtain a triplet of isospin 1

states and a singlet of isospin 0 state 2 2 3 1S A  

 3 1/ 2 u dI N N 
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We can derive the   I = 3/2   states from                          (or                      )

using the ladder operators.

3 3

2 2
,uuu 

3 3

2 2
,ddd 



50

We thus obtain 4 fully symmetric states with I = 3/2

which we identify with the 4 D resonances

we keep the two I = 1/2 states anti-symmetric under the exchange of the first two quarks,

and obtain the remaining two I = 1/2 states symmetric for the exchange of the first two

quarks by orthogonality

In summary we decomposed the 2  2  2 isospin representation in representations

with definite symmetry properties under the interchange of any two quarks

The eight states uuu, uud, udu, udd, duu, dud, ddu, ddd
are grouped into an isospin quadruplet and two isospin doublets

   
1 1

3 3
uuu uud udu duu udd dud ddu ddd   D  D    D    D 

 
1

2
6

Sp uud ud du u    

 
1

2
Ap ud du u   

2 2 2 (3 1 ) 2 (2 3) (2 1) 4 2 2S A S MA MS           

 
1

2
An ud du d   

 
1

2
6

Sn ddu ud du d     
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A quadruplet of states which

are symmetric under the 

interchange of any two quarks

A doublet with

mixed symmetry. 

Anti-symmetric for  1        2

A doublet with 

mixed symmetry. 

Symmetric for  1        2

S

MS

MA

Different multiplets have different symmetry properties

Mixed symmetry states have definite symmetry under interchange of the first two quarks

1   2 , but not for quarks  1   3  and  2   3 .

To form the baryon’s wave functions we have to add the spin of the quarks.



Adding Spin

52

Mixed symmetry. 

Anti-symmetric for  1       2

Mixed symmetry. 

Symmetric for  1      2MS

MA

A quadruplet of states which

are symmetric under the 

interchange of any two quarks
S

Can apply exactly the same mathematics to determine the possible spin 

wave-functions for a combination of 3 spin ½  particles

Now we can form total wave-functions for combination of three quarks

  MAMSSAS 224213222 



Baryon Wave-Functions (ud quarks only)
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Two ways to form a totally symmetric wave function from spin and  isospin states:

A combine totally symmetric spin and isospin wave functions

B combine mixed symmetry spin and mixed symmetry isospin states

both                         and                         are sym. under interchange of  quarks 1   2

not sufficient, these combinations have no definite symmetry under 1   3, …

however, the (normalised) linear combination

is totally symmetric (i.e. symmetric under  1   2,  1   3,  2   3 )

Spin 3/2

Isospin 3/2

Spin 1/2

Isospin 1/2
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The spin-up proton wave-function is therefore

Not always necessary to use the fully symmetrised proton wave function,

e.g. the first 3 terms are sufficient for calculating the proton magnetic moment.

Now use U and V ladder operators to introduce the s quark.

while the orthogonal combination

is totally anti-symmetric (i.e. anti-symmetric under  1   2,  1   3,  2   3 )

(in principle can build p, and n wavefunctions with no need of color, but not for other

baryon states)

 

     

1
2

1 1
72 8

1
18

2 2

2  permutations

S S A Ap

uud udu duu udu duu

u u d u u d u u d

 c  c    

            

              

1
18(2

                       2

                       2    )

p u u d u u d u u d

u d u u d u u d u

d u u d u u d u u

             

           

          



Combining uds Quarks into Baryons
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Constructing baryon states is a fairly elaborate process, see the derivation of the

proton wave function. 

Concentrate on multiplet structure rather than deriving all the wave-functions.

First combine two quarks: 

SYMMETRIC ANTI-SYMMETRIC

This yields a symmetric sextet and anti-symmetric triplet:

Same “pattern”

as the anti-quark

representation 

Y = B + S

I3
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Add the third quark:

Best considered in two parts, building on the sextet and triplet. Again concentrate on the

multiplet structure (for the wave functions refer to the discussion of proton wave function).

Building on the sextet:

Symmetric 

Decuplet

Mixed 

Symmetry 

Octet

3 6 10 8S MS  

sss

ddd uuu
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In summary, the combination of three uds quarks decomposes into

Totally

Anti-symmetric

Singlet

Just as in the case of uds mesons we are combining            and again obtain

an octet and a singlet

Building on the triplet:

Mixed 

Symmetry 

Octet

Can verify the wave function

is a singlet by using ladder operators, e.g.  

3 3 8 1  

3 3

3 3 3 3 (6 3) 10 8 8 1S MS MA A        



Baryon Octet

58

BARYON OCTET (L=0, S=1/2, J=1/2, P= +1 )

N(939)   I = 1/2

S(1193)   I = 1

Mass in MeV

L(1116)   I = 0

X(1318)   I = 1/2

The spin 1/2 octet is formed from mixed symmetry flavour and

mixed symmetry spin wave functions

We cannot form a totally symmetric wave function based on the anti-symmetric

flavour singlet as there are no totally anti-symmetric spin wave functions for 3 quarks.



Baryon Decuplet
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BARYON DECUPLET (L=0, S=3/2, J=3/2, P= +1 )

S*(1384)   I = 1

Mass in MeV

X* (1530)   I = 1/2

D(1232)   I = 3/2

(1672)   I = 0

The baryon states (L=0) are

the spin 3/2 decuplet of symmetric flavour and symmetric spin wave-functions

If SU(3)F flavour were an exact symmetry

all masses would be the same (broken symmetry)

prediction: 

 around 1650 MeV

fully symmetric

qqq combinations



Discovery of 

The - baryon was

predicted in 1964 by

Gell-Mann on the basis

of the quark model,

including its mass

of 1650 MeV.

Observed the same year

with predicted properties.

60K– –



Excitation Spectrum for Baryons
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The nucleons can also be created in an excited states of higher angular momentum

(resonances  they decay quickly to the ground state)

L1

L2

L = L1 + L2

J = S + L

P = (–1)L



Example of Baryon Listings from PDG
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Exotica
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In principle, states as 

qqqq - tetraquarks (e.g. f0(500) = udud)

qqqqq - pentaquarks (e.g. Q+(1540) = ududs)

qqqqqq   - hexaquarks (or dibaryons)

qqg   - hybrid mesons

are allowed.

We can form a color singlet, while combinations as qq or qqqq are forbidden (no singlet!)

Some such states have been observed, however not firmly established.

Are they genuine new meson states, or just meson molecules?

States like gg or ggg are even predicted by QCD - glueballs.

More exotic states observed involving heavy quarks (i.e. charm) 



Issues in the Quark Model
Are quarks real? 

If so, why we did never observe free quarks?

i.e. the particles of the fundamental representation of SU(3)F

 confinement

If so, how are the quarks (partons) distributed inside the nucleon?

and how do they interact?

Inside the nucleon, quarks behave as almost free  quark – parton model

 asymptotic freedom

Hadron spectroscopy: spin-statistics problem

The fully symmetric wave function under flavor and spin is problematic,

baryons are fermions  wave function must be antisymmetric under interchange

of any two quarks.

or

symmetric under space and spin rotations

3 identical spin-1/2 quarks with same quantum numbers in ground state

(violates Pauli exclusion principle!)

u

d

s
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 
1

2  permutations
18

p u u d u u d u u d             

u u uD      s s s     



Introduction of color
SOLUTION add a new quantum number – the color – to distinguish the three quarks

and require that the wave function is totally anti-symmetric w.r.t. color

color obeys SU(3)C color symmetry and comes in three “charges”: red, green blue

the SU(3)C color symmetry is exact

color singlet: color = eabcqaqbqc = 1/6 (RGB – RBG + BRG – BGR + GBR - GRB)

In general, the baryon wave function is decomposed as

anti-symmetric symmetric                        anti-symmetric

and the anti-symmetry of the wave function is recovered (space  flavor  spin  color).

example:

(qqq) color singlet 1/6 (RGB – RBG + BRG – BGR + GBR - GRB)

fully anti-symmetric  maximize attraction between quarks

All hadrons are color singlets. At this point, the color plays no dynamical role.

65

R G Bs s s     

(flavor(space) (colo() r)spin)p R c    



Observation of Quark Jets
Jet = collimated spray of hadrons from quark or gluon production

To see jets, need quarks with sufficient energy. 66

 
1 2 jet je
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Angular Distribution of Jets

Angular distribution sensitive to spin.

Quarks have spin ½.

(historically determined via DIS)

 
2

2

2
1 cos

cos 8

d

d E

 p
q

q
 

e

e

in

in

q

 
2 2

2

2
1 cos3

cos 8

q

q

Qd

d E

p 
q

q
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extra factors: 

3 for color, and Qq for quark charges

e

e

m

m

q
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One recovers the hadron properties by adding up the quark properties

charge operator

proton charge

neutron charge

magnetic moment operator

magnetic moment of quarks

magnetic moment of baryons

proton

neutron

lambda

Magnetic Moments of Baryons

 iQQ
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ii ii i
i

Q
e

S
m c

m m   assuming quarks are

Dirac particles with mi

can solve this system of equations to

extract quark masses:

mu ~ md ~ 340 MeV, ms ~ 480 MeV

 
3

1 2 3 ,

1

2
B i i zz

i

B B B S Bm m m m m

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      

 

 

3

1

3

1

1
4

3

1
4

3

p i u d

i

n i d u

i

s

p p

n n

m m m m

m m m m

m m





L

    

    

 







69

Note: the states are normalized                          and orthogonal

proton wavefunction

Need to calculate the first three terms and multiply by 3 (permuatations)

First calculate

then the first term contributes

and the second and third               and

Finally

and using isospin symmetry

1u u   0u u  

 perm. 218
1  duuduuduup
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2 2 2
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 
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Magnetic Moments

input

good agreement with measurements!

In the limit of exact isospin symmetry (mu = md) mu = – 2md and the ratio

Note: the prediction -2/3 comes from the nucleon wave-function symmetric under

flavor and spin

an antisymmetric nucleon wave-function under flavor and spin would predict 0.5.70

   
2

QM 0.66666          exp 0.68497945 0.00000058
3

n n

p p

m m

m m
      



Some Baryon Decays

in D decays (resonances)

the strong decay channel

dominates over the weak

weak decays of

strange baryons:

strong decays are forbidden

by strangness conservation

in strong interactions

neutron decay

71



Discovery of Charm (J /  in 1973)
Charm observed in 1973 as

J /  = (cc) (hidden charm)

J : hadroproduction p + Be → J + X

J → mm

 : ee →  → hadrons

(or ee or mm)

 → mm

 → hadrons

 → ee

MJ/Y ~ 3096 MeV   G = 11 keV JPC = 1 - -
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1976



Positronium vs QQ-onium Levels
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positronium

Charmonium and Bottonium resonance spectra very similar to the positronium.

Below the 2mD and 2mB thresholds these states are very narrow. 

charmonium Y (cc) bottonium U (bb)



Okubo-Zweig-Iizuka (OZI) Rule

Why is the width of the J /  resonance so narrow ?

below 2  mD threshold

highly suppressed

(narrow resonance)

because of OZI rule

kinematically allowed for

 resonances > 2  mD

(broad resonances)

OZI rule: if the diagram can be cut in two

by slicing only gluon lines (and not cutting any

external line) the process is supressed

MJ/p = 3097 MeV

MD = 1869 MeV
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QCD Potential

Charmonium levels are similar to

positronium levels →

potential of the form 1/r at short distances

+ confining harmonic potential of the form

F0r at large distances

empirical QCD potential

F0 ~ 900 MeV / fm   (i.e. ~ 16 tons)

In QCD the strong force at short distances

is assumed to have a similar space-time

structure to QED.
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Charm Hadrons add 4th quark → SU(4)
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For Next Week
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Study the material and prepare / ask questions

Study ch. 2 in Halzen & Martin and / or ch. 9 in Thomson

Do the homeworks

Next week we will study QCD

have a first look at the lecture notes, you can already have questions

read ch. 14 (sec. 3 and 4) in Halzen & Martin and / or ch. 10 in Thomson 


