Advanced Particle Physics 2

Strong Interactions and Weak Interactions

L2 - The Quark Model
(http://dpnc.unige.ch/~bravar/PPA2/L2)
lecturer

> Alessandro Bravar
> tél.: 96210 bureau: EP 206
assistant
Jorge Sabater
Jorge.Sabateriglesias@unige.ch

Particle Physics Booklet - PDG

https://pdg.lbl.gov/

lists all known particles
summarizes important physics
summarizes the detectors can be even download to your phone

2022

PARTICLE PHYSICS BOOKLET

From Hadrons to Quarks
1932 Discovery of the neutron
(beginning of flavor physics \rightarrow isospin)
1935 Yukawa postulates the existence of the pion
 (strong interaction theory)

1947 Discovery of the pion (initially confused with the muon)

'50s Discovery of hadronic resonances
Discovery of strange particles
Proliferation of hadrons
e-p elastic scattering (\rightarrow the proton is not pointlike) 1961
1964 Introduction of quarks

1973 e-p deep inelastic scattering (\rightarrow the proton is made of pointlike constituents - partons)

1973 "November revolution": Discovery of charm (J / 世) 1976
1973 QCD and Asymptotic freedom

$$
2004
$$

1977 Discovery of the bottom quark (Υ)
1995 Discovery of the top quark

Properties of Particles

What can we measure ?
mass
lifetime
decay modes and branching ratios
magnetic moment
(internal) quantum numbers
spin
flavor (quark content)
parity transformation
charge conjugation transformation

Isospin

Observations

$$
m_{p}=938.272 \mathrm{MeV} / \mathrm{c}^{2} \quad m_{n}=939.565 \mathrm{MeV} / \mathrm{c}^{2}
$$

and

$$
\mathrm{V}_{\mathrm{pp}} \approx \mathrm{~V}_{\mathrm{pn}} \approx \mathrm{~V}_{\mathrm{nn}} \quad \text { charge independence of the strong force }
$$

In 1932 Heisenberg proposed that, if one could switch off the electric charge, protons and neutrons would be indistinguishable (as far as the strong force is concerned). Think of an electron in a magnetic field: if one switches off the magnetic field, the two spin states of the electron are indistinguishable.

The proton and the neutron are two manifestations of one and same particle: the nucleon
The nucleon may be viewed as having an internal d.o.f. with 2 allowed states, the proton and the neutron, which the nuclear force does not distinguish.
The new flavour symmetry of the strong interaction - isospin - has the same transformation properties as SPIN!
Each nucleon has isospin $I=1 / 2$, with $I_{3}=+1 / 2$ for protons and $I_{3}=-1 / 2$ for neutrons.

$$
|p\rangle=\binom{1}{0} \quad|n\rangle=\binom{0}{1}
$$

The mathematics is a carbon copy of spin \rightarrow isospin (SU(2) algebra).
The observed symmetry of Strong Interaction under isospin transformations implies the existence of conserved quantities, i.e. the conservation of the isospin I and I_{3}.

Strong interactions conserve I and I_{3}
Electromagnetic interactions conserve only I_{3} (i.e. the electric charge)
Weak interactions do not conserve I nor I_{3}. analogous to conservation of J and J_{3} for angular momentum \Rightarrow selection rules
evidence that the strong force is invariant under isospin transformation:
physics unchanged by a symmetry operation if in a system all protons are replaced by neutrons and all neutrons are replaced by protons!
nucleon - nucleon system
 SU(2) algebra as for ordinary spin

$$
\begin{aligned}
& \left|I=1, I_{3}=1\right\rangle=p p \\
& \left|I=1, I_{3}=0\right\rangle=\sqrt{1 / 2}(p n+n p) \\
& \left|I=1, I_{3}=-1\right\rangle=n n \\
& \left|I=0, I_{3}=0\right\rangle=\sqrt{1 / 2}(p n-n p)
\end{aligned}
$$ (note that pp or $n n$ systems have never been observed, the deuton composed of a proton and a neutron is therefore an ispospin singlet with $I=0$)

Not restricted to nucleons only
The 3 pion states $\pi^{+}, \pi^{0}, \pi^{-}$form an isospin triplet with $I=1$.

Example

Compare the cross sections for the reactions

$$
\begin{aligned}
& \mathrm{p}+\mathrm{p} \rightarrow \pi^{+}+\mathrm{d} \quad \text { and } \\
& \mathrm{n}+\mathrm{p} \rightarrow \pi^{0}+\mathrm{d}
\end{aligned}
$$

(composition of angular momenta or isospin)

$$
\begin{aligned}
& \quad \begin{array}{l}
\left.\sigma \sim \mid \text { Amplitude }\left.\right|^{2} \sim \sum_{I}\left|\left\langle I^{\prime}, I_{3}^{\prime}\right| A\right| I, I_{3}\right\rangle\left.\right|^{2} \\
p p:|1 / 2,1 / 2\rangle|1 / 2,112\rangle=|1,1\rangle \\
n p:|1 / 2,-1 / 2\rangle|1 / 2,1 / 2\rangle
\end{array}=\frac{\pi^{+1 / 2}|1,0\rangle}{\text { isospin conservation in strong interactions }}+|1,1\rangle|0,0\rangle=\mid 1,1 \\
& \text { Therefore } \quad \frac{\sigma\left(p p \rightarrow \pi^{+} d\right)}{\sigma\left(n p \rightarrow \pi^{0} d\right)}=2
\end{aligned}
$$

(taken the other way around, as has been the case)
It can be used to show that the isospin on the pions is 1.

Symmetries and Conservation Laws

Suppose physics is invariant under the symmetry transformation U

$$
\psi \rightarrow \psi^{\prime}=U \psi
$$

Conservation of probability requires

$$
\begin{gathered}
\langle\varphi \mid \psi\rangle=\left\langle\varphi^{\prime} \mid \psi^{\prime}\right\rangle=\langle U \varphi \mid U \psi\rangle=\langle\varphi| U^{\dagger} U|\psi\rangle \\
\Rightarrow \\
U^{\dagger} U=1 \text { i.e. } U^{-1}=U^{\dagger} \text { and } \operatorname{det}(U)= \pm 1 \quad \text { i.e. } U \text { is unitary }
\end{gathered}
$$

For physical predictions to be unchanged by the symmetry transformation all matrix elements must remain unchanged

$$
\langle\varphi| H|\psi\rangle=\left\langle\varphi^{\prime}\right| H\left|\psi^{\prime}\right\rangle=\langle\varphi| U^{\dagger} H U|\psi\rangle
$$

i.e. require

$$
\begin{aligned}
& U^{\dagger} H U=H \quad \Rightarrow \\
& \text { es with the Hamiltonian. }
\end{aligned}
$$

i.e. U commutes with the Hamiltonian.

Consider the infinitesimal transformation (ε small)

$$
U=1+i \varepsilon G \quad G \text { is called the generator of the transformation }
$$

From $\quad U^{\dagger} U=(1-i \varepsilon G)(1+i \varepsilon G)=1+i \varepsilon\left(G-G^{\dagger}\right)+o\left(\varepsilon^{2}\right)$
neglecting terms in ε^{2}
unitarity implies

$$
G=G^{\dagger}=G^{-1}
$$

G is hermitian, therefore an observable quantity
Furthermore $[H, U]=0 \Rightarrow[H, 1+i \varepsilon G]=0 \Rightarrow[H, G]=0$
i.e. the generator also commutes with the hamiltonian and from QM

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle G\rangle=i \hbar\langle[H, G]\rangle=0
$$

(Ehrentest's theorem)
G is a conserved quantity

$$
\text { symmetry } \Leftrightarrow \text { conservation law }
$$

For each symmetry of nature there is an observable conserved quantity.
The finite transformation can be expressed as a series of infinitesimal transformations

$$
U(\alpha)=\lim _{n \rightarrow \infty}\left(1+i \frac{\alpha}{n} G\right)^{n}=e^{i \alpha G} \quad \text { and } \quad G=-\left.i \frac{\mathrm{~d} U(\alpha)}{\mathrm{d} \alpha}\right|_{\alpha=0}
$$

In general the symmetry operation may depend on more than one parameter

$$
U=1+i \vec{\varepsilon} \cdot \vec{G}
$$

Isospin Symmetry of Strong Interactions

The strong interaction treats protons and neutrons (almost) equally \rightarrow isospin symmetry, i.e. for the strong interaction nothing changes if all protons are replaced with neutrons and vice versa.
Isospin transformations described by $\operatorname{SU}(2)$ symmetry, in which the $\binom{p}{n}$ doublet form
the fundamental representation

$$
\text { nucleon }|N\rangle=\binom{p}{n} \text { proton }|p\rangle=\binom{1}{0} \text { neutron }|n\rangle=\binom{0}{1}
$$

the particle with the biggest charge (proton) has $I_{3}=+1 / 2$,
the particle with smallest charge (neutron) has $I_{3}=-1 / 2$
Express the invariance of the strong interaction under $p \leftrightarrow n$ transformation as invariance under "rotations" in an abstract isospin space

$$
\binom{p^{\prime}}{n^{\prime}}=U\binom{p}{n}=\left(\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right)\binom{p}{n}
$$

The 2×2 unitary matrix depends on 4 complex numbers, i.e. 8 real parameters.
From unitarity $U^{\dagger} U=1$ there are 4 constraints, and $8-4=4$ independent matrices. In the language of group theory the four matrices form the two dimensional unitary group $U(2)$.

Under this restriction, U has the form

$$
U=\left(\begin{array}{cc}
\alpha & \beta \\
-\beta^{*} & \alpha^{*}
\end{array}\right) e^{i \varphi} \text { with }|\alpha|^{2}+|\beta|^{2}=1
$$

One of the matrices corresponds to multiplying by a phase factor $e^{i \varphi}\left(\mathbf{I}^{i \varphi}\right)$, i.e. a global phase transformation and not a flavour transformation, and is of no relevance. The remaining three matrices form the special unitary group $S U(2)$ with $\operatorname{det}(U)=+1$ and

$$
\operatorname{det}(U)=+1 \Rightarrow \operatorname{Tr}(G)=0
$$

A linearly independent choice for the generators G are the traceless Pauli spin matrices

$$
\tau_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \tau_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \tau_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Define the isospin generator $\vec{I}=\frac{1}{2} \vec{\tau}$ and the isospin transformation $U=e^{i \vec{\alpha} \cdot \vec{I}}$
The isospin generators satisfy the isospin algebra $\left[I_{i}, I_{j}\right]=i \varepsilon_{i j k} I_{k}$ with $I^{2}=I_{1}^{2}+I_{2}^{2}+I_{3}^{2} \quad$ and $\left[I^{2}, I_{i}\right]=0$
Nonlinear functions of the generators, which commute with all the generators, are called Casimir operators (invariants) ($S U(2)$ has rank 1 and 1 Casimir operator \mathcal{R}). Can diagonalize simultaneously R and I_{3}.

Can also define isospin ladder operators (useful for constructing higher order representations) similar to angular momentum

$$
\begin{aligned}
& I_{+}= I_{1}+i I_{2} \quad I_{+}\binom{0}{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0} \quad n \rightarrow p \\
& I_{-}= I_{1}-i I_{2} \quad I_{-}\binom{1}{0}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1} \quad p \rightarrow n \\
& I_{+}\left|I, I_{3}\right\rangle=\sqrt{I(I+1)-I_{3}\left(I_{3}+1\right)}\left|I, I_{3}+1\right\rangle \\
& I_{-}\left|I, I_{3}\right\rangle=\sqrt{I(I+1)-I_{3}\left(I_{3}-1\right)}\left|I, I_{3}-1\right\rangle
\end{aligned}
$$

i.e. increase or decrease the third component of the isospin by 1.

In summary:
the assumed symmetry of Strong Interaction under isospin transformations implies the existence of conserved quantities.
In strong interactions I_{3} and I are conserved, analogous to conservation of J_{z} and J for angular momentum.
Electromagnetic interactions conserve I_{3} only (electric charge).
Weak interactions do not conserve I nor I_{3}.

Yang-Mills Gauge Theories

Invariance under isospin transformations in $\mathrm{SU}(2)$ space

$$
\psi \rightarrow \psi^{\prime}=U \psi=e^{i \alpha_{i} \tau^{i} / 2} \psi
$$

\Rightarrow conservation of isospin / in strong interactions
Has isospin a dynamical role?
Can we transform a p into a n arbitrarily at any space-time point?
Can we build a theory of strong interactions from isospin invariance?
i.e. build a gauge invariant theory under local isospin transformations

$$
\psi \rightarrow \psi^{\prime}=U \psi=e^{i g \alpha_{i}(x) \cdot \tau^{i} / 2} \psi
$$

Following the EM template, introduce the covariant derivative

$$
\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}+i g \frac{\tau_{i}}{2} \cdot B_{\mu}^{i}(x)
$$

with B_{μ}^{i} three new spin- 1 vector fields, transforming as

$$
B_{\mu}^{i}(x) \rightarrow B_{\mu}^{i \prime}(x)=B_{\mu}^{i}(x)-\frac{1}{g} \partial_{\mu} \alpha^{i}(x)-i \varepsilon_{i j k} \alpha^{j}(x) B_{\mu}^{k}(x)
$$

This is the basic idea of Yang and Mills (1954), i.e. of non-abelian gauge theories. Unfortunately, this theory is not supported by experiment, there are no such $\mathrm{B}_{\mu}{ }_{\mu}$ fields. The idea used in the late '60s to develop the electroweak theory $\left(\mathrm{SU}(2)_{\llcorner } \times \mathrm{U}(1)_{\mathrm{Y}}\right)$ and QCD (SU(3) ${ }_{\mathrm{c}}$ symmetry group) in 1973.

Discovery of the Pion (1947)

$\Pi^{+} \rightarrow \mu^{+} \rightarrow \mathrm{e}^{+} \quad$ (cosmic rays)
points to note:
the pion decays at rest

> dE/dx - Bragg Peak
the particle accompanying the μ^{+} is not detected $\left(v_{\mu}\right)$
constant range for $\mu(\sim 600 \mu \mathrm{~m})$ (i.e. 2-body decay)
low dE/dx for fast e^{+} variable range
small angle scattering of tracks
first pion observed in emulsions
produced in interactions of cosmic rays in the upper atmosphere

Pion Spin

Consider the reaction $\pi^{+}+d \rightarrow p+p$ and the inversed one $p+p \rightarrow \pi^{+}+d$ and the cross sections

$$
\begin{aligned}
& \frac{d \sigma}{d \Omega}\left(\pi^{+} d \rightarrow p p\right) \propto \frac{1}{2} \frac{p_{p}}{p_{\pi}} \frac{1}{\left(2 s_{\pi}+1\right)\left(2 s_{d}+1\right)} \sum_{f, i}\left|M_{f i}\right|^{2} \\
& \frac{d \sigma}{d \Omega}\left(p p \rightarrow \pi^{+} d\right) \propto \frac{p_{\pi}}{p_{p}} \frac{1}{\left(2 s_{p}+1\right)^{2}} \sum_{f, i}\left|M_{i f}\right|^{2}
\end{aligned}
$$

The detailed balance principle (time reversal invariance) requires

$$
\sum_{f, i}\left|M_{f i}\right|^{2}=\sum_{f, i}\left|M_{i f}\right|^{2}
$$

In the c.o.m. just above threshold (the thresholds energies are slightly different) that leads to

$$
\frac{\sigma_{\text {tot }}\left(\pi^{+} d \rightarrow p p\right)}{\sigma_{\text {tot }}\left(p p \rightarrow \pi^{+} d\right)} \propto \frac{1}{2} \frac{\left(2 s_{p}+1\right)^{2}}{\left(2 s_{\pi}+1\right)\left(2 s_{d}+1\right)}\left(\frac{p_{p}}{p_{\pi}}\right)^{2}=\frac{2}{3\left(2 s_{\pi}+1\right)}\left(\frac{p_{p}}{p_{\pi}}\right)^{2}
$$

from measured values of this ratio, one obtains $2 \mathrm{~s}_{\pi}+1=0.97 \pm 0.31 \rightarrow \mathrm{~s}_{\pi}=0$ (the deuton has spin 1 ћ)

Isospin: Consider the reactions $\mathrm{p}+\mathrm{p} \rightarrow \pi^{+}+\mathrm{d}$ and $\mathrm{n}+\mathrm{p} \rightarrow \pi^{0}+\mathrm{d}$ (slide 6).

Isospin Representation of the Pion

Pions form an ispospin triplet with $I=1: \quad \pi^{+}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) \quad \pi^{0}\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right) \quad \pi^{-}\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$

The third component of isospin

$$
I_{3}\left|\pi^{+}\right\rangle=+1\left|\pi^{+}\right\rangle
$$

$$
\begin{aligned}
& I_{3}\left|\pi^{\top}\right\rangle=+1\left|\pi^{\prime}\right\rangle \\
& I_{3}\left|\pi^{0}\right\rangle=0\left|\pi^{0}\right\rangle \\
& I_{3}\left|\pi^{-}\right\rangle=-1\left|\pi^{-}\right\rangle
\end{aligned} \quad \Rightarrow I_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

To find I_{1}, I_{2} first consider the ladder operators $I_{+}=I_{1}+i I_{2}$ and $I_{-}=I_{1}-i I_{2}$:

$$
I_{+}\left|\pi^{-}\right\rangle=I_{+}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\sqrt{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad I_{+}\left|\pi^{0}\right\rangle=I_{+}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\sqrt{2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad I_{+}\left|\pi^{+}\right\rangle=I_{+}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

$\begin{aligned} & \text { from which follows the matrix } \\ & \text { representation for } I_{+} \text {and } I_{-}\end{aligned} \quad I_{+}=\left(\begin{array}{ccc}0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0\end{array}\right) \quad I_{-}=\left(\begin{array}{ccc}0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0\end{array}\right)$
and solve for I_{1} and $I_{2} \quad I_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$

$$
I_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right)
$$

Production of Resonances

~1950 first accelerator beams Can produce π^{+} / π^{-}beams

In 1951 Fermi discovers the spin $3 / 2 \Delta(1232)$ resonances

$$
\Delta^{++} \quad \Delta^{+} \quad \Delta^{0} \quad \Delta^{-}
$$

in $\pi \mathrm{p}$ scattering:

Afterwards, many more resonances have been discovered.

Example

There are four Δ states with $I=3 / 2, I_{3}\left(\Delta^{++}\right)=+3 / 2, \ldots, I_{3}\left(\Delta^{-}\right)=-3 / 2$
Experimentally $\frac{\sigma_{\text {tot }}\left(\pi^{+} p\right)}{\sigma_{\text {tot }}\left(\pi^{-} p\right)}=3$ at the resonance peak.
Taking into account the isospin of the πp system and that of the Δ

$$
\begin{array}{ll}
\pi^{+} p:|1,1\rangle|1 / 2,1 / 2\rangle=|3 / 2,3 / 2\rangle & \Delta^{++}:|3 / 2,+3 / 2\rangle \\
\pi^{-} p:|1,-1\rangle|1 / 2,1 / 2\rangle=\left(\sqrt{\frac{1}{3}}\left|J_{2},-1 / 2\right\rangle+\sqrt{\frac{2}{3}}|1 / 2,-1 / 2\rangle\right. & \Delta^{0}:|3 / 2,-1 / 2\rangle \\
\text { isospin conservation } & \uparrow
\end{array}
$$

we can explain this ratio.
How can we determine the spin of the Δ ?
From the angular distribution of the $p-\pi$ system (p-wave)

Resonances and Particles

Particles that decay by the strong interaction are extremely short lived ($\sim 10^{-23} \mathrm{~s}$). They are called resonances and are identified by observing their decay products or "bumps" in the cross section, as a function of the energy of the system, i.e. $\sigma(\mathrm{E})$

$$
\pi p \rightarrow \Delta \rightarrow \pi p
$$

The resonances are too short lived to determine precisely their mass (energy), which is "spread" around a central value E_{R}.

According to Heisenberg $\Delta E \cdot \Delta t \geq \frac{\hbar}{2} \Rightarrow \Gamma \tau=\hbar$
Γ is the width of the resonance
This unstable particle decays according to the exponential law

$$
N=N_{o} e^{-t / \tau}
$$

with $\tau=\hbar / \Gamma$ the "lifetime" of the sate.
The time evolution of the particle's wave function must include the "decay factor" Γ and can be rewritten with the substitution $\quad m \rightarrow m-i \Gamma / 2$

$$
\begin{gathered}
\psi(t)=\psi(0) e^{-i m t} \rightarrow \psi(0) e^{-i m t} e^{-\Gamma t / 2} \\
\Longrightarrow|\psi(t)|^{2}=|\psi(0)|^{2} e^{-\Gamma t}
\end{gathered}
$$

Breit-Wigner Resonance

The state can be described by the Fourier transform of the time dependent wave function

$$
\chi(E)=\int_{-\infty}^{+\infty} \psi(t) e^{i E t} d t=\int_{0}^{+\infty} \psi(0) e^{-t\left([\Gamma / 2)+i\left(E_{R}-E\right)\right]} d t=\frac{K}{\sigma}\left(E-E_{R}\right)+i \Gamma / 2
$$

One then observes a πp reaction rate $\sigma(\mathrm{E})$ of the form $\left(\sigma(\mathrm{E}) \propto \chi^{*} \chi\right)$

$$
\sigma(E)=\sigma_{\max } \frac{\Gamma^{2} / 4}{\left(E-E_{R}\right)^{2}+\Gamma^{2} / 4}
$$

known as the Breit - Wigner resonance
with $\quad \sigma_{\max }=4 \pi \lambda^{2}=4 \pi \frac{\hbar^{2}}{p^{2}}$ (s - wave) (opt. theo.)
The total width Γ of the resonance is related to the strength of the interaction.

The resonance can decay to a number of different final states. Each individual decay mode has a partial width Γ_{i}.
Sum of all "partial widths" $=$ total width $\quad \Gamma=\sum_{i} \Gamma_{i}$ The shape is the same for all decays.

To obtain a relativistically invariant expression, multiply denominator and numerator by $\left(E+E_{R}\right)^{2}$

$$
\sigma(E)=\sigma_{\max } \frac{\Gamma^{2} / 4}{\left(E-E_{R}\right)^{2}+\Gamma^{2} / 4} \frac{\left(E+E_{R}\right)^{2}}{\left(E+E_{R}\right)^{2}}
$$

and by noting that around the peak $E \sim E_{R}$

$$
\sigma(E)=\sigma_{\max } \frac{\Gamma^{2} E_{R}^{2}}{\left(s-E_{R}^{2}\right)^{2}+\Gamma^{2} E_{R}^{2}}
$$

The particle can decay to a number of different final states (also different initial states). The shape, not the width, is the same for all decay modes:

$$
T_{f i}=\sum_{n} \frac{\langle f| H_{I}|n\rangle\langle n| H_{I}|i\rangle}{E-E_{n}} \sim \frac{\langle f| H_{I}|R\rangle\langle R| H_{I}|i\rangle}{E-\left(E_{R}-i \Gamma / 2\right)} \propto \frac{\sqrt{\Gamma_{f}} \sqrt{\Gamma_{i}}}{E-\left(E_{R}-i \Gamma / 2\right)}
$$

Moreover, we have to take into account also the spin multiplicity factors (sum over final spins, average over initial spin states

$$
\begin{aligned}
& \sigma_{i f}=\frac{4 \pi \hbar^{2}}{p_{i}^{2}}\left(\frac{(2 J+1)}{\left(2 s_{1}+1\right)\left(2 s_{2}+1\right)}\right)\left(\frac{\Gamma_{i} \Gamma_{f} M_{R}^{2}}{\left(s-M_{R}^{2}\right)^{2}+\Gamma^{2} M_{R}^{2}}\right) \\
& p_{i}=\text { intial momentum } \\
& J=\text { resonance spin }, \quad s_{1}, s_{2}=\text { spins of incoming particles } \\
& \Gamma_{\mathrm{i}}, \Gamma_{f}=\text { widths of initial and final states, } \Gamma=\text { total width }
\end{aligned}
$$

Cross-section Upper Bound and $\sigma_{\text {max }}$

 Let $\psi_{i n}=A e^{i k z}$ be the incoming wave$$
\text { and the scattered wave } \psi_{\text {out }} \approx A\left\{e^{i k z}+f(\vartheta) \frac{e^{i \vec{k} \cdot \vec{r}}}{r}\right\} \text { for large } r
$$

$f(\vartheta)$ is the scattering amplitude and $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}=|f(\vartheta)|^{2}$
Expand $f(\vartheta)$ with Legendre polynomials $f(\vartheta)=\sum_{l=0}^{\infty}(2 l+1) a_{l}(k) P_{l}(\cos \vartheta)$
where $a_{l}(k)$ is the partial wave amplitude $a_{l}(k)=\frac{1}{2 i k}\left(e^{2 i \delta_{l}}-1\right)=\frac{1}{k} e^{i \delta_{l}} \sin \delta_{l}$
δ_{l} - phase shift
Then $\sigma=4 \pi \sum_{l=0}^{\infty}(2 l+1)\left|a_{l}(k)\right|^{2}=\frac{4 \pi}{k^{2}} \sum_{l=0}^{\infty}(2 l+1) \sin ^{2} \delta_{l}$
$\begin{aligned} & \text { Since } \sin \delta_{l} \leq 1 \\ & \text { for partial wave I }\end{aligned} \Rightarrow \sigma_{M A X}^{(l)}=\frac{4 \pi}{k^{2}}(2 l+1)$
$\mathrm{k}^{2}=$

$$
\mathrm{k}^{2}=\mathrm{E}_{\mathrm{CM}^{2}}
$$

At high energy
the state is in an s - wave

$$
\sigma_{M A X}=\frac{4 \pi}{k^{2}}
$$

and include initial / final state spin multiplicity

Isospin of Anti-Nucleons

Anti-nucleon states are obtained by applying the charge conjugation operator C to the (p, n) doublet.
Consider the isopsin transformation $\binom{p^{\prime}}{n^{\prime}}=U\binom{p}{n}=\left(\begin{array}{cc}\alpha & \beta \\ -\beta^{*} & \alpha^{*}\end{array}\right)\binom{p}{n}=\binom{\alpha p+\beta n}{-\beta^{*} p+\alpha^{*} n}$ and the charged conjugated transformation

$$
\binom{\bar{p}^{\prime}}{\bar{n}^{\prime}}=C\binom{p^{\prime}}{n^{\prime}}=C U\binom{p}{n}=U^{*} C\binom{p}{n}=U^{*}\binom{\bar{p}}{\bar{n}}=\left(\begin{array}{cc}
\alpha^{*} & \beta^{*} \\
-\beta & \alpha
\end{array}\right)\binom{\bar{p}}{\bar{n}}=\binom{\alpha^{*} \bar{p}+\beta^{*} \bar{n}}{-\beta \bar{p}+\alpha \bar{n}}
$$

We would like that the anti-nucleon doublet to transform in exactly the same way as the nucleon doublet to combine particle and anti-particle states in the same way,
i.e. $\bar{\psi}^{\prime}=U \bar{\psi}$

Rearranging

$$
\left\{\begin{array} { l }
{ \overline { p } ^ { \prime } = \alpha ^ { * } \overline { p } + \beta ^ { * } \overline { n } } \\
{ \overline { n } ^ { \prime } = - \beta \overline { p } + \alpha \overline { n } }
\end{array} \Rightarrow \left\{\begin{array}{l}
-\bar{n}^{\prime}=\alpha(-\bar{n})+\beta \bar{p} \\
\bar{p}^{\prime}=-\beta^{*}(-\bar{n})+\alpha^{*} \bar{p}
\end{array} \Rightarrow\left(\begin{array}{cc}
\alpha & \beta \\
-\beta^{*} & \alpha^{*}
\end{array}\right)\binom{-\bar{n}}{\bar{p}}=U\binom{-\bar{n}}{\bar{p}}\right.\right.
$$

which means that the isodoublet $\binom{-\bar{n}}{p}$ transforms in the same way as $\binom{p}{n}$

1. the anti-particle with biggest charge - the antineutron - has $I_{3}=+1 / 2$
2. introduce a minus sign for the upper component, the antineutron Note that this works only with $\operatorname{SU}(2)$.

Discovery of Strange Hadrons

strange particles are always produced in pairs (associated production): strange and anti-strange hadron (i.e. strange quark pairs s and $\overline{\mathrm{s}}$) Gell-Mann and Nishijima (1963): evidence of a new quantum number - strangeness S

$$
\begin{array}{ll}
\mathrm{S}=0 & \pi, \mathrm{~N}, \Delta, \ldots \\
\mathrm{~S}=1 & \mathrm{~K}^{+}, \ldots \\
\mathrm{S}=-1 & \Lambda, \Sigma, \ldots
\end{array}
$$

strangness is conserved in strong and electromagnetic interactions strangness is violated in weak (hadronic or semileptonic) decays

$$
s \rightarrow u+\ldots \quad \Delta S=\Delta Q
$$

Strange Particles (circa '55)

Some regularities are visible :
hadrons can be grouped in multiplets of similar mass (isospin multiplets) and same quantum numbers: spin, parity, isospin

Hint of some underlying symmetry \rightarrow extension of isospin to include also strange hadrons
The symmetry, however, is only approximate: $m_{p}=938 \mathrm{MeV}$ to $\mathrm{m}_{\mathrm{E}}=1320 \mathrm{MeV}$.

Introduction of Quarks

Hadrons are extended objects and have structure:
anomalous magnetic moments ($\sim^{\prime} 30$ s), i.e. not perfect Dirac particles proliferation of hadrons ($\sim^{\prime} 50 \mathrm{~s}$)
regularities in hadron spectrum
elastic electron-nucleon scattering ($\sim^{\prime} 50$ s)
\Rightarrow Hadrons are not elementary particles but composed of quarks u, d, s (Gell-Mann 1964) baryons are composed of three quarks $(B=1)$
mesons are composed of quark - anti-quark pairs ($B=0$)
anti-baryons are composed of three anti-quarks ($B=-1$)
Quarks carry fractional electric charges

$$
\begin{aligned}
& Q_{u}=2 / 3 \mathrm{e} \\
& \mathrm{Q}_{\mathrm{d}}=-1 / 3 \mathrm{e} \\
& \mathrm{Q}_{\mathrm{s}}=-1 / 3 \mathrm{e}
\end{aligned}
$$

have spin $1 / 2 \hbar$ and baryon number $1 / 3, m_{u} \approx m_{d} \sim 340 \mathrm{MeV}, m_{s} \sim 500 \mathrm{MeV}$
By adding up quark's quantum \#s one obtains the hadron's quantum \#s.

$$
\text { Since } m_{s}>m_{u} \approx m_{d} \text {, we do not have an exact symmetry, } m_{s} \text { not so different from } m_{u}, m_{d}
$$

\Rightarrow can treat the hadron states as if they were symmetric under $u \leftrightarrow d \leftrightarrow s \leftrightarrow u$
\Rightarrow assume charge independence of the strong force
Any results obtained from this assumption are only approximate (symmetry not exact).
With the introduction of a second additive quantum number S (strangness), enlarge $\mathrm{SU}(2)$ isospin symmetry to a larger group of rank $2 \rightarrow S U(3)_{F}$.
$S U(3)_{F}$ flavor symmetry is far from being an exact symmetry, but allows us to organize known hadrons into multiplets with same quantum numbers J^{P}, and isospin sub-multiplets This allows us to classify all observed hadrons, to predict some of their properties, and to predict new hadron states.

Introduce a new additive quantum number, the hypercharge Y to make the hadron multiplets look more symmetric (nothing deeper behind it)

$$
Y=B+S \rightarrow Q=I_{3}+1 / 2 Y
$$

The ($\mathrm{u}, \mathrm{d}, \mathrm{s}$) multiplets represents the fundamental representation of the $S U(3)_{F}$ flavor group from which all other multiplets can be built. In group theory language
baryons: $3 \otimes 3 \otimes 3$
mesons: $3 \otimes \overline{3}$

$$
u=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Quarks and anti-Quarks in $S U(3)_{F}$ Flavor

Quarks

$$
I_{3} u=+\frac{1}{2} u ; \quad I_{3} d=-\frac{1}{2} d ; \quad I_{3} s=0
$$

$Y u=+\frac{1}{3} u ; \quad Y d=+\frac{1}{3} d ; \quad Y s=-\frac{2}{3} s$

The anti-quarks have opposite $S U(3)_{F}$ flavour quantum numbers

Anti-Quarks
$I_{3} \bar{u}=-\frac{1}{2} \bar{u} ; \quad I_{3} \bar{d}=+\frac{1}{2} \bar{d} ; \quad I_{3} \bar{s}=0$
$Y \bar{u}=-\frac{1}{3} \bar{u} ; \quad Y \bar{d}=-\frac{1}{3} \bar{d} ; \quad Y \bar{s}=+\frac{2}{3} \bar{s}$

Additive Quantum Numbers of Quarks

Property	Quark	d	u	s	c	b
t						
$\mathrm{Q}-$ electric charge	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$	$-\frac{1}{3}$	$+\frac{2}{3}$
$\mathrm{I}-$ isospin	$\frac{1}{2}$	$\frac{1}{2}$	0	0	0	0
$\mathrm{I}_{z}-$ isospin z-component	$-\frac{1}{2}$	$+\frac{1}{2}$	0	0	0	0
$\mathrm{~S}-$ strangeness	0	0	-1	0	0	0
$\mathrm{C}-$ charm	0	0	0	+1	0	0
$\mathrm{~B}-$ bottomness	0	0	0	0	-1	0
$\mathrm{~T}-$ topness	0	0	0	0	0	+1

constituent quark masses in quark model:

$$
\begin{aligned}
& m_{u} \sim 336 \mathrm{MeV}, \mathrm{~m}_{\mathrm{d}} \sim 340 \mathrm{MeV}, \mathrm{~m}_{\mathrm{s}} \sim 485 \mathrm{MeV} \\
& \mathrm{~m}_{\mathrm{c}} \sim 1,550 \mathrm{MeV}, \mathrm{~m}_{\mathrm{b}} \sim 4,730 \mathrm{MeV}, \mathrm{~m}_{\mathrm{t}} \sim 177,000 \mathrm{MeV}
\end{aligned}
$$

Baryon Octet and Meson Nonet

The eight-fold way

$$
Y=B+S
$$

PSEUDOSCALAR MESON NONET

$S U(3)_{F}$ Flavor

The postulated u d s flavour symmetry can be expressed as (recall isospin)

$$
\left(\begin{array}{l}
u^{\prime} \\
d^{\prime} \\
s^{\prime}
\end{array}\right)=\hat{U}\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)=\left(\begin{array}{lll}
U_{11} & U_{12} & U_{13} \\
U_{21} & U_{22} & U_{23} \\
U_{31} & U_{32} & U_{33}
\end{array}\right)\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

The 3×3 unitary matrix depends on 9 complex numbers, i.e. 18 real parameters. There are 9 constraints from unitarity $\hat{U}^{\dagger} \hat{U}=1$ Can form 18-9 = 9 linearly independent matrices. These 9 matrices form a $U(3)$ group. One matrix is the identity multiplied by a complex phase ($\left.I e^{i \varphi}\right)$ and is of no interest.
The remaining 8 matrices have $\operatorname{det} U=+1$ and form an $S U(3)$ group. Introduce the 8 generators T_{a} of the $\mathrm{SU}(3)$ by considering the infinitesimal transformation

$$
\hat{U}=1+i \sum_{a} \varepsilon_{a} T_{a} \quad(\vec{\varepsilon}=\vec{\alpha} / n, n \rightarrow \infty)
$$

A generic element of the group can be written as $\hat{U}=e^{i \vec{\alpha} \cdot \vec{T}}=e^{i \sum_{a} \alpha_{a} T_{a}}$ with $T_{a}=\frac{1}{2} \lambda_{a}$ the eight hermitian generators of the $S U(3)$ group and the $8 \lambda_{a}$ Gell-Mann matrices (equivalent to the Pauli spin matrices for $S U(2)$) α_{a} are 8 "rotation angles" in the $S U(3)$ space.

The Gell-Mann Matrices

In $S U(3)_{F}$ flavour, the three quark states are represented by:

$$
u=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad d=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad s=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

The $S U(3) \mathrm{u} d \mathrm{~s}$ flavour symmetry "contains" $\mathrm{u} \leftrightarrow \mathrm{d}, \mathrm{u} \leftrightarrow \mathrm{s}$, and $\mathrm{d} \leftrightarrow \mathrm{s} \operatorname{SU}(2)$ symmetrie The $S U(2) u \leftrightarrow d$ flavour symmetry allows us to represent the first three matrices as:
i.e.

$$
\begin{aligned}
& \lambda_{1}=\left(\begin{array}{lll}
\tau_{1} & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{cc}
\tau_{2} & 0 \\
0 & 0
\end{array}\right) \quad 0 . \quad \lambda_{3}=\left(\begin{array}{ll}
\tau_{3} & 0 \\
0 & 0
\end{array}\right) \\
& \mathrm{u} \leftrightarrow \mathrm{~d} \quad \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

The third component of isospin is now written $\quad I_{3}=\frac{1}{2} \lambda_{3}$
with $\quad I_{3} u=+\frac{1}{2} u$
$I_{3} d=-\frac{1}{2} d \quad I_{3} s=0$
I_{3} "counts the number of up quarks minus the number of down quarks in a state.

Similarly, the matrices corresponding to the $\operatorname{SU}(2) u \leftrightarrow s$ and $d \leftrightarrow s$ symmetries can be represented as

| $\mathbf{u} \leftrightarrow \mathbf{s}$ |
| :--- | :--- |\(\lambda_{4}=\left(\begin{array}{lll}0 \& 0 \& 1

0 \& 0 \& 0

1 \& 0 \& 0\end{array}\right) \quad \lambda_{5}=\left($$
\begin{array}{ccc}0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0\end{array}
$$\right), \lambda_{X}=\left($$
\begin{array}{ccc}1 & 0 & 0 \\
0 & 0 & 0 \| \\
0 & 0 & -\| l\end{array}
$$\right)\)

In addition to $\lambda_{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ we have two other traceless diagonal matrices λ_{X} and λ_{Y}.
However the three diagonal matrices are not linearly independent. Define the eighth matrix, λ_{8}, as the linear combination

$$
\lambda_{8}=\frac{1}{\sqrt{3}} \lambda_{X}+\frac{1}{\sqrt{3}} \lambda_{Y}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

which determines the hypercharge $Y=$

$$
\text { which determines the hypercharge } Y=\frac{1}{\sqrt{3}} \lambda_{8}
$$

$$
\begin{gathered}
\boldsymbol{d}^{1} \\
\hline-\frac{2}{3} s
\end{gathered}
$$

$$
Y u=+\frac{1}{3} u \quad Y d=+\frac{1}{3} d \quad Y s=-\frac{2}{3} s
$$

SU(3) Ladder Operators

Consider the $u \leftrightarrow s$ symmetry "V-spin" to which we can associate the $u \rightarrow s$ and $u \rightarrow s$ ladder operators

$$
\begin{gathered}
V_{ \pm}=\frac{1}{2}\left(\lambda_{4} \pm i \lambda_{5}\right)=\frac{1}{2}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \pm \frac{i}{2}\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \\
V_{+} s=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=+u \quad V_{+} u=0 \quad V_{+} d=0
\end{gathered}
$$

with

$$
V_{-} u=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=+s \quad V_{-} d=0 \quad V_{-} s=0
$$

The actions of the six ladder operators are:

$$
\begin{array}{cc|cl}
T_{+} d=u ; & T_{-} u=d ; & T_{+} \bar{u}=-\bar{d} ; & T_{-} \bar{d}=-\bar{u} \\
V_{+} s=u ; & V_{-} u=s ; & V_{+} \bar{u}=-\bar{s} ; & V_{-} \bar{s}=-\bar{u} \\
U_{+} s=d ; & U_{-} d=s ; & U_{+} \bar{d}=-\bar{s} ; & U_{-} \bar{s}=-\bar{d}
\end{array}
$$

SU(3) LADDER OPERATORS

Gell-Mann Matrices

$$
\begin{aligned}
& \mathrm{u} \leftrightarrow \mathrm{~d} \quad \lambda_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{2}=\left(\begin{array}{rrr}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \lambda_{3}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
& \left.\begin{array}{ll}
\mathrm{u} \leftrightarrow \mathbf{s} & \lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
\end{array}\right) \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right) \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) \\
& \begin{array}{l}
\begin{array}{l}
\mathrm{d} \leftrightarrow \mathbf{s}
\end{array} \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad \lambda_{7}=\left(\begin{array}{lll}
0 & 0 & -i \\
0 & i & 0
\end{array}\right) \\
\text { d the ladder operators which step up / down }
\end{array} \\
& \text { and the ladder operators which step up / down } \\
& \text { between the states } \\
& T_{ \pm}=\frac{1}{2}\left(\lambda_{1} \pm i \lambda_{2}\right) \\
& V_{ \pm}=\frac{1}{2}\left(\lambda_{4} \pm i \lambda_{5}\right) \\
& U_{ \pm}=\frac{1}{2}\left(\lambda_{6} \pm i \lambda_{7}\right) \\
& \text { with isospin and hypercharge } I_{3}=\frac{1}{2} \lambda_{3} \\
& Y=\frac{1}{\sqrt{3}} \lambda_{8}
\end{aligned}
$$

SU(3) Algebra

The $S U(3)$ generators are the $8 \lambda_{\mathrm{a}}$ traceless Gell-Mann matrices which do not commute

$$
\begin{cases}{\left[\lambda_{a}, \lambda_{b}\right]=2 i f_{a b c} \lambda_{c}} & \operatorname{Tr}\left(\lambda_{a} \lambda_{b}\right)=2 \delta_{a b} \\ \left\{\lambda_{a}, \lambda_{b}\right\}=\frac{4}{3} \delta_{a b} \lambda_{3}+2 \sum_{c} d_{a b c} \lambda_{c} & \operatorname{Tr}\left(\lambda_{a}\right)=0 \\ \hline\end{cases}
$$

f_{ijk} - anti-symmetric structure constant of $S U(3)$ group
d_{ijk} - symmetric structure constant of $S U(3)$ group

$i j k$	$f_{i j k}$	$i j k$	$d_{i j k}$

rank of $S U(3)$ is two

123
147
156
246
257
345
367
458
678
\rightarrow two Casimir operators: 1^{2} and $Y(S)$
\rightarrow can diagonalize simultaneously R^{2}, I_{3}, and Y

1	118
$\frac{1}{2}$	146
$-\frac{1}{2}$	157
$\frac{1}{2}$	228
$\frac{1}{2}$	247
$\frac{1}{2}$	256
$-\frac{1}{2}$	338
$3^{1 / 2} / 2$	344
$3^{1 / 2} / 2$	355

Mesons: $q \bar{q}$ States

Mesons are composed of a quark and an antiquark bound together.
The mesons' quantum numbers are obtained by adding up those of the $q \bar{q}$ pair.
Meson states can be obtained by combining two fundamental representations of the $S U(3)_{F}$ group

$$
\left(\begin{array}{c}
u \\
d \\
s
\end{array}\right) \otimes\left(\begin{array}{c}
\bar{u} \\
\bar{d} \\
\bar{s}
\end{array}\right)=3 \otimes \overline{3}=8 \oplus 1
$$

therefore there are nine states - mesons grouped in an octet and a singlet under $S U(3)_{F}$. Let us start with two flavors, u and d (4 states), and add later the quark s;

we obtain an isotriplet I = 1	$\left\|I=1, I_{3}=1\right\rangle$	$=-u \bar{d}$	$=\pi^{+}$
	$\left\|I=1, I_{3}=0\right\rangle$	$=\sqrt{1 / 2}(u \bar{u}-d \bar{d})$	$=\pi^{0}$
	$\left\|I=1, I_{3}=-1\right\rangle$	$=d \bar{u}$	$=\pi^{-}$
and isosinglet $\mathrm{I}=0$	$\left\|I=0, I_{3}=0\right\rangle$	$=\sqrt{1 / 2}(u \bar{u}+d \bar{d})$	$\approx \eta^{0}$

Now let's us add the strange quark.
Six states are combinations of a quark and an antiquark of different flavor:

$$
u \bar{d}, d \bar{s}, s u \bar{u}, u \bar{s}, d \bar{u}, s \bar{d}
$$

Three sates are formed of combinations of quark and antiquarks of same flavor
and have $I_{3}=Y=0: \quad u \bar{u}, d \bar{d}, s \bar{s}$

If the $S U(3)_{F}$ flavour symmetry were exact, the choice of states wouldn't matter. One of the states has an equal admixture of $u \bar{u}, d d$ and $s \bar{s}$ quarks.

$$
\sqrt{1 / 3}(u \bar{u}+d \bar{d}+s \bar{s})=\eta_{1} \approx \eta^{\prime}
$$

It is flavorless in the sense that is a singlet under $S U(3)_{F}$ flavor transformations: $U \eta_{1}=\eta_{1}$:

$$
T_{+} \eta_{1}=T_{-} \eta_{1}=U_{+} \eta_{1}=U_{-} \eta_{1}=V_{+} \eta_{1}=V_{-} \eta_{1}=0
$$

Experimentally observe three light mesons with $\mathrm{m} \sim 140 \mathrm{MeV}: \pi^{+}, \pi^{0}, \pi^{-}$ Identify one state (the π^{0}) with the isospin triplet

$$
\sqrt{1 / 2}(u \bar{u}-d \bar{d})=\pi^{0}
$$

The third state can be obtained by taking the linear combination of the other two $\bar{q} \bar{q}$ states which is orthogonal to the π^{0} and to the η_{1}

$$
\sqrt{1 / 6}(u \bar{u}+d \bar{d}-2 s \bar{s})=\eta_{8} \approx \eta^{0}
$$

Because $S U(3)_{F}$ flavour is only approximate the physical states with $I_{3}=0, Y=0$ can be mixtures of the octet and singlet states (if $\mathrm{SU}(3)$ symmetry were exact, the choice of the states would not matter):

The mixing has to be determined experimentally: $\theta \approx-25^{\circ}$ for pseudoscalar and $\theta \approx 35^{\circ}$ for vector mesons

$$
\begin{aligned}
& \eta^{0}=\eta_{8} \sin \vartheta+\eta_{1} \cos \vartheta \\
& \eta^{\prime}=\eta_{8} \cos \vartheta-\eta_{1} \sin \vartheta
\end{aligned}
$$

Meson Quantum Numbers

Mesons' quantum numbers: multiplets are classified according to J, P, and $C: J P C$
SPIN (or total angular momentum): $\mathrm{J}=\mathrm{S}+\mathrm{L}$
Mesons composed of 2 spin $1 / 2$ quarks, $S=0$ or $S=1$, with orbital angular momentum L

PARITY

Parity P (space inversion $\theta \rightarrow \pi-\theta, \phi \rightarrow \phi+\pi$, or reflection through origin)

$$
P=P_{q} \cdot P_{\bar{q}} \cdot(-1)^{L}=-1 \cdot(-1)^{L}=(-1)^{L+1} \text { (q and } \overline{\mathrm{q}} \text { have opposite intrinsic parity) }
$$

CHARGE CONJUGATION

Charge conjugation C (a neutral state can be an eigenstate of C, i.e. a $q \bar{q}$ state like a π^{0})

$$
C=-1 \cdot(-1)^{S+1} \cdot(-1)^{L}=(-1)^{L+S}
$$

PSEUDOSCALAR MESONS (L=0, S=0, J=0, P=-1, C= +1, $\mathrm{JPC}^{\mathrm{PC}}=0^{-+}$)

In the pseudoscalar mesons the spins are anti- aligned.

$$
\begin{aligned}
\pi^{0} & =\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \\
\eta & \approx \frac{1}{\sqrt{6}}(u \bar{u}+d \bar{d}-2 s \bar{s}) \\
\eta^{\prime} & \approx \frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})
\end{aligned}
$$

PSEUDOVECTOR MESONS ($\left.\mathrm{L}=0, \mathrm{~S}=1, \mathrm{~J}=1, \mathrm{P}=-1, \mathrm{C}=-1, \mathrm{JPC}^{\mathrm{PC}}=1^{--}\right)$)

In the pseudovector mesons the spins are aligned. The physical states are found to be approximately "ideally mixed":

$$
\begin{aligned}
& \rho^{0}=\frac{1}{\sqrt{2}}(u \bar{u}-d \bar{d}) \\
& \omega \approx \frac{1}{\sqrt{2}}(u \bar{u}+d \bar{d}) \\
& \phi \approx s \bar{s}
\end{aligned}
$$

MASSES

$\pi^{ \pm}: 140 \mathrm{MeV}$	$\pi^{0}: 135 \mathrm{MeV}$
$K^{ \pm}: 494 \mathrm{MeV}$	$K^{0} / \bar{K}^{0}: 498 \mathrm{MeV}$
$\eta: 549 \mathrm{MeV}$	$\eta^{\prime}: 958 \mathrm{MeV}$

$\rho^{ \pm}: 770 \mathrm{MeV}$	$\rho^{0}: 770 \mathrm{MeV}$
$K^{* \pm}: 892 \mathrm{MeV}$	$K^{* 0} /{\overline{K^{*}}}^{0}: 896 \mathrm{MeV}$
$\omega: 782 \mathrm{MeV}$	$\phi: 1020 \mathrm{MeV}_{41}$

Allowed Meson States

Example of a Meson Listing from PDG

$$
I^{G}\left(J^{P C}\right)=1^{+}(1--)
$$

Mass $m=775.49 \pm 0.34 \mathrm{MeV}$
Full width $\Gamma=149.1 \pm 0.8 \mathrm{MeV}$
$\Gamma_{e e}=7.04 \pm 0.06 \mathrm{keV}$

Light uds Mesons

How to form the meson states? (more rigorous approach) Use ladder operators to construct uds mesons from the nine possible $q \bar{q}$ states.

The three central states, all of which have $Y=0 ; I_{3}=0$ can be obtained using the ladder operators and orthogonality. Starting from the outer states can reach the centre in six ways

$$
\begin{aligned}
& T_{+}|d \bar{u}\rangle=|u \bar{u}\rangle-|d \bar{d}\rangle \quad T_{-}|u \bar{d}\rangle=|d \bar{d}\rangle-|u \bar{u}\rangle \\
& V_{+}|s \bar{u}\rangle=|u \bar{u}\rangle-|s \bar{s}\rangle \quad V_{-}|u \bar{s}\rangle=|s \bar{s}\rangle-|u \bar{u}\rangle \\
& U_{+}|s \bar{d}\rangle=|d \bar{d}\rangle-|s \bar{s}\rangle \quad U_{-}|d \bar{s}\rangle=|s \bar{s}\rangle-|d \bar{d}\rangle
\end{aligned}
$$

Only two of these six states are linearly independent.
But there are three states with $Y=0 ; I_{3}=0$
Therefore one state is not part of the same multiplet, i.e. cannot be reached with ladder operators.

Therefore the combination of a quark and anti-quark yields nine states which break down into an OCTET and a SINGLET

In the language of group theory: $\quad 3 \otimes \overline{3}=8 \oplus 1$
Using ladder operator check that $\psi_{3}=\frac{1}{\sqrt{3}}(u \bar{u}+d \bar{d}+s \bar{s})$ is a flavourless state,
i.e. invariant under $S U(3)_{F}$ flavour transformations ($U \Psi_{3}=\Psi_{3}$)

$$
T_{+} \psi_{3}=T_{-} \psi_{3}=U_{+} \psi_{3}=U_{-} \psi_{3}=V_{+} \psi_{3}=V_{-} \psi_{3}=0
$$

Can compare with combination of two spin-half particles $2 \otimes 2=3 \oplus 1$

$$
\begin{aligned}
\text { TRIPLET of spin-1 states: } & |1,-1\rangle,|1,0\rangle,|1,+1\rangle \\
\text { SINGLET spin-0 state: } & |0,0\rangle
\end{aligned}
$$

These spin triplet states are connected by $\mathrm{SU}(2)$ ladder operators just as the meson uds octet states are connected by $\mathrm{SU}(3)_{F}$ flavour ladder operators. The (spin) singlet state carries no angular momentum - in this sense the $\mathrm{SU}(3)_{F}$ flavour singlet is "flavourless"

Baryons: qqq States

Baryons are composed of 3 quarks bound together. Baryon states can be obtained by combining three fundamental representations of the $S U(3)_{F}$ group

$$
3 \otimes 3 \otimes 3=10_{S} \oplus 8_{M S} \oplus 8_{M A} \oplus 1_{A}
$$

Therefore there are 27 possible qqq combinations, but what is the difference between uud, udu, or duu?
We observe only 8 baryons with spin $1 / 2 \hbar$ and 10 baryons with spin $3 / 2 \hbar$.
The states must have definite symmetry under $\mathrm{SU}(3)_{F}$ transformations.
The proton is a fermion and the wave function must be antisymmetric under the interchange of any two quarks.
Proton wave function can be decomposed as

$$
\psi_{p}=R(\text { space }) \times \phi(\text { flavor }) \times \chi(\text { spin }) \times \xi(\text { color })
$$

The colour wave-function for all bound qqq states is anti-symmetric (see later).
How to construct the baryon wave functions?
The ϕ (flavor) $\times \chi$ (spin) part is symmetric under interchange of any two quarks

1. Combine two u, d quarks
2. Add the third quark (u or d)
3. Combine with spin
4. Use the $S U(3)_{F}$ ladder operators to construct the strange baryon wave functions 46

Combining Quarks (ud)

First combine two quarks, then add the third quark Use the requirement that fermion wave-functions are anti-symmetric, $\phi($ flavor $) \times \chi($ spin $)$ is symmetric.

With two quarks, we have four possible combinations:

©represents two states with the same value of I_{3}

We can immediately identify the extremes (recall I_{3} is additive)

$$
u u \equiv\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle=|1,+1\rangle \quad d d \equiv\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle=|1,-1\rangle
$$

To obtain the $|1,0\rangle$ state use the isospin lowering ladder operator

$$
\begin{aligned}
& T_{-}|1,+1\rangle=\sqrt{2}|1,0\rangle=T_{-}(u u)=u d+d u \\
& \quad \Rightarrow \quad|1,0\rangle=\frac{1}{\sqrt{2}}(u d+d u)
\end{aligned}
$$

The last state, $|0,0\rangle$, can be found from orthogonality with $|1,0\rangle$

$$
|0,0\rangle=\frac{1}{\sqrt{2}}(u d-d u)
$$

From four possible combinations of isospin doublets we obtain a triplet of isospin 1 states and a singlet of isospin 0 state $2 \otimes 2=3_{S} \oplus 1_{A}$

Can move around within multiplets using ladder operators

$$
\text { note } I_{3}=1 / 2\left(N_{u}-N_{d}\right)
$$

States with different total isospin are physically different - the isospin 1 triplet is symmetric under interchange of quarks 1 and 2 , whereas the singlet is anti-symmetric.

Now add the third u or d quark.
From each of the above 4 states we get two new isospin states with $I_{3}=I_{3} \pm 1 / 2$.
The eight states uuu, uud, udu, udd, duu, dud, ddu, ddd are grouped into an isospin quadruplet ($I=3 / 2$) and two isospin doublets ($I=1 / 2$)

We can derive the $\quad I=3 / 2$ states from $d d d \equiv\left|\frac{3}{2},-\frac{3}{2}\right\rangle$ (or $u u u \equiv\left|\frac{3}{2}, \frac{3}{2}\right\rangle$)
using the ladder operators.

$$
\begin{aligned}
& \left|\frac{3}{2},-\frac{3}{2}\right\rangle=d d d \\
& T_{+}\left|\frac{3}{2},-\frac{3}{2}\right\rangle=T_{+}(d d d)=\left(T_{+} d\right) d d+d\left(T_{+} d\right) d+d d\left(T_{+}\right) d \\
& \sqrt{3}\left|\frac{3}{2},-\frac{1}{2}\right\rangle=u d d+d u d+d d u \\
& \left|\frac{3}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(u d d+d u d+d d u) \\
& T_{+}\left|\frac{3}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}} T_{+}(u d d+d u d+d d u) \\
& 2\left|\frac{3}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(u u d+u d u+u u d+d u u+u d u+d u u) \\
& \left|\frac{3}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(u u d+u d u+d u u) \\
& T_{+}\left|\frac{3}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}} T_{+}(u u d+u d u+d u u) \\
& \sqrt{3}\left|\frac{3}{2},+\frac{3}{2}\right\rangle=\frac{1}{\sqrt{3}}(u u u+u u u+u и u) \\
& \left|\frac{3}{2},+\frac{3}{2}\right\rangle=\text { иии }
\end{aligned}
$$

We thus obtain 4 fully symmetric states with $I=3 / 2$
which we identify with the 4Δ resonances

$$
\Delta^{++}=u u u \quad \Delta^{+}=\frac{1}{\sqrt{3}}(u u d+u d u+d u u) \quad \Delta^{+}=\frac{1}{\sqrt{3}}(u d d+d u d+d d u) \quad \Delta^{-}=d d d
$$

we keep the two $I=1 / 2$ states anti-symmetric under the exchange of the first two quarks,

$$
p_{A}=\frac{1}{\sqrt{2}}[(u d-d u) u] \quad n_{A}=\frac{1}{\sqrt{2}}[(u d-d u) d]
$$

and obtain the remaining two $I=1 / 2$ states symmetric for the exchange of the first two quarks by orthogonality

$$
p_{S}=\frac{1}{\sqrt{6}}[2 u u d-(u d+d u) u] \quad n_{s}=-\frac{1}{\sqrt{6}}[2 d d u-(u d+d u) d]
$$

In summary we decomposed the $2 \otimes 2 \otimes 2$ isospin representation in representations with definite symmetry properties under the interchange of any two quarks

The eight states uuu, uud, udu, udd, duu, dud, ddu, ddd are grouped into an isospin quadruplet and two isospin doublets

$$
2 \otimes 2 \otimes 2=\left(3_{S} \oplus 1_{A}\right) \otimes 2=(2 \otimes 3) \oplus(2 \otimes 1)=4_{S} \oplus 2_{M A} \oplus 2_{M S}
$$

Different multiplets have different symmetry properties

$$
\left.\left.\begin{array}{l}
\left|\frac{3}{2},+\frac{3}{2}\right\rangle=u u u \\
\left|\frac{3}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(u u d+u d u+d u u) \\
\left|\frac{3}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(d d u+d u d+u d d) \\
\left|\frac{3}{2},-\frac{3}{2}\right\rangle=d d d \\
\left|\frac{1}{2},-\frac{1}{2}\right\rangle=-\frac{1}{\sqrt{6}}(2 d d u-u d d-d u d) \\
\left|\frac{1}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{6}}(2 u u d-u d u-d u u)
\end{array}\right\}\left[\begin{array}{l}
\mathbf{M}_{\mathbf{S}} \\
\left\lvert\, \begin{array}{l}
\text { A quadruplet of states which } \\
\text { are symmetric under the } \\
\text { interchange of any two quarks }
\end{array}\right. \\
\left.\begin{array}{l}
\left|\frac{1}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}(u d d-d u d) \\
\left|\frac{1}{2},+\frac{1}{2}\right\rangle
\end{array}\right\} \frac{1}{\sqrt{2}}(u d u-d u u)
\end{array}\right\} \mathbf{M}_{\mathbf{A}} \begin{array}{l}
\text { A doublet with } \\
\text { mixed symmetry. } \\
\text { Symmetric for } 1 \hookrightarrow 2
\end{array}\right]
$$

Mixed symmetry states have definite symmetry under interchange of the first two quarks $1 \leftrightarrow 2$, but not for quarks $1 \leftrightarrow 3$ and $2 \leftrightarrow 3$.

To form the baryon's wave functions we have to add the spin of the quarks.

Adding Spin

Can apply exactly the same mathematics to determine the possible spin wave-functions for a combination of 3 spin $1 / 2$ particles

$$
\begin{aligned}
& 2 \otimes 2 \otimes 2=\left(3_{S} \oplus 1_{A}\right) \otimes 2=4_{S} \oplus 2_{M S} \oplus 2_{M A} \\
& \left|\frac{3}{2},+\frac{3}{2}\right\rangle=\uparrow \uparrow \uparrow \\
& \left|\frac{3}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(\uparrow \uparrow \downarrow+\uparrow \downarrow \uparrow+\downarrow \uparrow \uparrow) \\
& \left|\frac{3}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{3}}(\downarrow \downarrow \uparrow+\downarrow \uparrow \downarrow+\uparrow \downarrow \downarrow) \\
& \text { A quadruplet of states which } \\
& \text { are symmetric under the } \\
& \text { interchange of any two quarks } \\
& \left|\frac{3}{2},-\frac{3}{2}\right\rangle=\downarrow \downarrow \downarrow \\
& \left.\left|\frac{1}{2},-\frac{1}{2}\right\rangle=-\frac{1}{\sqrt{6}}(2 \downarrow \downarrow \uparrow-\uparrow \downarrow \downarrow-\downarrow \uparrow \downarrow)\right\} \\
& \left.\left|\frac{1}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{6}}(2 \uparrow \uparrow \downarrow-\uparrow \downarrow \uparrow-\downarrow \uparrow \uparrow)\right\} \\
& \left|\frac{1}{2},-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow \downarrow-\downarrow \uparrow \downarrow) \\
& \left|\frac{1}{2},+\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow \uparrow-\downarrow \uparrow \uparrow) \\
& \text { Mixed symmetry. } \\
& \text { Anti-symmetric for } 1 \leftrightarrows 2
\end{aligned}
$$

Now we can form total wave-functions for combination of three quarks

Baryon Wave-Functions (ud quarks only)

Two ways to form a totally symmetric wave function from spin and isospin states:
A combine totally symmetric spin and isospin wave functions $\phi(S) \chi(S)$
$d d d \quad \frac{1}{\sqrt{3}}(d d u+d u d+u d d) \quad \frac{1}{\sqrt{3}}(u u d+u d u+d u u) u u u$

B combine mixed symmetry spin and mixed symmetry isospin states both $\phi\left(M_{S}\right) \chi\left(M_{S}\right)$ and $\phi\left(M_{A}\right) \chi\left(M_{A}\right)$ are sym. under interchange of quarks $1 \leftrightarrow 2$ not sufficient, these combinations have no definite symmetry under $1 \leftrightarrow 3, \ldots$ however, the (normalised) linear combination

$$
\frac{1}{\sqrt{2}} \phi\left(M_{S}\right) \chi\left(M_{S}\right)+\frac{1}{\sqrt{2}} \phi\left(M_{A}\right) \chi\left(M_{A}\right)
$$

is totally symmetric (i.e. symmetric under $1 \leftrightarrow 2,1 \leftrightarrow 3,2 \leftrightarrow 3$)

while the orthogonal combination

$$
\frac{1}{\sqrt{2}} \phi\left(M_{S}\right) \chi\left(M_{S}\right)-\frac{1}{\sqrt{2}} \phi\left(M_{A}\right) \chi\left(M_{A}\right)
$$

is totally anti-symmetric (i.e. anti-symmetric under $1 \leftrightarrow 2,1 \leftrightarrow 3,2 \leftrightarrow 3$) (in principle can build p, and n wavefunctions with no need of color, but not for other baryon states)

The spin-up proton wave-function is therefore

$$
\begin{aligned}
&|p \uparrow\rangle=\sqrt{1 / 2}\left(\varphi_{S} \otimes \chi_{S}+\varphi_{A} \otimes \chi_{A}\right) \\
&=\sqrt{1 / 72}(2 u u d-u d u-d u u)(2 \uparrow \uparrow \downarrow-\uparrow \downarrow \uparrow-\downarrow \uparrow \uparrow)+\sqrt{1 / 8}(u d u-d u u)(\uparrow \downarrow \uparrow-\downarrow \uparrow \uparrow) \\
&=\sqrt{1 / 18}[2 u \uparrow u \uparrow d \downarrow-u \uparrow u \downarrow d \uparrow-u \downarrow u \uparrow d \uparrow+\text { permutations }] \\
& \Rightarrow|p \uparrow\rangle=\sqrt{1 / 18}(2 u \uparrow u \uparrow d \downarrow-u \uparrow u \downarrow d \uparrow-u \downarrow u \uparrow d \uparrow+ \\
& 2 u \uparrow d \downarrow u \uparrow-u \uparrow d \uparrow u \downarrow-u \downarrow d \uparrow u \uparrow+ \\
&2 d \downarrow u \uparrow u \uparrow-d \uparrow u \downarrow u \uparrow-d \uparrow u \uparrow u \downarrow)
\end{aligned}
$$

Not always necessary to use the fully symmetrised proton wave function, e.g. the first 3 terms are sufficient for calculating the proton magnetic moment.

Now use U and V ladder operators to introduce the s quark.

Combining uds Quarks into Baryons

Constructing baryon states is a fairly elaborate process, see the derivation of the proton wave function.
Concentrate on multiplet structure rather than deriving all the wave-functions.
First combine two quarks:

This yields a symmetric sextet and anti-symmetric triplet: $3 \otimes 3=6 \oplus \overline{3}$

SYMMETRIC ANTI-SYMMETRIC

Add the third quark:

Best considered in two parts, building on the sextet and triplet. Again concentrate on the multiplet structure (for the wave functions refer to the discussion of proton wave function).

Building on the sextet: $3 \otimes 6=10_{S} \oplus 8_{M S}$

Building on the triplet: $\overline{3} \otimes 3=8 \oplus 1$

Just as in the case of uds mesons we are combining $\overline{3} \otimes 3$ and again obtain an octet and a singlet

Can verify the wave function $\psi_{\text {singlet }}=\frac{1}{\sqrt{6}}(u d s-u s d+d s u-d u s+s u d-s d u)$ is a singlet by using ladder operators, e.g.

$$
T_{+} \psi_{\text {singlet }}=\frac{1}{\sqrt{6}}(u u s-u s u+u s u-u u s+s u u-s u u)=0
$$

In summary, the combination of three uds quarks decomposes into

$$
3 \otimes 3 \otimes 3=3 \otimes(6 \oplus \overline{3})=10_{S} \oplus 8_{M S} \oplus 8_{M A} \oplus 1_{A}
$$

Baryon Octet

The spin $1 / 2$ octet is formed from mixed symmetry flavour and mixed symmetry spin wave functions

$$
\frac{1}{\sqrt{2}} \phi\left(M_{S}\right) \chi\left(M_{S}\right)+\frac{1}{\sqrt{2}} \phi\left(M_{A}\right) \chi\left(M_{A}\right)
$$

BARYON OCTET (L=0, S=1/2, J=1/2, P=+1)

\[

\]

We cannot form a totally symmetric wave function based on the anti-symmetric flavour singlet as there are no totally anti-symmetric spin wave functions for 3 quarks.

Baryon Decuplet

The baryon states $(\mathrm{L}=0)$ are the spin $3 / 2$ decuplet of symmetric flavour and symmetric spin wave-functions $\phi(S) \chi(S)$

BARYON DECUPLET ($L=0, S=3 / 2, J=3 / 2, P=+1$)

Mass in MeV

Discovery of Ω^{-}

The Ω^{-}baryon was predicted in 1964 by Gell-Mann on the basis of the quark model, including its mass of 1650 MeV .

Observed the same year/ with predicted properties.

Excitation Spectrum for Baryons

The nucleons can also be created in an excited states of higher angular momentum (resonances \rightarrow they decay quickly to the ground state)

Example of Baryon Listings from PDG

```
\(\Sigma(1385) 3 / 2^{+}\)
\(I\left(J^{P}\right)=1\left(\frac{3}{2}^{+}\right)\)
    \(\Sigma(1385)^{+}\)mass \(m=1382.80 \pm 0.35 \mathrm{MeV} \quad(\mathrm{S}=1.9)\)
    \(\Sigma(1385)^{0}\) mass \(m=1383.7 \pm 1.0 \mathrm{MeV} \quad(S=1.4)\)
    \(\Sigma(1385)^{-}\)mass \(m=1387.2 \pm 0.5 \mathrm{MeV} \quad(S=2.2)\)
    \(\Sigma(1385)^{+}\)full width \(\Gamma=36.0 \pm 0.7 \mathrm{MeV}\)
    \(\Sigma(1385)^{0}\) full width \(\Gamma=36 \pm 5 \mathrm{MeV}\)
    \(\Sigma(1385)^{-}\)full width \(\Gamma=39.4 \pm 2.1 \mathrm{MeV} \quad(\mathrm{S}=1.7)\)
        Below \(\bar{K} N\) threshold
```

$\boldsymbol{\Sigma}(\mathbf{1 3 8 5})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level	p $(\mathrm{MeV} / \mathrm{c})$
$\Lambda \pi$	$(87.0 \pm 1.5) \%$	208	
$\Sigma \pi$	$(11.7 \pm 1.5) \%$	129	
$\Lambda \gamma$	$\left(1.25_{-0.12}^{+0.13}\right) \%$	241	
$\Sigma^{-} \gamma$	$<2.4 \quad \times 10^{-4}$	90%	173

$$
\boldsymbol{\Sigma}(\mathbf{1 6 6 0}) \mathbf{1} \mathbf{2}^{+} \quad \quad \|\left(J^{P}\right)=1\left(\frac{1}{2}^{+}\right)
$$

Mass $m=1630$ to $1690(\approx 1660) \mathrm{MeV}$
Full width $\Gamma=40$ to $200(\approx 100) \mathrm{MeV}$

$$
p_{\text {beam }}=0.72 \mathrm{GeV} / \mathrm{c} \quad 4 \pi \pi^{2}=29.9 \mathrm{mb}
$$

$\boldsymbol{\Sigma}(\mathbf{1 6 6 0})$ DECAY MODES	Fraction $\left(\Gamma_{i} / \Gamma\right)$	$p(\mathrm{MeV} / \mathrm{c})$
$N \bar{K}$	$10-30 \%$	405
$\Lambda \pi$	seen	440
$\Sigma \pi$	seen	387

Exotica

In principle, states as
$\bar{q} \bar{q} \bar{q} \quad$ - tetraquarks (e.g. $\left.\mathrm{f}_{0}(500)=\bar{u} \overline{\mathrm{~d} u d}\right)$
qqq $\bar{q} q-$ pentaquarks (e.g. $\Theta^{+}(1540)=$ ududs $\left.\bar{s}\right)$
qqqqqq - hexaquarks (or dibaryons)
$q \bar{q} g$ - hybrid mesons
are allowed.
We can form a color singlet, while combinations as qq or qqqq are forbidden (no singlet!)
Some such states have been observed, however not firmly established. Are they genuine new meson states, or just meson molecules?

States like gg or ggg are even predicted by QCD - glueballs.
More exotic states observed involving heavy quarks (i.e. charm)

Issues in the Quark Model

Are quarks real?
If so, why we did never observe free quarks?
i.e. the particles of the fundamental representation of $S U(3)_{F}$ \Rightarrow confinement

$$
\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

If so, how are the quarks (partons) distributed inside the nucleon? and how do they interact?

Inside the nucleon, quarks behave as almost free \rightarrow quark - parton model
\Rightarrow asymptotic freedom
Hadron spectroscopy: spin-statistics problem
The fully symmetric wave function under flavor and spin is problematic, baryons are fermions \rightarrow wave function must be antisymmetric under interchange of any two quarks.

$$
\begin{aligned}
& |p \uparrow\rangle=\frac{1}{\sqrt{18}}(2 u \uparrow u \uparrow d \downarrow-u \uparrow u \downarrow d \uparrow-u \downarrow u \uparrow d \uparrow+\text { permutations }) \\
& \left|\Delta^{++} \uparrow\right\rangle=u \uparrow u \uparrow u \uparrow \quad \text { or } \quad\left|\Omega^{-} \uparrow\right\rangle=s \uparrow s \uparrow s \uparrow
\end{aligned}
$$

symmetric under space and spin rotations
3 identical spin- $1 / 2$ quarks with same quantum numbers in ground state (violates Pauli exclusion principle!)

Introduction of color

SOLUTION add a new quantum number - the color - to distinguish the three quarks and require that the wave function is totally anti-symmetric w.r.t. color color obeys $S U(3)_{C}$ color symmetry and comes in three "charges": red, green blue the $S U(3)_{c}$ color symmetry is exact
color singlet: $\xi_{\text {color }}=\varepsilon_{\text {abc }} \mathrm{q}_{\mathrm{a}} \mathrm{q}_{\mathrm{b}} \mathrm{q}_{\mathrm{c}}=\sqrt{ } 1 / 6(R G B-R B G+B R G-B G R+G B R-G R B)$
In general, the baryon wave function is decomposed as

and the anti-symmetry of the wave function is recovered (space \times flavor \times spin \times color).
example: $\left.\Omega^{-} \uparrow\right\rangle=s_{R} \uparrow s_{G} \uparrow s_{B} \uparrow$
(qqq) color singlet $\sqrt{ } 1 / 6$ (RGB - RBG + BRG - BGR + GBR - GRB)
fully anti-symmetric \Rightarrow maximize attraction between quarks
All hadrons are color singlets. At this point, the color plays no dynamical role.

Observation of Quark Jets

Jet $=$ collimated spray of hadrons from quark or gluon production

$$
\begin{array}{cc}
e^{+} e^{-} \rightarrow \mathrm{jet}_{1}+\mathrm{jet}_{2} & p p \rightarrow \mathrm{jet}_{1}+\mathrm{jet}_{2}+X \\
\left(e^{+} e^{-} \rightarrow q \bar{q}\right) & (q \bar{q} \rightarrow q \bar{q})
\end{array}
$$

To see jets, need quarks with sufficient energy.

Angular Distribution of Jets

$$
\frac{d \sigma}{d \cos \theta}=\frac{\pi \alpha^{2}}{8 E^{2}}\left(1+\cos ^{2} \theta\right)
$$

$$
\frac{d \sigma}{d \cos \theta}=\sum_{q} 3 \frac{\pi Q_{q}^{2} \alpha^{2}}{8 E^{2}}\left(1+\cos ^{2} \theta\right)
$$

extra factors:
3 for color, and Q_{q} for quark charges

Angular distribution sensitive to spin.
Quarks have spin $1 / 2$. (historically determined via DIS)

Magnetic Moments of Baryons

One recovers the hadron properties by adding up the quark properties
charge operator

$$
Q=\sum Q_{i}
$$

proton charge

$$
\begin{aligned}
& Q_{p}=\langle p \uparrow| Q|p \uparrow\rangle=\langle p \downarrow| Q|p \downarrow\rangle=1 \\
& Q_{n}=\langle n \uparrow| Q|n \uparrow\rangle=\langle n \downarrow| Q|n \downarrow\rangle=0
\end{aligned}
$$

neutron charge
magnetic moment operator $\vec{\mu}=\sum_{i} \vec{\mu}_{i}=\sum_{i} Q_{i} \frac{e}{m_{i} c} \vec{S}_{i}$
assuming quarks are Dirac particles with m_{i}
magnetic moment of quarks $\mu_{u}=\frac{2}{3} \frac{e \hbar}{2 m_{u} c} \mu_{d}=-\frac{1}{3} \frac{e \hbar}{2 m_{d} c} \mu_{s}=-\frac{1}{3} \frac{e \hbar}{2 m_{s} c}$
magnetic moment of baryons

$$
\mu_{B}=\langle B \uparrow|\left(\vec{\mu}_{1}+\vec{\mu}_{2}+\vec{\mu}_{3}\right)_{z}|B \uparrow\rangle=\frac{2}{\hbar} \sum_{i=1}^{3}\langle B \uparrow| \mu_{i} S_{i, z}|B \uparrow\rangle
$$

proton

$$
\mu_{p}=\sum_{i=1}^{3}\langle p \uparrow| \mu_{i}|p \uparrow\rangle=\frac{1}{3}\left(4 \mu_{u}-\mu_{d}\right)
$$

neutron $\quad \mu_{n}=\sum_{i=1}^{3}\langle n \uparrow| \mu_{i}|n \uparrow\rangle=\frac{1}{3}\left(4 \mu_{d}-\mu_{u}\right)$
can solve this system of equations to extract quark masses:
$\mathrm{m}_{\mathrm{u}} \sim \mathrm{m}_{\mathrm{d}} \sim 340 \mathrm{MeV}, \mathrm{m}_{\mathrm{s}} \sim 480 \mathrm{MeV}$
lambda

$$
\mu_{\Lambda}=
$$

$$
=\mu_{s}
$$

Note: the states are normalized $\langle u \uparrow \mid u \uparrow\rangle=1$ and orthogonal $\langle u \uparrow \mid u \downarrow\rangle=0$ proton wavefunction $|p \uparrow\rangle=\sqrt{1 / 18}[2 u \uparrow u \uparrow d \downarrow-u \uparrow u \downarrow d \uparrow-u \downarrow u \uparrow d \uparrow+$ perm. $]$

Need to calculate the first three terms and multiply by 3 (permuatations)
First calculate

$$
\left(\mu_{1} S_{1, z}+\mu_{2} S_{2, z}+\mu_{3} S_{3, z}\right)|u \uparrow u \uparrow d \downarrow\rangle=\left[\mu_{u} \frac{\hbar}{2}+\mu_{u} \frac{\hbar}{2}-\mu_{d} \frac{\hbar}{2}\right]|u \uparrow u \uparrow d \downarrow\rangle
$$

then the first term contributes

$$
\left(\frac{2}{\sqrt{18}}\right)^{2} \frac{2}{\hbar} \sum_{i=1}^{3}\langle u \uparrow u \uparrow d \downarrow| \mu_{i} S_{i, z}|u \uparrow u \uparrow d \downarrow\rangle=\frac{2}{9}\left(2 \mu_{u}-\mu_{d}\right)
$$

and the second and third $\frac{1}{18} \mu_{d}$ and $\frac{1}{18} \mu_{d}$
Finally $\quad \mu_{p}=3\left[\frac{2}{9}\left(2 \mu_{u}-\mu_{d}\right)+\frac{1}{18} \mu_{d}+\frac{1}{18} \mu_{d}\right]=\frac{1}{3}\left(4 \mu_{u}-\mu_{d}\right)$
and using isospin symmetry $\quad \mu_{n}=\frac{1}{3}\left(4 \mu_{d}-\mu_{u}\right)$

Magnetic Moments

input $\left\{\begin{array}{llcc}\hline \text { Baryon } & \begin{array}{l}\text { Magnetic moment } \\ \text { (quark model) }\end{array} & \text { Prediction (n.m.) } & \text { Observed (n.m.) } \\ \hline p & \frac{4}{3} \mu_{u}-\frac{1}{3} \mu_{d} & 2.793 \\ n & \frac{4}{3} \mu_{d}-\frac{1}{3} \mu_{u} & -1.913 \\ \Lambda & \mu_{s} & -0.613 \pm 0.004 \\ \Sigma^{+} & \frac{4}{3} \mu_{u}-\frac{1}{3} \mu_{s} & 2.68 & 2.46 \pm 0.01 \\ \Sigma^{0} & \frac{2}{3}\left(\mu_{u}+\mu_{d}\right)-\frac{1}{3} \mu_{s} & 0.791 & \\ \Sigma^{-} & \frac{4}{3} \mu_{d}-\frac{1}{3} \mu_{s} & -1.09 & -1.160 \pm 0.003 \\ \Xi^{0} & \frac{4}{3} \mu_{s}-\frac{1}{3} \mu_{u} & -1.43 & -1.250 \pm 0.014 \\ \Xi^{-} & \frac{4}{3} \mu_{s}-\frac{1}{3} \mu_{d} & -0.49 & -0.651 \pm 0.003 \\ \hline\end{array}\right.$
good agreement with measurements!
In the limit of exact isospin symmetry $\left(m_{u}=m_{d}\right) \mu_{u}=-2 \mu_{d}$ and the ratio

$$
\frac{\mu_{n}}{\mu_{p}}(\mathrm{QM})=-\frac{2}{3}=-0.66666 \quad \frac{\mu_{n}}{\mu_{p}}(\exp)=-0.68497945 \pm 0.00000058
$$

Note: the prediction $-2 / 3$ comes from the nucleon wave-function symmetric under flavor and spin an antisymmetric nucleon wave-function under flavor and spin would predict 0.570

Some Baryon Decays

weak decays of strange baryons: strong decays are forbidden by strangness conservation in strong interactions

Discovery of Charm (J / ψ in 1973)

Charm observed in 1973 as
$\mathrm{J} / \psi=(\mathrm{c} \overline{\mathrm{C}})$ (hidden charm)

$\mathrm{J}:$ hadroproduction $\mathrm{p}+\mathrm{Be} \rightarrow \mathrm{J}+\mathrm{X}$

Positronium vs QQ̄-onium Levels

Charmonium and Bottonium resonance spectra very similar to the positronium.
Below the $2 m_{D}$ and $2 m_{B}$ thresholds these states are very narrow.

Okubo-Zweig-Iizuka (OZI) Rule

Why is the width of the J / ψ resonance so narrow?

below $2 \times \mathrm{m}_{\mathrm{D}}$ threshold highly suppressed (narrow resonance) because of OZI rule

kinematically allowed for ψ resonances $>2 \times \mathrm{m}_{\mathrm{D}}$ (broad resonances)

OZI rule: if the diagram can be cut in two by slicing only gluon lines (and not cutting any external line) the process is supressed

QCD Potential

Charmonium levels are similar to positronium levels \rightarrow
potential of the form $1 / r$ at short distances + confining harmonic potential of the form $\mathrm{F}_{0} r$ at large distances
empirical QCD potential

$$
V(r)=-\frac{4}{3} \frac{\alpha_{s} \hbar c}{r}+F_{0} r
$$

$F_{0} \sim 900 \mathrm{MeV} / \mathrm{fm}$ (i.e. ~ 16 tons)
In QCD the strong force at short distances is assumed to have a similar space-time structure to QED.

Charm Hadrons

add $4^{\text {th }}$ quark $\rightarrow \mathrm{SU}(4)$

For Next Week

Study the material and prepare / ask questions
Study ch. 2 in Halzen \& Martin and / or ch. 9 in Thomson
Do the homeworks

Next week we will study QCD
have a first look at the lecture notes, you can already have questions read ch. 14 (sec. 3 and 4) in Halzen \& Martin and / or ch. 10 in Thomson

