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Yukawa Theory (1935)

The first theory of Strong Interaction was proposed by Yukawa in 1935: the strong
interaction between nucleons (protons and neutrons) is mediated by the exchange
of a new particle, the = meson (pion).

interactions between protons, between neutrons, and between protons and neutrons
— 3 charges for the mediator: n*, n°,

short, finite range A ~ 1 fm e "*hHe
—> potential of the form @(r) oc
(Yukawa potential)

The mass of the mediator m = 1/A is inversely proportional
to the range of the force — m_~ 200 MeV

[recall that in natural units 1 =h x ¢ =197.3 MeV fm (~ 200 MeV fm)]

In 1937 the muon was discovered in cosmic rays and it was wrongly interpreted as the
Yukawa © meson. By studying the interactions of this particle with matter (u lifetime expt.),
in 1947 it was shown that this particle cannot be the Yukawa © meson, since it does not
interact strongly. In the same year (1947) the pion was positively identified in cosmic rays
by observing the decay chain n—>pu—e
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Evidence For Color

What about color? Is it only a mathematical expedient to save Pauli exclusion principle?
—> associated with strong force mediated by gluons obeying SU(3). symmetry (exact)

T decay
T—>Vv, t W~ T
- (ev) (nv) (Ud)
branching ratio ~ 20% 20% 60%
(3 colors)
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e*e" annihilation into quarks (hadrons)
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Color in QCD

The theory of the strong interaction, Quantum Chromodynamics (QCD),
is very similar to QED but with 3 conserved “color” charges

In QED

the electron carries one unit of electric charge —e ©
the anti-electron carries one unit of “anti”-charge +e
the force is mediated by a massless “gauge boson” — the photon
photon
In QCD Js
guarks carry a color charge r, or g, or b \/

anti-quarks carry an anti-color charge 1, or g, or b
the force is mediated by massless “gauge bosons” —the gluons  gluon

In QCD, the strong interaction is invariant under rotations in SU(3) color space
r—eb,r—g b—g
l.e. the same for all three colors
= SU(3) color symmetry

This is an exact symmetry, unlike the approximate uds flavor symmetry.

Don’t confuse SU(3). color and SU(3). flavor, though the Lie group algebra is the same:
F — flavor, which is not an exact symmetry (it is broken) by the different quark masses
C — color, exact symmetry — 8 different colored (charged) massless gluons 4



SU(3). Color Symmetry

QCD: each quark flavor exists in 3 colors (red, green, blue or i, j, k) and
obey exact SU(3) symmetry (they have the same mass!)

fundamental representation combinations multiplets
O q®q  (3®3) 108 |
q=|qc singlets

0 q®q®Qq (3®3®3) 198®@8®10
B

all observed hadrons are color singlets (i.e. carry no color)
qq = \/g(rFJr gq+b5)
qqq = \/g(rgb —grb—rbg + gbr +brg —bgr) color singlet: €,,.9.9,9.

l.e. they are invariant under transformations (rotations) in SU(3) color space

g>q=Ug=e>""g| g >q =1+i} (2 ) xl

T2=1/2 A2 are the eight generators of the SU(3) transformations, 0, are 8 parameters.



From QED to QCD

Suppose there is another fundamental symmetry of Nature, say

“Invariance under SU(3) local phase transformations”

) ) ) ) ' izz:lga(x)Ta
l.e. require invariance under ¥ — | =€

0,(x) are 8 parameters (functions of x) taking different values at each point in space-time.
[ W, )
¥ =| y, | wave function is now a vector in COLOR SPACE = QCD

\¥s3 )

QCD is fully specified by requiring invariance under SU(3) local phase transformations.
That corresponds to rotating states in color space about an axis whose
direction is different at every space-time point

. . 1 s a_  u
= interaction vertex |—-1ig A%y

Js is a new coupling constant associated with strong interactions.
Predicts 8 massless gauge bosons — the gluons (one for each generator).

Also predicts exact form for interactions between gluons, i.e. the 3 and 4 gluon verticess



Gluons

The gluons mediate the QCD force between color charges at different space-time points.

The gluons belong to an SU(3) multiplet with color combinations allowed by group theory.
Since a qg pair can annihilate into a gluon, the gluons must correspond to a color

combination equivalent to — —
q ®q : (3® 3) = lsinglet @80ctet

They form an octet

RG, RB, GR, GB, BR, BG,

(RR-GG), —=(RR+GG-285)

1
J2

where each gluon is a
color-anticolor combination.

Since they carry color,
they can interact among themselves.

N

1 _ color flow
The color singlet —(rF + 00 +bb )

7
does not carry color and does not play a role
(it could give rise to long range effects,

since it would not be confined;

such effects have not been observed)




Direct Observation

e*e” — 3 jets

Jet 3
Jet 1
Jet 2
ete” — gg — 2jets ete” — ggg — 3jets ete” — qqagg — 4jets

2-jet event

3-jet event 4-jet event

of Gluons

angular distribution of 3 jet
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g i- ® Corrected Dato 1992
. I —— Vector Gluon, LO y
P Vector Gluon, LO + Fragment. > \\
Scalar Gluen, LO '
- Scalar Gluon, LO + Fragment.
el I !

data indicate that
gluons have spin 1



The QED Lagrangian

A free electron vy is described by the Dirac Lagrangian |L, = i@/“&ul/f — My y

L is invariant under global phase transformations v o>y =e"y

(global gauge invariance — conservation of charge) _
but not under local phase transformations. v -y ="My

To restore local gauge invariance we introduce the covariant derivative

D, =0, +ieA,(X)

which must transform as v:
D,w —>(Dy) =D,y = (aﬂ +ieA, )eiw)w =™ (aﬂ +i0,a(x)+ieA, ) p =e“®D y

To form the covariant derivative we introduce a vector field A, (the photon field)

that transforms as

A,(X)—> A, (X)=A, (X —ééya(x)

e measures the coupling strength of the Dirac field to this vector field (e is the
elementary charge e=|e|, electron charge -e) . And the Lagrangian becomes

L=1yy"D,y —mpy =iyy“o w —epy"w A, —myy

where |L,, =—ewy" v A,

IS the interaction term between the Dirac field and the AM fieldb



To complete the Lagrangian we have still to add a term corresponding to the kinetic
energy of the photon field 1

L, =~ F.F"

/4

Since this term must be gauge invariant as well, it can involve only the gauge invariant
filed strength tensor

F,=0,A —0A,

Note that a mass term mZAﬂA“ for the photon field is not gauge invariant,
and thus the photon must be massless [m, < 3 x 10-2" eV from galactic magnetic fields].

Adding all pieces, leads to the QED Lagrangian

— - _ 1 y
Loeo =97 (i70, —m )y —eipy v A, ~ 5 FuF

. B 1 V
Note that the Lagrangian || — ey w A, —=F, F*

leads to the Maxwell equations 5ﬂF”V =]

Local gauge invariance does not lead to new conservation laws,
it states that charges are conserved locally.

That has deep implications = it fixes the form of the interaction! 10



e All the interactions between fermions and spin-1 bosons in the Standard Model are
specified by the principle of local gauge invariance.

e Changing phases arbitrarily at different space-time points will create phase differences
which might become observable, if not compensated by some mechanism.

This is the role of the new A, vector field that we have introduced to restore the gauge
invariance of the Lagrangian (theory).

e By demanding local phase invariance to preserve the invariance of the Lagrangian
we are forced to introduce a vector filed A , the gauge field, which couples to the Dirac
particle in exactly the same way as the photon field (Maxwell eq.).

e Amass term %2 m2A At is forbidden by gauge invariance, therefore the photon
must be massless, and the gauge field will have infinite range.

The fermion mass term myy does not brake local gauge invariance because left-handed
and right-handed fields transform in the same way (not the case for weak interactions).

e By imposing the “natural” requirement of local gauge invariance (local phase invariance)
on the free Lagrangian, we are led to the interacting field theory of QED.

Historically, things evolved the other way around: starting from Maxwell equations we
developed QED, then discovered local phase invariance.

e Gauge invariance is a very powerful symmetry that fixes the form of the interaction
between the fundamental matter particles (fermions) and the field quanta. It has
become one of the most basic and essential ingredients of modern particle physics.
Any new theory describing particle interactions is required to satisfy this requirement.

e The QCD symmetry group SU(3) is sufficiently similar to U(1) — QED, so that the same
principles can be applied to QCD, and sufficiently different to describe rich new physicsii



The QCD Lagrangian

Within the SM, the strong interaction is described by QCD, which is a local gauge theory
built on the non-Abelian internal symmetry of quarks known as color — that is SU(3).

In QCD the strong force at short distances is assumed to have a similar space-time
structure to QED.

To derive the QCD Lagrangian we proceed in analogy to QED.

dr ()
Let |a(x)=| as(x)|| be the quark fields,
Je (x) where each of the q; is a Dirac spinor with color 1.

The unitary transformations which mix quarks of different colors are generated by the
elements of the SU(3) Lie algebra, 1, a=1, ..., 8 = color index and corresponds to
one of the 8 Gell-Mann matrices.

The most general transformation amongst the colors is induced by the unitary operator

‘U = exp[iHaTa]‘ with T, = A,/2 the generators of the transformation and

0., ... O are eight real parameters associated with the transformation.
The quark field g(x) then transforms as . igTa
909 > a'(x) =e*"q(x)|

12




Local gauge invariance requires that the Lagrangian is invariant under an arbitrary
phase transformation at each point in space-time —i.e. 6, = 0,(X) .
Note that observables such as electric charge are invariant under SU(3). transformations

1
=e» d’x—=|=u'u ——d*d — =SS +..
B A i Ak
The free quark Lagrangian is given by
‘ L = iCT;/“aﬂq — mqq‘ ——— Dirac equation

Invariance under global color transformation leads to 8 conserved charges and currents
' Ak A, U N
q—>q = 1+'Za:1‘9a§ g — |k (X)Zq(x)?V a(x)

This Lagrangian however is not invariant under local phase transformations of the quarks
fields in the SU(3) color space
|Z 9 (x)
a(x) > q'(x)=e >q(x)

Local gauge invariance of L can be restored by introducing the covariant derivative D

_ A . A ~a
au—>Dﬂsa#+|gsza?aGﬂ ayquﬂqE(aﬂHgsza?Gﬂjq

involving eight new Lorentz-vector fields, i.e. 8 massless vector fields G_*(x) (the gluons)
with g5 the new strong coupling constant a.g = gs? / 47 . 13



This leads to the following Lagrangian

. A
L=q(iy“0,—m)q- gs(qw‘?"“Q)Gﬂ

A
Let’s examine an infinitesimal transformation of the quark current qr“—=2q

2
) _, A _ A oA A A
“ago> gyt 2g =UTgy  2Ug=(1-i3 2)grr 2 (1+ig =2
Q' S a->qy a4 =U gy —FUq=[1-18 =5)ay" —(1+14, 240
Ignoring higher order terms, we obtain
_ A o A A A A _ A A
#la g 4ighayH (e — Ng=gr“2g-f 9gr+’le

(/1a/ln _Ab’ﬂ’a):[/ia’/lb]:iZfabc/lc

which turns out to be not invariant because the generators do not commute.
The additional term is compensated for by Gﬂa .

This has an impact on how the gluon field Gﬂa should transform.

The basic physics requirement is that the covariant derivative transforms as y

(as in QED) ; : e
D#W N |:Dﬂl//:| _ Dlu'l//’ —e Zaga( )A% 12 ( Dﬂlﬂ)

Assume that G ﬂa transforms as

G* =G®+6G°

14



Develop separately LHS and RHS (ignoring higher order terms)

D’ ,N 8 | i a G,a 1 | ilgb

)
- \aﬂ +ig, éGf} +ig, ﬁész(l+ 19 %)w

( A A
|0 +io gb—+| aGa— aGasb—H a5Ga
\ y7i y7i gS 2 gS 2 gS 2 )

4 a

e (D,y )=~ 1+i9a%](8 +|gsﬂbij
\

( 2 v 2

=0, +ig, LG’ +i% —o, -9 G

L H gs 2 H a 2 H a 2 gS 2 ﬂ]l//
and compare LHS and RHS (drop v, since it holds for any state)

A, A A ﬂb
0,9 = — Ga.9b—+| aaGa—uga—aa —
2 gs 2 Js 2 2 9. 22

,u

15



Develop separately LHS and RHS (ignoring higher order terms)
Dy’ ~(0,+ig, 4G 1 2)(1+19°4, 1 2)y

(8, +19,4,G} /2 +i9,4,6G2 1 2)(1+19°4, 1 2 )y
(0,+i0,9°4, 12+i9.4,G2 12— 9,4,G2 1 29°4, 1 2+19,4,6G2 / 2)y

i9,42/2 N/ o AT : ﬂb b
e (D,y )=~ 1+i9, = || 9, +ig, 2>G, v
\
4 a a
and compare LHS rmalB}:@igs ﬁGz +i19a%8ﬂ —19a /12 d, Azb GE]W
BN RV U SR /A
0 3 —2-09.2G % =2+10. 200G =18 20 - 226
a 2 932 # 2 gSZ a 2 Js 2 2 °

We can then solve for 6G
2,661 =— 0 94, —iA9 G 4iTb e,
gs 242/ 2ifabc/ﬂtc
1 1

- __@ﬂlgaﬂ“a N L‘gaGAbt [;taﬂb - ﬂbﬂ“a] - __au‘ga;ta + fabcgan/lc
g. 2 g, 16



We can then solve for &G

2,0G’ = —iaﬂgaza —i1,9 iez +1 iebgaza
g, 2 2
= 1@9% igaebz A= 1@.9% f _9°G°A
__g_s 1 a_E ,u[ aﬂ'b_/’"b a]__g_S 1 a T Tanc u’c
And finally 1 \ AL
6G:=——0,9" + f,.9°G;
J,

So we conclude that we can restore the gauge invariance of the Lagrangian,
provided that the gluon field transforms as

G* (X) > G = G2 (X) = —-0,9 (X)+ £, 9" (X)G° (x)

H H H
Js

The appearance of the term f_, .0, G_* is due to the non-Abelian nature of the SU(3)
gauge group (the generators of the group do not commute).

It is believed that from this follows the most remarkable properties of the strong
interactions: the asymptotic freedom and confinement.

Note that there is no obvious historical guide like for QED (Maxwell EQ.). 17



. . a a
In analogy to QED we can introduce the gluon field tensor aﬂGV —GVGﬂ

However this term is not gauge invariant, because the gluon fields do not commute.
A mass term for the gluon field would also violate the gauge invariance.
Instead, if we define the gluon field tensor as

G, =0G -0,G,+g,f

abc

becC
GG,

the gluon “kinetic” term

1
L=—=G} G
4
IS gauge invariant. Also in this case we had to add an additional term,
which as we will see, describes the self interactions of gluons.

The QCD Lagrangian density finally becomes

. _ R P
Loco =0 (170, —m)q—gq (qy”?qu#—ZGwGé‘

This Lagrangian density is the natural consequence of local color symmetry.
It looks like QED, but the gluon field energy tensor implies completely new features:
the gluons self interact via a tri-linear coupling proportional to g5 and

a four-linear coupling proportional to g<2. 18



Symbolically, we can rewrite the QCD Lagrangian as

Loco = "q@" + 05"0qaG" + "G*" + g"G™" + g"G™

. G %, &
— s < "GG0GGG6G =4 R
Y % %
. ST T ) %

The first three terms have QED analogues. They describe
1) the free propagation of quarks,
i) the quark-gluon interaction, and
i) the free propagation of gluons.

The last two terms are “new” and indicate the presence of
1) three gluon vertices and

i) four gluon vertices

and reflect the fact that gluons themselves carry color charge and can interact among
themselves.

The gauge invariance determines uniquely the structure of these gluon self-coupling
terms and forbids higher multi-gluon couplings.

Note that the same coupling constant g5 couples the gluon fields to themselves and

the gluons to quark fields. 19



Quark — Gluon Interaction (Vertex)

Let’s represent the colour part of the quark wave functions by

1 0 0
r=c,=0 g=c¢c,=|1 b=c3,=|0
0 0 1

and quark wave functions by u.(p) — c.u(p)

The QCD Qg vertex can be written as

a

a(ps)c] {—igs %7”}6&(@)

The only “difference” w.r.t. QED is the insertion of the
3 x 3 SU(3) Gell-Mann matrices

Then let’s develop the color part cuaci —cf A = Ad
(this is just one entry in the A matrix) " a ’

Finally, the fundamental quark-gluon interaction can be written

a

_ A _ . AL
a(ps)c) {—Igs 77”}041(@) = u(pg){—lgs jy”}u(pl)

Quarks interact with the gluon by exchanging color charges at the interaction vertex. 20



Gluon Field Tensor

As we saw, the gauge invariant gluon field energy tensor is given by

a a a becC
GW = ava —@VGﬂ + 0, fach,qu
Let’s develop the kinetic term
1
L — —Z GZVG:V
gluon “propagator” L2 = (@ﬂGf -0,G, )(5”(5;/ —8VGg‘) RO
G
i i (3) — _% a a 3% S
triple gluon coupling Ly = ) f. (5va 5VGﬂ XEb G, 3@\%&9}8
g: %, &
quartic gluon coupling L(é) = —75 fabe FoeGauGpy GEGY ‘;’g@
Y 5%
Os

21



Gluon — Gluon Interaction

In QED the photon does not carry the charge of the EM interaction
(photons are electrically neutral)
In QCD the gluons do carry color charge

> Gluon Self-Interactions

Two new vertices (no QED analogues)

triple gluon quartic gluon
vertex vertex
In addition to quark-quark scattering, we can also observe gluon-gluon scattering:
_ < —
e.g. possible way >/ 3 A
of arranging Jr+ }/_‘_\

the color flow L
—> >




Gluon Self-Interaction and Confinement

Gluon self-interactions are believed to give rise

e’ q
to color confinement.
Qualitative picture:
compare QED with QCD
iIn QCD gluon self-interactions squeeze
lines of force into a “flux tube” A E]

What happens when we try to separate two colored objects e.g. a qq pair?

A flux tube of interacting gluons of approximately constant energy density ~1 GeV/fm
Is formed
= V(r)~Fr

Require infinite energy to separate colored objects to infinity, i.e. to free the quarks.
Colored quarks and gluons are always confined within colorless states.
In this way QCD provides a plausible explanation of confinement —

but not yet proven (although there has been recent progress with Lattice QCD). ’



Not everything is that simple though !

The QCD Lagrangian thus obtained is not suitable for quantization. The derivation of
Feynman rules from Lycp and their use is non-trivial because of complications in
handling quantization and gauge invariance compared to QED.

We have to introduce a gauge fixing condition (similar in QED). This term is necessary
for the existence of a (free) gluon propagator equivalent to a covariant gauge o*G?,, = 0.
The gluon fields can be expressed in a variety of gauges; graphs involving gluon

loops (in particular helicity O contributions) introduce unphysical polarization degrees

of freedom in observables. To suppress these unphysical states ghosts have been
introduced. In axial gauges (more complicated gluon propagator) ghosts do not appear.

In principle, Locp could contain a further term, which is gauge invariant:

gs2 vAa ~a 1 V. a
ng :‘gQCD@G: G,uv GﬂV:EE'U /I'OG/LD

where ¢y is the QCD 6 parameter, which violates P, T, and CP (neutron dipole mom.)
= Strong CP (violation) problem

so far no evidence for this term: g, < 101

Oocp IS One of the 19 parameters of the Standard Model!

For massless quarks there is no scale in the QCD Lagrangian. Left handed quarks
decouples from right handed quarks. This would lead to a duplication of all hadron states
which has not been observed (spontaneous chiral symmetry breaking). 24



Feynman Rules for QCD

external lines

i in: u; (k)
quarks > B
f k out: u/ (k)
a in: £, (K)
gluons 66666600
k out: g4 * (k)
propagators
gluon L ~ig”s”
i I 2
(Feynman gauge) I q q
ol of
quark ! ! 1050
j p’ rn]c : p o mf

u, v Lorentz indices

a, b, ¢ gluon color “indices’

I, ] quark color indices
f, f* flavor indices

g — coupling constant
ag = g2/4n

)

25



Feynman Rules for QCD - Vertices

u, v Lorentz indices
i f
28 a, b, ¢ gluon color “indices”
quark — gluon vertex —ig 5! %

H .. . .
I,] quark color indices

f, f flavor indices

b ds — coupling constant
as = g%l4rn

=0, e 97 (ke —kp ) +9” (ks —ks )" + 97 (ks =k, ) |
A, generators SU(3) group

triple — gluon vertex

il

fabc anti-symmetric SU(3)
group structure constants

1:abc fcde (ga}/gﬂ(S o ga5g,8y)
quartic — gluon vertex —ig?| +f,f.,. (gaﬂgw _ gaﬁgyﬂ)
d ' _+fadefbce(gaﬂ957_gaygw)_

26



QCD vs QED

QED

—_iM = [U( ps){—iGVﬂ}u( pl):| (;Jzﬂ

"l a(p,){-ier" fu(p,) |

QCD

-iM =)

-

-

U( p3) 3 _igs

\

a
Ji

”}u(pl)} 'qg {u(po{—ugﬁw

o

5 _ b
{u(m){—q*igs %m}u(pz)}

_ ; /’La _Ig vYa
u(p3)<_C}|gs?7ﬂCi}u(p1)} CT b

QCD Matrix Element = QED Matrix Element with

e’ - g’

or equivalently

e2

a=—>0a, =
A

g2
Ar

QCD Matrix Element includes an additional “colour factor”

C. |k—>

j|

PO

27




Color Factors
gl J

q
q i J q

- - 1 : aqa
Ce (ik > jI)EZZ/IjiﬂW
a=1

note C.(rg —>br)=0

28




Since the color is not observable,

sum over final colors and average over initial colors

mi)-

1
Ix 3 Zcolors' T

8
a a 2
recall Z_;/ljiﬂw — 25i|5jk _gé‘ijé‘kl

a + b a 1b
AT A 2 | 5[ A
B ij (I _ it (. Sy

colors a,b,i,jk,l

a 1b a 1qb
~ 2 2 2 2

QED
l.e. i
| 1
2 2 8 s*+u’
<|Mt| >‘3><3'2><2° 2

color spin dynamics

\ it depends on the process

for Vq — gq’ 2colors =4/3

29



QCD Potential

Let’s assume that at short distances the potential describing the interaction of a qq pair
IS the same as In electrodynamics, except for the color factor f-
(see quarkonium spectroscopy)

quq(r) =—f, asrhc f. = %(cgzacl)(cgza%)

_ 1, =
According to QCD, the gq pair is in a color singlet state —(rr +gQg +bb )

NE

. 111 .. 4
and the corresponding color factoris 'c =7 —F7=—"F7=&44;i — =
4\/§\/§ 177

3
T T . 1
For an octet color configuration, i.e. T( r —bb) onefinds f.=—=
2
4 a hc
Vi (r) = 3 > color singlet
Finally
1 ahc
V_(r)=+= color octet
aq 6 r

Quarks attract one another most strongly when they are in the color singlet configuratiogy



Renormalization in QED

ph;_/sical or bare charge bare charge screened by e*e” loops
effective charge

* 1« Q’ 2 a
2)= . d1+ %0 |0 Q +=] =210 +...b = S
«(Q%) a"{ 3 IMZ 203 I M2 | % 10g @

3T M-
large Q2 leading log sum (M cutoff on loop momentum)

1 1 1, Q.
alQ?) o, 3z M2 1 1 1(, Q @)1 Q@
subtract ’ ~———-=——| log— Iog— =——log—~5
1 1 1, K a(Q%) a(y’) 3z "M 37
a(ﬂz): a, 3 RCEVERRS running coupling constant
2
infinities removed at the price of introducing the a(QZ): O‘(ﬂ ) .
renormalization scale p 1— ( )Iog Q
o(u>—0) = measured = 1/137 3 u’ 31




Running of oy

Q%) &

145 |
140 |
135 |
130 | |
125 |

120
115
110

105972550 75 100 125 150 175 200

R —
TOPAZ pp/eepp: A qq: A

[ Fits to leptonic data from:
*DORIS,

OPETRA, ¢ TRISTAN

I
OPAL

Q/GeV

>
InQ?

Might worry that coupling becomes

Infinite at ,
log Q—2 = 37
Qs 1/137

i.e. at Q2 ~ 10°2 GeV?

But quantum gravity effects would come in
way below this energy scale and it is highly
unlikely that QED “as it is” would be valid
in this regime.

In QED, running coupling increases
very slowly
atomic physics (Q? ~ 0):
1/o = 137.03599976(50)
high energy physics:
1/a (M) = 128

32



Renormalization in QCD
Higher order corrections not only from qq loops (like in QED) but also from gluon loops.

AL

» »

NGT

Running of strong coupling constant

s (Qz) = (Qg )/{1+ bors (ch)log g—;} in QED by =-1/3n <0

\

7 = + ; + %ég + o
> > > > > S\ > :\\/:v'

fermion loop boson loops

2N, 1IN,  33-2n,
—+ =

b, =——— + —=
° 127 127 127

>0 (as long as n; < 17)

the term -2n, comes from quark loops and behaves as in QED

the term 11N, comes from gluon loops and has a + sign = b, > 0
33



Renormalization in QCD

known as the QCD beta function

with b,

~ 1IN, -2n, { N, = number of colours

127 N = number of quark flavours

N.=3&N;=6 = b,>0 = agdecreases with increasing Q?
asymptotic freedom

[there is a complication whenever crossing a flavor threshold,
l.e. Ny =3 > N;=4 at ~1.5 GeV, etc.]

Gluons have an anti-screening effect:
1) gluons can irradiate their charge over space and their charge is not localized
2) the initial quark charge is diffused over space

34



Running Coupling Constants
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Running of o
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Comparing o Measurements

Summarizing:

1. can measure ag in many different processes
2. overall consistent picture:

ag from very different measurements

are compatible

3. ag decreases slowly with Q2 (high energy)
(logarithmic only)

4. ag Is not that small at current experimental
scales (g ~ 0.1 - 0.3)

5. higher order corrections are and will
remain important

world average
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Aocp
The QCD Lagrangian makes no mention of the renormalization scale p (u is an arbitrary

parameter), even though a choice of u is required to define the theory at the quantum
scale and physical observables, like R, cannot depend on pn

2 d R(QZ/,UZ,OIS): 2 d da, 0O

+ ot == R=0
All the scale dependence in R enters through the running of a(Q?).

du’ du’ oa,

An alternative approach is to introduce a dimensionful parameter in the definition of
as(Q%): Q2 »  dx , 1
log——= S — — log A, = log u” - >
AQCD e ) B(X) Dy, (1)
Aqcp represents the scale at which the coupling would diverge and the perturbative
expansion breaks down. This could be an indication that the confinement of quarks and

gluons inside hadrons is a consequence of the growing of a(Q?) at small scales.
Unfortunately it is hard to determine Aqcp , Agcp ~ 200 MeV (=1 fm).

Let’s write the asymptotic solution for aS(QZ) in terms of Ay . At leading order in QCD
127

o@*)- -
by log(Q /AQCD) (83-2n, )log(Q /AQCD) 38




Running of a(Q?)

confinement
of color

(hadrons — \

color singlets)

28 QCD reconciles quarks completely confined in
g hadrons at large distances (confinement) with

+ the assumption of the parton model that at short

distances the quarks interact almost freely

(asymptotic freedom).

unique to
. Olg (QZ) non-Abelian
. gauge theory
: 2 > 2
soft physicsO (1 GeVv?) hard interactions
non-perturbative QCD perturbative QCD
lattice QCD

chiral Lagrangian

However, most of the experimental support for QCD comes from comparisons with
predictions which include higher-order QCD corrections: in the end aq is not that small
even at the highest energies achieved and higher-order correction are not negligible.
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Asymptotic freedom

- coupling smaller at higher energies (smaller distances)
theory becomes effectively free

- a consequence of the sign of the beta function

- perturbation theory predicts asymptotic freedom

Confinement

- related to the fact that the coupling increases at small energies
- the behavior is still theoretically unknown because perturbation theory breaks down
- we do not have a rigorous explanation of confinement

- we just observe that all partons are confined into color singlet hadrons:
If one tries to separate partons it becomes energetically favorable to extract from the
QCD vacuum g pairs and create new hadrons

- lattice QCD

- we assume that confinement always holds; proof worth an other Nobel Prize 20xx

Where calculations can be performed, QCD provides a very good and accurate
description of relevant experimental data.



qq — qq Scattering

vertex factor

\
fpgi - . A2
M, =|TJ| —ig.7* —= |u, |x
vertex a, p t { 2| 7197 2} 1}
ab, uv gluon propagator - igﬂv5ab y
t
vertex b, v b
UI _i v@ uk
F ook &yl T )
/\

the propagator imposes the same color o,
and same helicity g, to the exchanged gluon

f,f quark flavors (i.e. ud — ud) at the interaction vertices
l, ], kK, I quark colors
a, b, ¢ gluon color combinations
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M, is the amplitude for a transition between an initial and final state with well defined
spin and color.

22 sa _ 1 the invariant amplitude is the same
M, =igs %% USJy”ul'] . [ijﬂu'z‘] as in QED except for
A 22
with ul, u2, u3, u4 the quarks spinors the color factor ?”%

We proceed as in QED for epn — ey scattering:
if we do not observe the colors and do not measure the spins
1. average over initial colors, sum over final (always! the color is not observable)

2. average over initial spins, sum over final spins

1 1 2
<‘Mt‘2>:% colors zxzzspins“vlt‘

2

. 1
— i —| k
Uy u; - 2V U

The sum over spins gives Z‘Mt‘z = 0s Z

spins $1,52,53,54

32?_5[(%- p,)-(p:- o)+ (ps- p2)- (s )]

2 2
> M [ =89§(3+2u)
spins 42

—+



a sa T b a 1b a
ooy (A (A |y A s A A
and the_sum over |45 apiskil 22 2 2 STl 2 2 ) T2 2

colors gives

2 28Is“+u do 2 (52 +u?
<Mt/2:/gr 94£\\) ~ dt 92( 2 )

color factor (1/3x1/3x2)  spin factor (1/2x1/2x8) gs
oy =—=
flux and phase space Ar
e 2 2
QED S MPR = 8t :;u . .
SpIns spin and color averaging:
0l
QED: 1/2 x 1/2 = 1/4
QCD: 1/2x1/2 x1/3x1/3=x1/36
\/u 82 N uz
QCD 3 M2 = 8gf —— x CF
spins, colours ¢

\
/
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In summary, the invariant matrix element for q,q, — q,ds, With o = B is given by

2 2
<\Mt\2>=g§§2(s+zu)

Since the gluon is a singlet with respect to flavor (i.e. cannot change the flavor of
interacting quarks) and all qguantum numbers at the vertex are conserved,

the u — channel cannot be present for the interactions of two quarks of different
flavor.

For q,0; — d,0s. With o # B one obtains the same matrix element.

For q,0d,; — 9,9 With o = B (identical quarks, e.g. ss — ss) one has to consider also
the u — channel (crossing 3 <> 4)

fpyi fps) Pyl fp,l
t — channel a + u — channel

. i f I
f pzk f p4| f pzk P3)

t+u

F =M+ M,
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To calculate the invariant amplitude M, for the u — channel
we proceed in the same way as for M, with the exchange 3 <> 4 (crossing)

b
M, =igs = ﬂ/” [u37yu ] : [u47ﬂu]

Before averaging over initial spin and color states and summing over final spin and
color states, however, we have to add the two amplitudes ...

M. +M,

The invariant matrix element for qan > qaqﬁ, with o = 3 is given by

<\M ‘> 4223+u t+s 1 4s°
vl ) uz  \3 tu

The last term comes from the interference of the t — and the u — channels.

For 0,0 — 0,0, With o = B, we have the t —and s — channels: |M, + M,

2 2 2 2 2 14 2
M,..f)- ggg{z(s - ), z )<38ut

t — and s — channel interference term 45




QCD 1 + 2 — 3 + 4 Process

do 1 2 al. o
A(1+2—>3+4)=—A2<\M(1+2—>3+4)\ >: % |A
dt 167z S S
Process |4]? strength at 90° in c.0.m.
B . 4 52 + y?
4192 2 9192, 9:92 > 4,9 3 222
4(s*+u* sP+t*\ 87
q:9: 2 919 —( G = - 3.26
9 t u 27 ut A
= e 4+ o
_* -_— .
d:19: 9292 5 2
4 (s* 4 u? t2+u2> 8 u?
d; — 9:q - + - 259 > <
919 2 919, 9< 7 23 27 5
32w+ Bttt
q - i s 1.04
i 21 -ut 15 v
182 +1*¢ 341"
q — — = 0.15
S ks 6 ut g s
4P 522 w5
qg - qg — Cata 6.11
9 us t
g8 — gg 9<3 o e 30.4
o B § s i ask
2 IR '

The coefficient 1/ (16 n s?) is the phase space and flux factor. 46



For Next Week

Study the material and prepare / ask questions
Study ch. 14 (sec. 3, 4) and ch. 2 (sec.15) in Halzen & Martin
and / or ch. 10 in Thomson

Do the homeworks

Next week we will study the QCD parton model
refresh the parton model, ch. 8 and 9 in Halzen and Martin
have a first look at the lecture notes, you can already have questions
read ch. 10 (sec. 1 to 8) in Halzen & Martin and / or ch. 10 (sec. 6) in Thomson
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