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Yukawa Theory (1935)
The first theory of Strong Interaction was proposed by Yukawa in 1935: the strong 

interaction between nucleons (protons and neutrons) is mediated by the exchange

of a new particle, the p meson (pion).

interactions between protons, between neutrons, and between protons and neutrons

 3 charges for the mediator: p+, p0, p-

short, finite range l ~ 1 fm

 potential of the form

(Yukawa potential)

The mass of the mediator m = 1/l is inversely proportional

to the range of the force    mp ~ 200 MeV

[recall that in natural units 1 = ћ  c = 197.3 MeV fm (~ 200 MeV fm)]

In 1937 the muon was discovered in cosmic rays and it was wrongly interpreted as the

Yukawa p meson. By studying the interactions of this particle with matter (m lifetime expt.),

in 1947 it was shown that this particle cannot be the Yukawa p meson, since it does not 

interact strongly. In the same year (1947) the pion was positively identified in cosmic rays

by observing the decay chain     p  m  e .
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Evidence For Color
What about color? Is it only a mathematical expedient to save Pauli exclusion principle?

 associated with strong force mediated by gluons obeying SU(3)C symmetry (exact)

t decay

t  nt + W

 (e ne)   (m nm)   (u d)

branching ratio  ~     20%     20%    60%

(3 colors)

p0 decay

e+e- annihilation into quarks (hadrons)
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Color in QCD
The theory of the strong interaction, Quantum Chromodynamics (QCD),

is very similar to QED but with 3 conserved “color” charges

In QED

the electron carries one unit of electric charge –e

the anti-electron carries one unit of “anti”-charge +e

the force is mediated by a massless “gauge boson” – the photon

In QCD

quarks carry a color charge r, or g, or b

anti-quarks carry an anti-color charge r, or g, or b

the force is mediated by massless “gauge bosons” – the gluons

In QCD, the strong interaction is invariant under rotations in SU(3) color space

i.e. the same for all three colors

SU(3) color symmetry

This is an exact symmetry, unlike the approximate uds flavor symmetry.

Don’t confuse SU(3)c color and SU(3)F flavor, though the Lie group algebra is the same:

F – flavor, which is not an exact symmetry (it is broken) by the different quark masses

C – color, exact symmetry  8 different colored (charged) massless gluons 4
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QCD: each quark flavor exists in 3 colors (red, green, blue or i, j, k) and

obey exact SU(3) symmetry (they have the same mass!)

fundamental representation combinations multiplets

all observed hadrons are color singlets (i.e. carry no color)

i.e. they are invariant under transformations (rotations) in SU(3) color space

Ta 1/2la are the eight generators of the SU(3) transformations, qa are 8 parameters.

SU(3)c Color Symmetry
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From QED to QCD
Suppose there is another fundamental symmetry of Nature, say

“invariance under SU(3) local phase transformations”

i.e. require invariance under

qa(x) are 8 parameters (functions of x) taking different values at each point in space-time.

wave function is now a vector in COLOR SPACE      QCD

QCD is fully specified by requiring invariance under SU(3) local phase transformations.

That corresponds to rotating states in color space about an axis whose 

direction is different at every space-time point

 interaction vertex

gS is a new coupling constant associated with strong interactions.

Predicts 8 massless gauge bosons – the gluons (one for each generator).

Also predicts exact form for interactions between gluons, i.e. the  3 and 4 gluon vertices.6
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Gluons
The gluons mediate the QCD force between color charges at different space-time points.

The gluons belong to an SU(3) multiplet with color combinations allowed by group theory.

Since a qq pair can annihilate into a gluon, the gluons must correspond to a color

combination equivalent to 

They form an octet

where each gluon is a

color-anticolor combination.

Since they carry color,

they can interact among themselves.

The color singlet 

does not carry color and does not play a role

(it could give rise to long range effects,

since it would not be confined;

such effects have not been observed)

color flow
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Direct Observation of Gluons

e+e  3 jets

e+

e

*
q

angular distribution of 3rd jet

data indicate that

gluons have spin 1

2-jet event                3-jet event                4-jet event

q
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A free electron  is described by the Dirac Lagrangian

L is invariant under global phase transformations

(global gauge invariance  conservation of charge)

but not under local phase transformations.

To restore local gauge invariance we introduce the covariant derivative

which must transform as :

To form the covariant derivative we introduce a vector field Am (the photon field)

that transforms as

e measures the coupling strength of the Dirac field to this vector field (e is the 

elementary charge e=¦e¦, electron charge -e) . And the Lagrangian becomes

where                                is the interaction term between the Dirac field and the Am field.

The QED Lagrangian
0L i mm

m    
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To complete the Lagrangian we have still to add a term corresponding to the kinetic

energy of the photon field

Since this term must be gauge invariant as well, it can involve only the gauge invariant

filed strength tensor

Note that a mass term               for the photon field is not gauge invariant,

and thus the photon must be massless [m < 3 x 1027 eV from galactic magnetic fields].

Adding all pieces, leads to the QED Lagrangian

Note that the Lagrangian

leads to the Maxwell equations

Local gauge invariance does not lead to new conservation laws,

it states that charges are conserved locally. 

That has deep implications  it fixes the form of the interaction!
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 All the interactions between fermions and spin-1 bosons in the Standard Model are

specified by the principle of local gauge invariance.

 Changing phases arbitrarily at different space-time points will create phase differences

which might become observable, if not compensated by some mechanism.

This is the role of the new Am vector field that we have introduced to restore the gauge 

invariance of the Lagrangian (theory).

 By demanding local phase invariance to preserve the invariance of the Lagrangian

we are forced to introduce a vector filed Am, the gauge field, which couples to the Dirac

particle in exactly the same way as the photon field (Maxwell eq.).

 A mass term ½ m2 AmA
m is forbidden by gauge invariance, therefore the photon

must be massless, and the gauge field will have infinite range.

The fermion mass term m does not brake local gauge invariance because left-handed

and right-handed fields transform in the same way (not the case for weak interactions).

 By imposing the “natural” requirement of local gauge invariance (local phase invariance)

on the free Lagrangian, we are led to the interacting field theory of QED.

Historically, things evolved the other way around: starting from Maxwell equations we 

developed QED, then discovered local phase invariance. 

 Gauge invariance is a very powerful symmetry that fixes the form of the interaction

between the fundamental matter particles (fermions) and the field quanta. It has

become one of the most basic and essential ingredients of modern particle physics.

Any new theory describing particle interactions is required to satisfy this requirement.

 The QCD symmetry group SU(3) is sufficiently similar to U(1) – QED, so that the same

principles can be applied to QCD, and sufficiently different to describe rich new physics.11



Within the SM, the strong interaction is described by QCD, which is a local gauge theory

built on the non-Abelian internal symmetry of quarks known as color – that is SU(3)C. 

In QCD the strong force at short distances is assumed to have a similar space-time

structure to QED.

To derive the QCD Lagrangian we proceed in analogy to QED.

Let be the quark fields,

where each of the qi is a Dirac spinor with color i.

The unitary transformations which mix quarks of different colors are generated by the

elements of the SU(3) Lie algebra, la, a = 1, … , 8 = color index and corresponds to

one of the 8 Gell-Mann matrices.

The most general transformation amongst the colors is induced by the unitary operator

with Ta = la/2 the generators of the transformation and

q1, … q8 are eight real parameters associated with the transformation. 

The quark field q(x) then transforms as

The QCD Lagrangian
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Local gauge invariance requires that the Lagrangian is invariant under an arbitrary

phase transformation at each point in space-time – i.e. qa = qa(x) .

Note that observables such as electric charge are invariant under SU(3)C transformations

The free quark Lagrangian is given by

Invariance under global color transformation leads to 8 conserved charges and currents

This Lagrangian however is not invariant under local phase transformations of the quarks

fields in the SU(3) color space

Local gauge invariance of L can be restored by introducing the covariant derivative Dm

involving eight new Lorentz-vector fields, i.e. 8 massless vector fields Ga
m(x) (the gluons)

with gS the new strong coupling constant S = gS
2 / 4p .
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This leads to the following Lagrangian

Let’s examine an infinitesimal transformation of the quark current

Ignoring higher order terms, we obtain

which turns out to be not invariant because the generators do not commute.

The additional term is compensated for by Gm
a .

This has an impact on how the gluon field Gm
a should transform.

The basic physics requirement is that the covariant derivative transforms as 

(as in QED)

Assume that Gm
a transforms as
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Develop separately LHS and RHS (ignoring higher order terms)

and compare LHS and RHS (drop , since it holds for any state)
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Develop separately LHS and RHS (ignoring higher order terms)

and compare LHS and RHS

We can then solve for G
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We can then solve for G

And finally

So we conclude that we can restore the gauge invariance of the Lagrangian,

provided that the gluon field transforms as

The appearance of the term fabcqbGc
m is due to the non-Abelian nature of the SU(3)

gauge group (the generators of the group do not commute).

It is believed that from this follows the most remarkable properties of the strong

interactions: the asymptotic freedom and confinement.

Note that there is no obvious historical guide like for QED (Maxwell Eq.).
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In analogy to QED we can introduce the gluon field tensor

However this term is not gauge invariant, because the gluon fields do not commute.

A mass term for the gluon field would also violate the gauge invariance.

Instead, if we define the gluon field tensor as

the gluon “kinetic” term

is gauge invariant. Also in this case we had to add an additional term,

which as we will see, describes the self interactions of gluons.

The QCD Lagrangian density finally becomes

This Lagrangian density is the natural consequence of local color symmetry.

It looks like QED, but the gluon field energy tensor implies completely new features:

the gluons self interact via a tri-linear coupling proportional to gS and

a four-linear coupling proportional to gS
2.
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Symbolically, we can rewrite the QCD Lagrangian as

The first three terms have QED analogues. They describe 

i) the free propagation of quarks,

ii) the quark-gluon interaction, and

iii) the free propagation of gluons.

The last two terms are “new” and indicate the presence of 

i) three gluon vertices and

ii) four gluon vertices 

and reflect the fact that gluons themselves carry color charge and can interact among

themselves.

The gauge invariance determines uniquely the structure of these gluon self-coupling

terms and forbids higher multi-gluon couplings.

Note that the same coupling constant gS couples the gluon fields to themselves and

the gluons to quark fields.

"""""""""" 4232 GgGgGGqqgqqL SSSQCD 



Quark – Gluon Interaction (Vertex)
Let’s represent the colour part of the quark wave functions by

and quark wave functions by

The QCD qqg vertex can be written as

The only “difference” w.r.t. QED is the insertion of the

3  3 SU(3) Gell-Mann matrices

Then let’s develop the color part

(this is just one entry in the l matrix)

Finally, the fundamental quark-gluon interaction can be written

Quarks interact with the gluon by exchanging color charges at the interaction vertex. 

qq

colour i  jgluon a

m, a
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Gluon Field Tensor
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gluon “propagator”

triple gluon coupling

quartic gluon coupling
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As we saw, the gauge invariant gluon field energy tensor is given by

Let’s develop the kinetic term

gs

gs
2



Gluon – Gluon Interaction
In QED the photon does not carry the charge of the EM interaction

(photons are electrically neutral)

In QCD the gluons do carry color charge

Two new vertices (no QED analogues) 

In addition to quark-quark scattering, we can also observe gluon-gluon scattering:

e.g. possible way

of arranging

the color flow

Gluon Self-Interactions

triple gluon 
vertex

quartic gluon 
vertex

22



Gluon Self-Interaction and Confinement
Gluon self-interactions are believed to give rise 

to color confinement.

Qualitative picture:

compare QED with QCD

in QCD gluon self-interactions squeeze

lines of force into a “flux tube”

What happens when we try to separate two colored objects e.g. a qq pair?

A flux tube of interacting gluons of approximately constant energy density ~1 GeV/fm

is formed

Require infinite energy to separate colored objects to infinity, i.e. to free the quarks.

Colored quarks and gluons are always confined within colorless states.

In this way QCD provides a plausible explanation of confinement –

but not yet proven (although there has been recent progress with Lattice QCD).

e+

e-

q

q

q q

23
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Not everything is that simple though !

The QCD Lagrangian thus obtained is not suitable for quantization. The derivation of

Feynman rules from LQCD and their use is non-trivial because of complications in

handling quantization and gauge invariance compared to QED.

We have to introduce a gauge fixing condition (similar in QED). This term is necessary

for the existence of a (free) gluon propagator equivalent to a covariant gauge mGa
mn = 0.

The gluon fields can be expressed in a variety of gauges; graphs involving gluon

loops (in particular helicity 0 contributions) introduce unphysical polarization degrees

of freedom in observables. To suppress these unphysical states ghosts have been

introduced. In axial gauges (more complicated gluon propagator) ghosts do not appear.

In principle, LQCD could contain a further term, which is gauge invariant:

where qQCD is the QCD q parameter, which violates P, T, and CP (neutron dipole mom.)

 Strong CP (violation) problem

so far no evidence for this term: qQCD < 10-11

qQCD is one of the 19 parameters of the Standard Model!

For massless quarks there is no scale in the QCD Lagrangian. Left handed quarks

decouples from right handed quarks. This would lead to a duplication of all hadron states

which has not been observed (spontaneous chiral symmetry breaking). 24

QCD

2
1

32 2

a a as
a

g
L G G G Gmn mnl

 mn mn l e
p

 



Feynman Rules for QCD

k

i

f

in: uf
i (k)

out: uf
i (k)

k

a in: ea
m (k)

out: ea
m * (k)

f

f

f

i

j

mp

i

/



2q

ig abmn

q
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external lines

quarks

gluons

propagators

gluon

(Feynman gauge)

quark

m, n Lorentz indices

a, b, c gluon color “indices”

i, j quark color indices

f, f´ flavor indices

g – coupling constant

S = g2/4p

p, mf



Feynman Rules for QCD - Vertices

quark – gluon vertex

triple – gluon vertex

quartic – gluon vertex

m, n Lorentz indices

a, b, c gluon color “indices”

i,j quark color indices

f, f´ flavor indices

gs – coupling constant

S = g2/4p

la generators SU(3) group

fabc anti-symmetric SU(3)

group structure constants

26

2

a

jif

s fig m
l

 




     1 2 2 3 3 1s abcg f g k k g k k g k k
         

 

 
 
 

2

   abc cde

s ace bde

ade bce

f f g g g g

ig f f g g g g

f f g g g g

   

   

   

 
 

   
  
 



QCD vs QED

QED

QCD

uu

dd

QCD Matrix Element = QED Matrix Element with

QCD Matrix Element includes an additional “colour factor”

or equivalently

27
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Color Factors
q q

qq

q q

qq

q q

q q
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Since the color is not observable,

sum over final colors and average over initial colors

recall

calculate

i.e. 





colorstM 
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QCD Potential

30

Let’s assume that at short distances the potential describing the interaction of a qq pair

is the same as in electrodynamics, except for the color factor fC
(see quarkonium spectroscopy)

According to QCD, the qq pair is in a color singlet state

and the corresponding color factor is

For an octet color configuration, i.e.                             one finds 

Finally

Quarks attract one another most strongly when they are in the color singlet configuration!
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Renormalization in QED
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effective charge
bare charge bare charge screened by e+e- loops

large Q2 leading log sum (M cutoff on loop momentum)
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infinities removed at the price of introducing the

renormalization scale m

(m20) = measured = 1/137

running coupling constant
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Running of EM Might worry that coupling becomes

infinite at

i.e. at Q2 ~ 1052 GeV2

But quantum gravity effects would come in

way below this energy scale and it is highly

unlikely that QED “as it is” would be valid

in this regime.

In QED, running coupling increases

very slowly

atomic physics (Q2 ~ 0):

1/ = 137.03599976(50)

high energy physics:

1/ (MZ) = 128
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Renormalization in QCD

33

Higher order corrections not only from qq loops (like in QED) but also from gluon loops.

Running of strong coupling constant

in QED b0 = -1/3p < 0

(as long as nf < 17)

the term -2nf comes from quark loops and behaves as in QED

the term 11Nc comes from gluon loops and has a + sign  b0 > 0

+ + + +…

fermion loop boson loops
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[there is a complication whenever crossing a flavor threshold,

i.e. Nf = 3  Nf = 4 at ~1.5 GeV, etc.]

Gluons have an anti-screening effect:

1) gluons can irradiate their charge over space and their charge is not localized

2) the initial quark charge is diffused over space

Renormalization in QCD

34

with
Nc = number of colours

Nf = number of quark flavours
0

11 2
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c f
b

N n

p




Nc = 3 & Nf = 6    b0 > 0    S decreases with increasing Q2

asymptotic freedom
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Running Coupling Constants

QED
QCD
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Running of S

36

S(m) at the m of measurement

world

average:

active flavors and running of S

  0009.01179.02 
MS

ZS M



Comparing S Measurements

37

Summarizing:

1. can measure S in many different processes

2. overall consistent picture:

S from very different measurements

are compatible

3. S decreases slowly with Q2 (high energy)

(logarithmic only)

4. S is not that small at current experimental

scales (S ~ 0.1 – 0.3)

5. higher order corrections are and will

remain important

world average
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LQCD
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The QCD Lagrangian makes no mention of the renormalization scale m (m is an arbitrary

parameter), even though a choice of m is required to define the theory at the quantum

scale and physical observables, like R, cannot depend on m

All the scale dependence in R enters through the running of s(Q
2).

An alternative approach is to introduce a dimensionful parameter in the definition of

s(Q
2) :

LQCD represents the scale at which the coupling would diverge and the perturbative 

expansion breaks down. This could be an indication that the confinement of quarks and 

gluons inside hadrons is a consequence of the growing of s(Q
2) at small scales.

Unfortunately it is hard to determine LQCD , LQCD ~ 200 MeV (= 1 fm).

Let’s write the asymptotic solution for s(Q
2) in terms of LQCD . At leading order in QCD
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Running of S(Q
2)

Q2

S (Q2)

O (1 GeV2)

confinement

of color

(hadrons –

color singlets)

soft physics

non-perturbative QCD

lattice QCD

chiral Lagrangian

hard interactions

perturbative QCD

unique to

non-Abelian

gauge theory

QCD reconciles quarks completely confined in 

hadrons at large distances (confinement) with 

the assumption of the parton model that at short 

distances the quarks interact almost freely 

(asymptotic freedom).

However, most of the experimental support for QCD comes from comparisons with

predictions which include higher-order QCD corrections: in the end S is not that small

even at the highest energies achieved and higher-order correction are not negligible.
39



Asymptotic freedom

- coupling smaller at higher energies (smaller distances)

theory becomes effectively free

- a consequence of the sign of the beta function

- perturbation theory predicts asymptotic freedom

Confinement

- related to the fact that the coupling increases at small energies

- the behavior is still theoretically unknown because perturbation theory breaks down

- we do not have a rigorous explanation of confinement

- we just observe that all partons are confined into color singlet hadrons:

if one tries to separate partons it becomes energetically favorable to extract from the

QCD vacuum qq pairs and create new hadrons

- lattice QCD

- we assume that confinement always holds; proof worth an other Nobel Prize 20xx

Where calculations can be performed, QCD provides a very good and accurate

description of relevant experimental data.



the propagator imposes the same color ab

and same helicity gmn to the exchanged gluon

at the interaction vertices

qq´ qq´ Scattering

f, f´ quark flavors (i.e. ud  ud)

i, j, k, l quark colors

a, b, c gluon color combinations
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Mt is the amplitude for a transition between an initial and final state with well defined

spin and color.

with u1, u2, u3, u4 the quarks spinors

We proceed as in QED for em  em scattering:

if we do not observe the colors and do not measure the spins 

1. average over initial colors, sum over final (always!  the color is not observable)

2. average over initial spins, sum over final spins

The sum over spins gives
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and the sum over

colors gives

Averaging over initial colors (3  3) and spins (2  2) we finally obtain
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In summary, the invariant matrix element for qq  qq, with    is given by

Since the gluon is a singlet with respect to flavor (i.e. cannot change the flavor of

interacting quarks) and all quantum numbers at the vertex are conserved,

the u – channel cannot be present for the interactions of two quarks of different

flavor.

For qq  qq, with  one obtains the same matrix element.

For qq  qq with  (identical quarks, e.g. ss  ss) one has to consider also

the u – channel (crossing 3  4)
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To calculate the invariant amplitude Mu for the u – channel

we proceed in the same way as for Mt with the exchange 3  4 (crossing)

Before averaging over initial spin and color states and summing over final spin and

color states, however, we have to add the two amplitudes …

The invariant matrix element for qq  qq, with  is given by

The last term comes from the interference of the t – and the u – channels.

For qq  qq, with  = , we have the t – and s – channels:
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t – and s – channel interference term



QCD 1 + 2  3 + 4 Process

The coefficient 1 / (16 p s2 ) is the phase space and flux factor.

strength at 900 in c.o.m.
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For Next Week
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Study the material and prepare / ask questions

Study ch. 14 (sec. 3, 4) and ch. 2 (sec.15) in Halzen & Martin

and / or ch. 10 in Thomson

Do the homeworks

Next week we will study the QCD parton model

refresh the parton model, ch. 8 and 9 in Halzen and Martin

have a first look at the lecture notes, you can already have questions

read ch. 10 (sec. 1 to 8) in Halzen & Martin and / or ch. 10 (sec. 6) in Thomson 


