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QCD Is Not Only Proton Structure!
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An other example is the t lepton decay into hadrons.

In general, when the final state involves

hadrons, strong interactions are at play

and can mask the underlying weak or

electromagnetic sub-process.
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Consider, for example, the e-e+ annihilation into a qq pair.

While the annihilation is an electroweak process,

the subsequent evolution of quarks

and their “transition” into observable

hadrons – fragmentation – is

controlled by the strong interaction – QCD.

By studying this, and similar processes

we can learn a big deal about QCD.
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e+ e-  q q Annihilation
Possible processes in the e-e+ interaction:
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The Process e+ e-  q q
High resolution photons can be prepared by colliding high energy e- and e+ beams

(note that mg* > 0 – timelike photon to be compared to DIS where mg*< 0 – spacelike

photon). e- e+ colliders can be used to study QED, (electro)weak interactions,

quarks, gluons and QCD, or search for heavy quarks and leptons, or new particles, …

however the quantum numbers of the final state must be that of the g*: JPC = 1- -.

The e- e+  q q process is described by the same Feynman diagram as the

e- e+  m+ m- (s – channel only), where one replaces the m+ m- pair by a qq pair

assuming that the quarks are Dirac particles (i.e. that they have spin ½)

In addition, we have to take into account the masses and electric charges of quarks,

which are different and the color charge that only quarks carry.

The calculation of the Feynman diagrams (neglecting masses) for e+ e-  m+ m- gives

and for qq production becomes

with eq e the electric charge of quarks and CF = 3 the color factor. 4
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In deriving the qq cross section we have to pay attention to the fact that the qq pair

is produced in a color singlet state!

[note that a “colorless” state is not necessarily invariant under SU(3) transformations] 

If this were the case (color eigen-state, i.e. RR)

Although the result is the expected one, the reasoning behind it is not correct!

According to QCD, the qq pair is created in a color singlet state:

and
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Observation of Quark Jets
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Jet = collimated spray of hadrons from quark or gluon fragmentation / hadronization

To “see” jets, need quarks with sufficient energy.

 
1 2 jet je

 

t

 

e e

e e q q+

+

-

- 



+

 
1 2 jet jet

  q q

p p

q

X

q

+ +







e+ e-  hadrons
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In the total e+ e- annihilation cross section  hadrons, tot, all quarks with mq < s/2 enter.

It is given by the sum of  for different quark flavor accessible at a given c.o.m. energy s:

flavor d u s c b t

el. charge [e] -1/3 2/3 -1/3 2/3 -1/3 2/3

mass [GeV] ~0.005 ~0.003 0.15 1.35 4.5 174

This expression describes well the behavior of tot outside of the resonance regions.

This simple calculation leads to the prediction

(the number of terms in the sum – the number of active flavors f – depends on s)

The total e+ e- annihilation cross section into hadrons therefore directly counts the

number of quarks, their flavors, and their colors.

for u, d, s active flavors R = 2 /3 R = 2

for u, d, s, c R = 10 / 9 R = 10 / 3

for u, d, s, c, b R = 11 / 9 R = 11 / 3

no color                3 colors

The result will be modified when interpreted in the context of QCD (gluon radiation).

Note that data support the idea that there are only 3 colors!
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The Ratio R
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The Resonances
According to the Vector Meson Dominance (VDM) model of Sakurai

a photon (JPC = 1- -) can fluctuate to a vector meson, like r0, w, f, or J/Y (JPC = 1- -).

If the c.o.m. energy is that of the resonance, instead of fluctuating back to a photon,

the vector meson can materialize and “decays”.

Moreover, in DIS the vector meson can interact with a proton target as a hadron.

This explain roughly why gp ~  hadronic (i.e. 100  smaller).
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Hadronization
Because of confinement, we cannot observe directly the quarks (so far, particles with

fractional charges have never been observed). In a simplified picture, once created,

the qq pair separates with equal and opposite momenta and materializes (hadronizes)

into two back-to-back jets of colorless hadrons, which conserve the essential kinematical

properties of initial quarks. This process is called hadronization.

The hadronization mechanism is not yet fully understood.

Note that quarks must fragment into hadrons with unit probability.

We can visualize it as a cascade of qq pairs created as the initial quarks separate.

Hadrons in a jet are collimated around the initial quark direction with <pT> ~ 300 MeV.

The fragmentation cone narrows very slowly as <q> ~ 1 / log Q2.

A similar picture can be applied also to jet production in deep inelastic scattering.

at 1 fm separation   Estring ~ 1 GeV
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hadronization

charge, baryon number, strangeness, etc.

must be conserved !

the distribution of hadrons around

the initial quark direction (jet)

is approximately gaussian with

t ~ 1.5 GeV-2  < pT> ~300 MeV

(parameter determined empirically)
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strong force at very short distance r << 1 fm, V ~ 1/r

strong force at long distances r > 1 fm, V ~ kr

time evolution

e+ e- q / q q / q
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Consider a quark and anti-quark pair produced in electron positron annihilation:

i) initially quarks separate at

high velocity

ii) a colour flux tube forms

between quarks

iii) the energy stored in the flux tube

is sufficient to produce qq pairs

iv) the process continues

until quarks pair up

into jets of

colourless hadrons 

This process is called hadronization. It is not (yet) calculable.

The main consequence is that at collider experiments quarks and gluons are observed as

jets of particles  

Hadronization and Jets

q q

q q
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In the annihilation process e+ e-  hadrons,

we can try to separate the interaction into 4 phases, 

which correspond to 4 different space-time scales:

(i) 10-17 cm – qq production (electroweak)  

(ii) 10-15 cm – gluon radiation (perturbative QCD)

(iii) 10-13 cm – hadronization: fragmentation of quarks and gluons into hadrons

(non-perturbative QCD)

(iv) >10-13 cm – decays of unstable particles (electroweak)

To reproduce the characteristics of the events we use sophisticated Monte Carlo event

generators which simulate the hadronization as a stochastic process.

Typically, there are ~100 parameters describing the hadronization process. 14



To identify a jet, we have to define a jet axis and group

particles around this axis with an algorithm that selects

only those particles which belong to this particular jet.   

Let’s examine two such algorithms / variables.

The thrust T defines an axis which maximizes the

longitudinal momentum of hadrons in the jet w.r.t this axis

(it corresponds to the initial quark direction).

T  1 for a di-jet event

T  0.5 for an istotropic event

The sphericity S defines an axis that minimizes

the transverse momentum of hadrons

S  1 for an isotropic event

S  0 for a di-jet event

In principle, the two axes should coincide.

Jets
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e+

e-

q

~ (1 + cos2q)

Angular Distribution of Jets

The jet axis follows the same distribution  (1 + cos2q)

as the muons in the e+ e-  m+ m- process

This distribution is sensitive to quark’s spin:

quarks have spin 1/2.

If the quark had spin 0, the distribution would be

 (1 - sin2q),

like in the non-resonant e+ e-  + - process.

Now that we have defined the jet axis (thrust)

we can measure the angular distribution of

the jet axis w.r.t. the e+ e- collision axis.
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The Fragmentation Process
Even though we cannot calculate the fragmentation of quarks into hadrons from first

principles, we can try to describe it, as we did for quarks inside hadrons.

We introduce the fragmentation functions Dq
h(z) , which represent the probability that a

quark q will fragment to a hadron h with fractional momentum z = Eh / Eq.

The differential cross section can be factorized as

where

The production of a hadron h is described

as two sequential events (factorization):

i) the production of the qq pair

ii) the fragmentation of the q or q into the hadron h

The summation runs over all quark flavors, because the detector cannot observe

the quantum numbers of the parent of the detected hadron.

If we observe a meson containing a b quark (B – meson), very likely the meson came

from the fragmentation of a b quark, because it is very unlikely to produce a b quark in

the fragmentation process (very large mass!). We cannot say the same for a  meson. 
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The fragmentation function D(z) describes the transition parton  hadron in the same

way that the structure function f(x) describes the embedding hadron  parton.

From the quantum field theory point of view, they are essentially the same objects.

Momentum and probability constraints impose

zmin = 2mh/Q = minimal energy to

produce a hadron of mass mh

nh is the average multiplicity of hadrons h

The first equation simply states that

the sum of energies of all hadrons is the energy

of the initial quark.   

It follows that the average hadron multiplicity

nh grows only logarithmically with Q:
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Dividing by the total annihilation cross section into hadrons

1/ d/dz is predicted to scale

(no Q dependence).

No surprise, since we based our derivation

on the scaling properties of the parton model

to introduce the fragmentation functions.

Data however show that the scaling is not

perfect as is the case for the structure functions.

Gluon emission from q and/or q will

introduce logarithmic Q2 scaling violations (Q2 = s);

their qualitative trend is similar to the one

observed in electro-production (DIS):

the density will increase at small z

and decrease at large z.

QCD cannot describe the shape of D(z,Q0
2),

however it can describe its Q2 evolution.
19

  2

2

( ) ( )1
h h

q q qq

e e had
qq

e D z D zd e e hX

dz e




+ -

+ -



 +  







Fragmentation in DIS
The fragmentation functions D(z) describes universal properties of partons, like the

structure functions f(x), no matter how the partons were produced.

We can analyze the production of hadrons in lepton induced processes (DIS) in a

similar way, the result will be very similar

where fq(x) are the parton density

distribution functions.

Using charge conjugation and isospin invariance we can show that
(consider the quark content of the meson: if the quark is a valence quark like u in +,

the fragmentation to + is favored, otherwise we must produce two quarks in the fragmentation

process and the fragmentation is unfavored)

favored fragmentation

unfavored fragmentation
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e+ e-  q q g
At order 2S, the q or q can emit a gluon:

e+ e-  q q g events are characterized by 3 jets in the final state.

The additional jet coms from gluon fragmentation.

e+

e-

g* q

q
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Three jet rate (~10% of events)   measurement of S

Angular distributions   gluons are spin-1 particles

Four-jet rate and distributions   triple gluon vertex (test underlying SU(3) symmetry).  



4-jet Events
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The diagrams on the right are allowed only in a non-abelian theory.

From the study of angular correlations in 4-jet events it has been shown that these
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Kinematics of q q g
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We work in the center of mass of the e+e- system, i.e. the rest frame of the g*,

and introduce variables normalized to the beam energy: 

e+

e-

g*
q

q
pT

q
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in the same

plane

 coplanar

The most obvious experimental signature of gluon emission is that the q and q jets

are no longer produced back to back:

the q is produced with a transverse momentum xT relative to the direction of q .

The three jets, however, are coplanar. 

The four momentum fractions are (we assume the quarks are massless)

for the quark

for the antiquark

for the gluon
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Energy conservation imposes

For massles quarks and gluons (4-momentum squared)

and express the fractional transverse momentum xT in terms of xq, xg, …
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Experimentally one can recognize the quarks and gluon jets by ordering the jets in energy 

with a good probability that the most energetic jet is the one that did not emit the gluon

and that the least energetic jet is the one initiated by the gluon emitted by the second jet.

Because of different color factors involved in the fragmentation of quarks and gluons,

the gluon jet can also be broader with higher hadron multiplicities. 
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In this graph the q emits a softer gluon, hence

Since the most evident signature for gluon emission

is xT = 2pT / Q the relevant observable will be d / dxT
2

w.r.t. the axis defined by q.

The cross section can be calculated in two steps:

1. g* flux at the e+e-  g* vertex

2. g*  q q g diagram

Using the Altarelli-Parisi technique we can reuse the formalism developed in DIS

where  is the cross section for producing a q q pair and gqq is the probability that the q

emits a gluon with momentum 1-xq and transverse momentum pT

with the splitting function

The Cross Section
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Inserting gqq and dividing by  we obtain

Integrating over all possible q energies dxq we obtain

(a factor of 2 is inserted to account for the case when the q radiates the gluon)

This cross section diverges for xq  1 or xq  1. These are the so called

collinear divergences and appear often in first order calculations.

xq = 1 xq = 1

Experimentally we cannot distinguish a q (q) jet superposed to a gluon jet  collinear

divergence or a q accompanied by a soft (very low energy) gluon  infrared divergence

(i.e. energy below the detection threshold).

In the limit xq  1, xq = xq :

this can happen if the emitted gluon is as “soft” as possible  xg  xT
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These divergencies however are not a serious problem as long as we compare

measurements to predictions: we integrate over the “experimental” phase space and

not over the whole phase space:

we require three reconstructed jets, i.e. cannot see two overlapping jets ( xq < 1) and

we have limited resolution to see if the two jets are back-to-back or not ( xq < 1).

Finally we can perform our integral

(recall the cut-offs introduced in the derivation of the Altarelli-Parisi equations:

pT min and pT max , max = maximal available energy)

where we have approximated (1 + x2) by 2.

Keeping only the leading logarithmic term, we finally obtain

or 

The cross section increases with energy (s = Q2) for fixed pT. This results from the

increased probability of emitting a gluon when the annihilation energy increases. 
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We have to consider two diagrams (gluon radiated by a q and gluon radiated by a q)

The diagram g*q  qg (g*q  q g) is analogue to the Compton scattering

g*q  gq (bremsstrahlung with a g* !), except that for the gluon vertex we have to

use S and the color factors instead of .

We have to add these two diagrams

Proceeding in the same way as before (L4)

we can calculate the <|amplitude|2>

(note the sign of the first two terms).

The Cross Section from Feynman Diagrams
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Express the Mandelstam variables s, t, u in terms of energy fraction variables xq, xg, …:

The <|amplitude|2> becomes

and the exact O(S) result is (after dividing by )

which is diverges for xq  1 as before. Note the symmetry between q and q.

The previous result is the so called leading logarithmic approximation.
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To complete the discussion let’s compare the two results:

we have to transform xq to xT
2

In the small pT approximation we have

for xq ~1 (in this limit xq ~ (1 - xg) )

which allow us to rewrite the cross section as

(cfr. slide 25)
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Spin of the Gluon

data indicate that

gluons have spin 1

If the gluon had spin 0, the form of the

cross section would be quite different.

In this derivation we assumed that

the q – g coupling is a vector coupling.

To try to identify the gluon jet we order

the jets in energy

E1 > E2 > E3

There is a good chance that E3 is the

radiated gluon, E1 is the (anti) quark jet

that did not radiate the gluon, and E2

the quark jet that radiated the gluon. 

xg
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Dealing With the Divergences
To calculate the QCD corrections to R, we must integrate the cross sections over

both xq an xq from 0 to 1. We encounter the common problem of divergences

for xq  1 or xq  1. 

Let’s have a closer look:

(1 - xq) vanishes when the gluon becomes very soft, i.e. Eg  0 (infrared divergence)

or when the q and g become collinear (collinear divergence or mass singularity:

if the quark or gluon had mass, cos q = 1 would be kinematically impossible).

To regularize these divergences (note this is not renormalization, renormalization

deals with ultraviolet divergences) we give a fictitious mass mg to the gluon,

i.e. repeat the calculations of the Feynman diagrams with mg  0.

To be completed, the calculations must include all contributions of the same order in S,

i.e. we must include also the virtual gluon diagrams (i.e. loops).  
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A lengthy calculation (kinematical factors!) for real  gluon emission, real , gives

As anticipated, it is divergent for mg → 0. However this cannot be the final answer,

since the result cannot depend on mg. To be complete, the calculation at the same

order in S must include also the virtual gluon diagrams:

The interference between the first diagram and the virtual gluon loops (last three)

leads to an additional term of order S ! that we will label virtual .
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Again, after a lengthy calculation, one can arrive at

Surprisingly enough, the log terms are identical to the ones that we encountered when

calculating real, but with opposite sign.

The total S contribution is the sum of both, real and virtual:

The cancellation of the singularities between the contributions with the emission of real

gluons and virtual gluons occurs in several processes, for instance in deep inelastic

scattering. We encounter it also in QED.

The cancellation between real and virtual photon (gluon) emission occurs at all orders

in the perturbative expansion. 

Including the S corrections to R we finally obtain
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The Ratio R
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in green

the QPM prediction

in red

with S
3 corrections



For Next Week

36

Study the material and prepare / ask questions

Study ch. 11 (sec. 1 to 7) and / or ch. 10 (sec. 6) in Thomson

Do the homeworks

Next week we will study the hadron – hadron interactions

have a first look at the lecture notes, you can already have questions

read ch. 11 (sec. 8, 9) in Halzen & Martin and / or ch. 10 (sec. 9) in Thomson 


