Advanced Particle Physics 2

Strong Interactions and Weak Interactions

L8 -Weak Decays
(http://dpnc.unige.ch/~bravar/PPA2/L8)
lecturer

> Alessandro Bravar
> tél.: 96210 bureau: EP 206
assistant
Jorge Sabater
Jorge.Sabateriglesias@unige.ch

"Prototype" Weak Interaction

The prototype of a weak process mediated by a $\mathrm{W}^{ \pm}$exchange is the muon decay

$$
\mu^{-} \rightarrow e^{-}+v_{\mu}+\bar{v}_{e}
$$

effective 4 fermion interaction

$$
\frac{1}{q^{2}-M_{W}^{2}} \xrightarrow[q^{2} \rightarrow 0]{\text { propagator }} \frac{1}{M_{W}^{2}}
$$

$$
M_{f i}=\frac{4 G_{F}}{\sqrt{2}} J^{\mu} J_{\mu}^{\dagger} \quad \text { with }
$$

$$
\frac{G_{F}}{\sqrt{2}}=\frac{g^{2}}{8 M_{W}^{2}}
$$

Charge rising weak charged current $\quad J^{(+) \mu}=J^{\mu}=\bar{u}(k)_{v_{\mu}} \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) u(p)_{\mu^{-}}$ Charge lowering weak charged current $\quad J_{\mu}^{(-)}=J_{\mu}^{\dagger}=\bar{u}\left(p^{\prime}\right)_{e} \gamma_{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v\left(k^{\prime}\right)_{\bar{v}_{e}}$
Estimate G_{F} from μ lifetime and compare for instance β decay to μ decay \rightarrow is G_{F} universal?

Fermi Golden Rule

interaction rate per target particle
transition amplitude

$$
W_{f i}=2 \pi \overline{\left|T_{f i}\right|^{2}} \rho(E) \quad T_{f i}=-i(2 \pi)^{4} \delta^{4}\left(p_{p}-p_{n}-p_{e}-p_{v}\right) M_{f i}
$$

Derived by Fermi to calculate decay rates

$$
\mathrm{d} \Gamma=\frac{1}{2 E_{A}} \overline{\left|T_{f i}\right|^{2}} \mathrm{~d} Q=\frac{1}{2 E_{A}} \overline{\left|M_{f i}\right|^{2}} \frac{\mathrm{~d}^{3} p_{1}}{(2 \pi)^{3} 2 E_{1}} \cdots \frac{\mathrm{~d}^{3} p_{n}}{(2 \pi)^{3} 2 E_{n}}(2 \pi)^{4} \delta^{4}\left(p_{A}-p_{1}-\cdots-p_{N}\right)
$$

$2 \mathrm{E}_{\mathrm{A}}\left(=\mathrm{m}_{\mathrm{A}}\right) \equiv$ number of decaying nuclei per unit volume (normalization of the wave fun.)
Decay $A \rightarrow 1+2$

$$
\Gamma(A \rightarrow 1+2)=\int \mathrm{d} \Gamma=\cdots=\frac{p_{f}}{32 \pi^{2}} \int \overline{\left|T_{f i}\right|^{2}} \mathrm{~d} \Omega
$$

If several decay channels contribute, add all decay rates to obtain the total decay rate (different decay modes are orthogonal \rightarrow add the amplitudes modulo square!)
Lifetime given by $\frac{1}{\tau}=\Gamma=\sum_{i} \Gamma_{i} \quad \Gamma_{\mathrm{i}}=$ partial width
τ is the same for all decay modes, the particle does not know a priori in which channel it will decay

Experimentally measure lifetime and branching ratios

$$
\tau=\frac{1}{\Gamma} \quad \mathrm{BR}(A \rightarrow i)=\frac{\Gamma_{i}}{\Gamma} \quad \Gamma_{i}=\frac{\mathrm{BR}(A \rightarrow i)}{\tau}
$$

β Decay

As an example of β decay, let's study the decay

$$
\begin{aligned}
& { }^{14} \mathrm{O} \rightarrow{ }^{14} \mathrm{~N}^{*}+e^{+}+v\left(0^{+} \rightarrow 0^{+}\right. \text {Fermi transition) } \\
& \left(\text { at nucleon level: } \mathrm{p} \rightarrow \mathrm{n}+e^{+}+v_{\mathrm{e}}\right) \\
& \quad\left(\text { at quark level: } u \rightarrow \mathrm{~d}+e^{+}+v_{\mathrm{e}}\right)
\end{aligned}
$$

(same formalism for other β decays)

Transition amplitude in configuration space

$$
\begin{aligned}
T_{f i} & =-i \frac{4 G_{F}}{\sqrt{2}} \int \mathrm{~d}^{4} x J_{\mu}^{(N) \dagger}(x) \cdot J^{(l) \mu}(x) \\
& =-i \frac{4 G_{F}}{\sqrt{2}} \int \mathrm{~d}^{4} x\left[\bar{\psi}_{n}(x) \gamma_{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) \psi_{p}(x)\right]\left[\bar{\psi}_{v}(x) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) \psi_{e}(x)\right]
\end{aligned}
$$

approximations: other nucleons are spectators (i.e. do not participate in the transition) "point" interaction, ignore longer range strong interactions $0^{+} \rightarrow 0^{+}$no change in nuclear wave function (Fermi transition), only V $\mathrm{E} \sim 2 \mathrm{MeV} \rightarrow \lambda_{\mathrm{e}} \sim 10^{-11} \mathrm{~cm}$ big compared to $\mathrm{R}_{\mathrm{A}} \sim 3 \mathrm{fm}$ non-relativistic for nucleus / nucleons ($\mathbf{p} \rightarrow 0$)
\rightarrow only γ^{0} contributes: $\bar{\psi}_{n} \gamma^{\mu} \psi_{p} \rightarrow \bar{\psi}_{n} \gamma^{0} \psi_{p}=\psi_{n}^{\dagger} \gamma^{0} \gamma^{0} \psi_{p}=\psi_{n}^{\dagger} \psi_{p}$

$$
T_{f i} \approx-i \frac{G_{F}}{\sqrt{2}}\left[\bar{u}_{v}\left(p_{v}\right) \gamma^{0}\left(1-\gamma^{5}\right) v_{e}\left(p_{e}\right)\right] \int \mathrm{d}^{4} x \psi_{n}^{\dagger}(x) \psi_{p}(x) \cdot e^{-i\left(p_{v}+p_{e}\right) \cdot x}
$$

recall: $\psi(x)=u(p) e^{-i p \cdot x}$ integral in $\mathrm{d}^{4} x \equiv$ Fourier transform \rightarrow momentum space

A first integration over $\mathrm{d} t \int \mathrm{~d} t e^{-i E t}=2 \pi \delta\left(E_{i}-E_{f}\right)$ gives

$$
T_{f i}=-i \frac{G_{F}}{\sqrt{2}}\left[\bar{u}_{v}\left(p_{v}\right) \gamma^{0}\left(1-\gamma^{5}\right) \nu_{e}\left(p_{e}\right)\right](2 \pi) \delta\left(E_{0}-E_{e}-E_{v}\right) \int \mathrm{d}^{3} x \psi_{n}^{\dagger}(x) \psi_{p}(x) \cdot e^{-i\left(\vec{p}_{v}+\vec{p}_{e}\right) \cdot \vec{x}}
$$

The integration over $\mathrm{d}^{3} x$ gives energy released in the decay $E_{0}=\sqrt{m_{n}^{2}-m_{p}^{2}-m_{e}^{2}}$

$$
\begin{aligned}
= & -i \frac{G_{F}}{\sqrt{2}}\left[\bar{u}_{v}\left(p_{v}\right) \gamma^{0}\left(1-\gamma^{5}\right) v_{e}\left(p_{e}\right)\right]\left(2 m_{N}\right)(2 \pi) \delta\left(E_{0}-E_{e}-E_{v}\right) \\
& 2 \mathrm{~m}_{N} \equiv \text { normalization of nucleon wave functions } \int \mathrm{d}^{3} x \psi_{n}^{\dagger} \psi_{p}=2 m_{N}(/ V)
\end{aligned}
$$

${ }^{14} \mathrm{O}$ has 8 protons: do all these protons contribute to the decay on equal footing?
${ }^{14} \mathrm{O}$ is part of the isospin triplet $\left({ }^{14} \mathrm{O},{ }^{14} \mathrm{~N}^{*},{ }^{14} \mathrm{C}\right)$,
interpreted as (|pp>, 1/ل $2(|p n>+| n p>), \mid n n>)$ around an isosinglet ${ }^{12} \mathrm{C}$ core.
The decay ${ }^{14} \mathrm{O} \rightarrow{ }^{14} \mathrm{~N}^{\star}+e^{+}+v$ is described as a transition inside the isospin multiplet $\mid p p>\rightarrow 1 / \sqrt{ } 2(|p n>+| n p>)+e^{+}+v$ only the two "external" protons (2 out of 8) participate in the transition \rightarrow sum of amplitudes.
transition amplitude

$$
T_{f i} \approx \frac{G_{F}}{\sqrt{2}}\left[\bar{u}\left(p_{v}\right) \gamma^{0}\left(1-\gamma^{5}\right) v\left(p_{e}\right)\right]\left(2 m_{N}\right)\left(2 \frac{1}{\sqrt{2}}\right)
$$

2 from the sum of amplitudes (don't know which p), 1/ل 2 from isospin

Invariant Amplitude

$$
M_{f i} \approx \frac{G_{F}}{\sqrt{2}}\left[\bar{u}\left(p_{v}\right) \gamma^{0}\left(1-\gamma^{5}\right) v\left(p_{e}\right)\right]\left(2 m_{N}\right)\left(2 \frac{1}{\sqrt{2}}\right)\left(2 m_{N}\right)
$$

Add over final state spins (only lepton spins, ${ }^{14} \mathrm{O}$ and ${ }^{14} \mathrm{~N}^{*}$ are spinless)

$$
\left.\left|\overline{\left.M_{f i}\right|^{2}}=\frac{G_{F}^{2}}{\mathcal{Z}^{2}} \sum_{\text {spins }}\right| \bar{u}\left(p_{v}\right) \gamma^{0}\left(1-\gamma^{5}\right) v\left(p_{e}\right)\right|^{2}\left(2 m_{N}\right)^{2}\left(\frac{1}{\sqrt{2}}\right)^{2}
$$

The sum over spins (exercise)

$$
\begin{aligned}
\sum_{\text {spins }} \mid \bar{u}\left(p_{v}\right) & \left.\gamma^{0}\left(1-\gamma^{5}\right) v\left(p_{e}\right)\right|^{2} \\
= & \sum_{\mathrm{s}, \mathrm{t}}\left(\bar{u}^{(s)}\left(p_{v}\right) \gamma^{0}\left(1-\gamma^{5}\right) v^{(t)}\left(p_{e}\right)\right)\left(\bar{v}^{(t)}\left(p_{e}\right)\left(1+\gamma^{5}\right) \gamma^{0} u^{(s)}\left(p_{v}\right)\right) \\
= & \operatorname{Tr}\left(\not p_{v} \gamma^{0}\left(1-\gamma^{5}\right) \not p_{e}\left(1+\gamma^{5}\right) \gamma^{0}\right)
\end{aligned}
$$

gives

$$
=8\left(E_{e} E_{v}+\vec{p}_{e} \cdot \vec{p}_{v}\right)=8 E_{e} E_{v}\left(1+\beta_{e} \cos \vartheta\right)
$$

Maximal when emitted in same direction (opposite to recoiling nucleus)

Transition Rate Г

Putting everything together

$$
\mathrm{d} \Gamma=\frac{1}{2 E_{p}} \overline{\left|M_{f i}\right|^{2}} \frac{1}{2 E_{n}} \frac{\mathrm{~d}^{3} p_{e}}{(2 \pi)^{3} 2 E_{e}} \frac{\mathrm{~d}^{3} p_{v}}{(2 \pi)^{3} 2 E_{v}} 2 \pi \delta\left(E_{0}-E_{e}-E_{v}\right)
$$

integrating over $\mathrm{d}^{4} x$ is equivalent to integrating over $\mathrm{d}^{4} p_{N}$

$$
\left.\frac{\mathrm{d}^{3} p_{n}}{(2 \pi)^{3} 2 E_{n}}(2 \pi)^{4} \delta^{4}\left(p_{A}-p_{1}-\cdots-p_{N}\right) \rightarrow \frac{1}{2 E_{n}} 2 \pi \delta\left(E_{0}-E_{e}-E_{v}\right)\right]
$$

gives

$$
\mathrm{d} \Gamma=\frac{1}{2 E_{p}} G_{F}^{2} 8 E_{e} E_{v}(1+\cos \vartheta)\left(2 m m_{N}\right)^{2} \frac{1}{2 E_{n}} \frac{\mathrm{~d}^{3} p_{e}}{(2 \pi)^{3} 2 E_{e}} \frac{\mathrm{~d}^{3} p_{v}}{(2 \pi)^{3} 2 E_{v}} 2 \pi \delta\left(E_{0}-E_{e}-E_{v}\right)
$$

express $\mathrm{d}^{3} p_{e} \mathrm{~d}^{3} p_{v}$ in spherical coordinates $p_{e}^{2} \mathrm{~d} p_{e} \mathrm{~d}\left(\cos \vartheta_{e}\right) \mathrm{d} \varphi_{e} E_{v}^{2} \mathrm{~d} E_{v} \mathrm{~d}\left(\cos \vartheta_{v}\right) \mathrm{d} \varphi_{v}$ 2 integrations in $\mathrm{d} \phi$ and 1 in $\mathrm{d}\left(\cos \theta_{v}\right)$ give $2 \pi p_{e}^{2} \mathrm{~d} p_{e} \mathrm{~d}\left(\sin \vartheta_{e}\right) 2 \pi 2 E_{v}^{2} \mathrm{~d} E_{v}$

$$
\mathrm{d} \Gamma=\frac{4 G_{F}^{2}}{(2 \pi)^{3}}(1+\cos \vartheta)\left(\mathrm{d}(\cos \vartheta) p_{e}^{2} \mathrm{~d} p_{e}\right)\left(E_{\nu}^{2} \mathrm{~d} E_{\nu}\right) \delta\left(E_{0}-E_{e}-E_{v}\right)
$$

with $E_{0}=\sqrt{m_{n}^{2}-m_{p}^{2}-m_{e}^{2}}$ the energy released in the decay

β Energy Spectrum

Integrating over E_{v} and $\cos \theta$ gives the energy spectrum of the decay electron $\left(p_{e} \sim E_{e}\right)$

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} E_{e}}=\frac{4 G_{F}^{2}}{(2 \pi)^{3}} E_{e}^{2}\left(E_{0}-E_{e}\right)^{2} \int_{0}^{\pi} \mathrm{d} \cos \vartheta(1+\cos \vartheta)=\frac{G_{F}^{2}}{\pi^{3}} E_{e}^{2}\left(E_{0}-E_{e}\right)^{2}
$$

To study the spectrum end-point, can rewrite $\mathrm{d} \Gamma / \mathrm{dE}$ in the following way

$$
K=\sqrt{\frac{\mathrm{d} \Gamma}{\mathrm{~d} E_{e}}} / E_{e}=\frac{G_{F}}{\pi^{3 / 2}}\left(E_{0}-E_{e}\right)
$$

Kurie plot (spectrum): deviations $\rightarrow \mathrm{m}_{\mathrm{v}}$
 exp.: $\mathrm{m}_{\mathrm{v}}<0.8 \mathrm{eV}$

Neutrino Mass Measurement

KATRIN experiment $\left({ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+\mathrm{e}^{-}+\overline{\mathrm{v}}_{\mathrm{e}}\right)$

β Lifetime

So far ignored nuclear / Coulomb effects

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} E_{e}}=\frac{G_{F}^{2}}{\pi^{3}} E_{e}^{2}\left(E_{0}-E_{e}\right)^{2} \underbrace{F\left(Z, E_{0}\right)}_{\sim 1}
$$

By integrating over E_{e} we can relate the transition rate $(\Gamma=1 / \tau)$ to G_{F}

$$
\begin{gathered}
\frac{1}{\tau}=\Gamma=\frac{G_{F}^{2}}{\pi^{3}} \int_{0}^{E_{0}} E_{e}^{2}\left(E_{0}-E_{e}\right)^{2} \mathrm{~d} E_{e}=\frac{G_{F}^{2}}{30 \pi^{3}} E_{0}^{5} \\
\Gamma=\frac{G_{F}^{2}}{30 \pi^{3}} E_{0}^{5}
\end{gathered}
$$

Note the $\mathrm{E}_{0}{ }^{5}$ dependence of the decay width - Sargent's law
The $\mathrm{E}_{0}{ }^{5}$ dependence can be derived from dimensional arguments:
E_{0} is the only "observable" in the process $\rightarrow[\Gamma]=\mathrm{E}$ and $\left[\mathrm{G}_{\mathrm{F}}{ }^{2}\right]=\mathrm{E}^{-4} \rightarrow \mathrm{E}_{0}{ }^{5}$
For the ${ }^{14} \mathrm{O} \rightarrow{ }^{14} \mathrm{~N}^{*}+e^{+}+v$ decay

$$
\mathrm{E}_{0}=1.81 \mathrm{MeV}
$$

$$
\begin{aligned}
\tau=102 \mathrm{~s} & \left(\Gamma=9.76 \times 10^{-3} \mathrm{~s}^{-1}\right) \\
& \rightarrow \mathrm{G}_{\mathrm{F}}=1.136 \pm 0.003 \times 10^{-5} \mathrm{GeV}^{-2}
\end{aligned}
$$

Electron Polarization in β Decays

According to the $\mathrm{V}-\mathrm{A}$ theory, electrons emitted in weak decays are left handed, i.e. they are eigenstates of the chirality projector $P_{\mathrm{L}}=1 / 2\left(1-\gamma_{5}\right)$:

$$
e_{L}(p)=P_{L} e(p)=\frac{1}{2}\left(1-\gamma_{5}\right) e(p)
$$

To calculate the electron polarization, decompose the chirality eigenstate into helicity eigenstates:
$e_{L}(p)=\frac{1}{2}\left(1-\frac{\vec{p} \cdot \vec{\sigma}}{E+m}\right) e=\frac{1}{2}\left(1-\frac{p_{z}}{E+m}\right) e_{+\frac{1}{2}}+\frac{1}{2}\left(1+\frac{p_{z}}{E+m}\right) e_{-\frac{1}{2}} \xrightarrow[\substack{p \rightarrow \infty \\ m \rightarrow 0}]{ } \frac{1}{2} \frac{m}{E} e_{+\frac{1}{2}}+e_{-\frac{1}{2}}$
The "polarization" $\langle h\rangle=\frac{\Pi^{+}-\Pi^{-}}{\Pi^{+}+\Pi^{-}}$measures the alignment of the electron spin w.r.t. its momentum.

$$
\Pi^{+} \text {probability to be in + helicity state }
$$

$$
\Pi^{+}=\left|+\frac{1}{2}\left(1-\frac{p}{E+m}\right)\right|^{2}
$$

$$
\Pi^{-} \text {probability to be in a - helicity state } \quad \Pi^{-}=\left|+\frac{1}{2}\left(1+\frac{p}{E+m}\right)\right|^{2}
$$

It follows that

$$
\langle h\rangle=\frac{\Pi^{+}-\Pi^{-}}{\Pi^{+}+\Pi^{-}}=\frac{(E+m-p)^{2}-(E+m+p)^{2}}{(E+m-p)^{2}+(E+m+p)^{2}}=-\frac{p}{E}=-\beta
$$

where β is the speed of the electron.

Electron Polarization Measurement

Scatter electrons from β decays on an electron target
This is a QED process, which conserves parity and therefore is not sensitive to the longitudinal electron polarization
This observable $\sigma^{\rightarrow}-\sigma^{\leftarrow}$ violates parity
Two solutions:
a) rotate the electron spin from longitudinal to transverse with an electric field (change the direction of electron without modifying the spin direction) measure left - right scattering asymmetry
b) scatter longitudinally polarized electrons on a polarized electron target (polarized i.e. with a magnetic field) measure

$$
\sigma^{\leftarrow \leftarrow}-\sigma^{\leftarrow \leftarrow /} / \sigma^{\star \leftarrow}+\sigma^{\leftarrow} \propto P_{e}
$$

this observable does not violate parity

Muon Decay

muons discovered in cosmic rays

$$
\begin{aligned}
& \pi^{+} \rightarrow \mu^{+}+v_{\mu} \\
& \mu^{+} \rightarrow e^{+}+\bar{v}_{\mu}+v_{e}
\end{aligned}
$$

points to note:
dE/dx - Bragg Peak
low $\mathrm{dE} / \mathrm{dx}$ for fast e^{+}
constant range for $\mu(\sim 600 \mu \mathrm{~m})$
i.e. monochromatic
\Rightarrow 2-body decay
e^{+}spectrum not monochromatic
E_{e} broad range with $0<E_{e}<1 / 2 m_{\mu}$
$\Rightarrow 3$-body decay (cfr. β spectrum), 2 neutrinos

Lepton Flavor Conservation

Who ordered that? I. I. Rabi in 1947 referring to the recently discovered muon Well, not only this question remains unanswered almost 80 years later, but we still do not have the slightest clue on the origin of flavor ...

Initially thought that the muon could be an excited electron decaying to $\mu \rightarrow e+\gamma$
However, experimentally this decay has never been observed, $\mathrm{BR}<2.4 \times 10^{-13}$, leading to the notion of lepton flavor and lepton flavor conservation. (cfr. baryon cons.)
In the Standard Model $\left(m_{v}=0\right)$ Lepton flavor is conserved absolutely not by "principle", but through its structure.
Different leptons (e, μ, τ) are organized in multiplets (families) with the corresponding neutrinos, and to each multiplet a lepton flavor number L_{e}, L_{μ}, L_{τ} is assigned:

$$
\begin{array}{ll}
\binom{v_{e}}{e^{-}} & \binom{v_{\mu}}{\mu^{-}} \\
L_{e} & \binom{v_{\tau}}{\tau^{-}} \\
L_{\mu}
\end{array}
$$

Transitions across families are strictly forbidden.

\[

\]

LFV Searches: Current Situation

Muon Decay $\mu^{\tau} \rightarrow e^{-}+v_{\mu}+\bar{v}_{e}$

Feynman "prescription": replace outgoing $\bar{v}_{\mathrm{e}}\left(\omega^{\prime}, \mathbf{k}^{\prime}\right)$ with incoming $v_{e}\left(-\omega^{\prime},-k^{\prime}\right)$
(ie. replace u spinor with v spinor)

$$
\bar{v}_{\mathrm{e}}\left(\omega^{\prime}, \mathbf{k}^{\prime}\right) \rightarrow v_{\mathrm{e}}\left(-\omega^{\prime},-\mathbf{k}^{\prime}\right)
$$

effective 4-fermion interaction
invariant amplitude

$$
M_{f i}=\frac{4 G_{F}}{\sqrt{2}}\left[\bar{u}(k) \gamma^{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) u(p)\right]\left[\bar{u}\left(p^{\prime}\right) \gamma_{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) v\left(k^{\prime}\right)\right]
$$

decay rate

$$
\mathrm{d} \Gamma=\frac{1}{2 m_{\mu}} \overline{\left|M_{f i}\right|^{2}} \mathrm{~d} Q
$$

normalization of wave function ($2 \mu^{-} / \mathrm{V} ; \mu^{-}$decays at rest) phase space $\quad \mathrm{d} Q=\frac{\mathrm{d}^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \frac{\mathrm{d}^{3} k}{(2 \pi)^{3} 2 \omega} \frac{\mathrm{~d}^{3} k^{\prime}}{(2 \pi)^{3} 2 \omega^{\prime}}(2 \pi)^{4} \delta^{4}\left(p-p^{\prime}-k-k^{\prime}\right)$

Invariant Amplitude

$$
\begin{aligned}
\left.\left.\langle | M_{f i}\right|^{2}\right\rangle= & \frac{1}{2 s+1} \sum_{\text {spins }}\left|M_{f i}\right|^{2} \\
= & \frac{1}{2} \frac{16 G_{F}^{2}}{2} \sum_{s, t}\left[\frac{\downarrow}{\bar{u}^{s}(k) \gamma^{\mu}} \frac{1}{2}\left(1-\gamma^{5}\right) u^{t}(p)\right]\left[\bar{u}^{t}(p) \frac{1}{2}\left(1+\gamma^{5}\right) \gamma^{\Downarrow} u^{s}(k)\right] \times \quad \text { "muon" tensor } \\
& \sum_{s, t^{\prime} t^{\prime}}\left[\bar{u}^{s^{\prime}}\left(p^{\prime}\right) \gamma_{\mu} \frac{1}{2}\left(1-\gamma^{5}\right) \nu^{t^{\prime}}\left(k^{\prime}\right)\right]\left[\bar{v}^{t^{t}}\left(k^{\prime}\right) \frac{1}{2}\left(1+\gamma^{5}\right) \gamma_{\nu} u^{u^{\prime}}\left(p^{\prime}\right)\right] \quad \text { "electron" tensor } \\
= & \frac{1}{2} \frac{G_{F}^{2}}{2} L^{\mu \nu} K_{\mu \nu}
\end{aligned}
$$

$$
\text { with } L^{\mu \nu}=\sum_{s} \underbrace{u_{\delta}^{s}(k) \bar{u}_{\alpha}^{s}(k)}\left[\gamma^{\mu}\left(1-\gamma^{5}\right)\right]_{\alpha \beta} \times \sum_{t} \underbrace{u_{\beta}^{t}(p) \bar{u}_{\gamma}^{t}(p)}\left[\left(1+\gamma^{5}\right) \gamma^{\nu}\right]_{\gamma \delta}
$$

$$
\sum_{\text {spins }} u_{\delta}^{s} u_{\alpha}^{s}=\left(k+m_{\nu}\right)_{\delta \alpha}=k_{\delta \alpha} \quad \sum_{\text {spins }} u_{\beta}^{t} u_{\gamma}^{t}=\left(\not p+m_{\mu}\right)_{\beta \gamma} \quad \begin{aligned}
& \sum \text { initial and final spins } \\
& \text { completeness relations }
\end{aligned}
$$

and

$$
=\frac{1}{2} \operatorname{Tr}\left\{k \gamma^{\mu}\left(1-\gamma^{5}\right)\left(\not p+m_{\mu}\right) \gamma^{\nu}\left(1-\gamma^{5}\right)\right\}=\operatorname{Tr}\left(\not k \gamma^{\mu}\left(\not p+m_{\mu}\right) \gamma^{\nu}\right)+4 i \varepsilon^{\mu \alpha \nu \beta} k_{a}\left(\not p+m_{\mu}\right)_{\beta}
$$

$$
K_{\mu \nu}=\frac{1}{2} \operatorname{Tr}\left\{\left(\not \chi^{\prime}+m_{e}\right) \gamma_{\mu}\left(1-\gamma^{5}\right) \not k^{\prime} \gamma_{v}\left(1-\gamma^{5}\right)\right\}=\operatorname{Tr}\left(\left(\not y^{\prime}+m_{e}\right) \gamma_{\mu} \not k^{\prime} \gamma_{\nu}\right)+4 i \varepsilon_{\mu \alpha \nu \beta}\left(\not \gamma^{\prime}+m_{e}\right)^{\alpha} k_{17}^{\prime \beta}
$$

$$
\begin{aligned}
L^{\mu \nu} K_{\mu \nu} & =\operatorname{Tr}\left\{k \gamma^{\mu}\left(1-\gamma^{5}\right)\left(\not p+m_{\mu}\right) \gamma^{\nu}\left(1-\gamma^{5}\right)\right\} \operatorname{Tr}\left\{\left(\not p^{\prime}+m_{e}\right) \gamma_{\mu}\left(1-\gamma^{5}\right) k^{\prime} \gamma_{\nu}\left(1-\gamma^{5}\right)\right\} \\
& =256\left(k \cdot p^{\prime}\right)\left(p \cdot k^{\prime}\right) \\
\left.\left.\langle | M_{f i}\right|^{2}\right\rangle & =\frac{1}{2} \frac{G_{F}^{2}}{2} \operatorname{Tr}\left\{k \gamma^{\mu}\left(1-\gamma^{5}\right)\left(\not p+m_{\mu}\right) \gamma^{\nu}\left(1-\gamma^{5}\right)\right\} \times \operatorname{Tr}\left\{\left(\not p^{\prime}+m_{\mu}\right) \gamma_{\mu}\left(1-\gamma^{5}\right) k^{\prime} \gamma_{\nu}\left(1-\gamma^{5}\right)\right\} \\
& =64 G_{F}^{2}\left(k \cdot p^{\prime}\right)\left(k^{\prime} \cdot p\right)
\end{aligned}
$$

compare to $\mu \mathrm{e} \rightarrow \mu \mathrm{e}$ (neglecting the masses in the extreme relativistic limit)
$\left.\left.\langle | M_{f f}\right|^{2}\right\rangle=\frac{8 e^{2}}{\left(k-k^{\prime}\right)^{4}}\left\{(k \cdot p)\left(k^{\prime} \cdot p^{\prime}\right)+\left(k \cdot p^{\prime}\right)\left(k^{\prime} \cdot p\right)\right\}$
which is symmetric in the scattering angle $\cos \theta$.
Finally, the amplitude for $\mu^{-} \rightarrow e^{-}+v_{\mu}+\bar{v}_{e}$ In the muon rest frame $p=(m, 0,0,0)$ is

$$
\left.\left.\langle | M_{f i}\right|^{2}\right\rangle=32 G_{F}^{2}\left(m_{\mu}^{2}-2 m_{\mu} \omega^{\prime}\right) m_{\mu} \omega^{\prime}
$$

Phase Space Factor

$$
\mathrm{d} Q=\frac{\mathrm{d}^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \frac{\mathrm{d}^{3} k}{(2 \pi)^{3} 2 \omega} \frac{\mathrm{~d}^{3} k^{\prime}}{(2 \pi)^{3} 2 \omega^{\prime}}(2 \pi)^{4} \delta^{4}\left(p-p^{\prime}-k-k^{\prime}\right)
$$

Start by integrating over the v_{μ} kinematics: transform the $\mathrm{d}^{3} k(3 D)$ integration into a $\mathrm{d}^{4} \mathrm{k}(4 \mathrm{D})$ integration using the dispersion relation $k=p-p^{\prime}-k^{\prime}$ (from the $\delta^{4}!$),

$$
2 \pi \delta\left(k^{2}-m^{2}\right) \Theta(\omega) \frac{\mathrm{d}^{4} k}{(2 \pi)^{4}} \xrightarrow{\int \mathrm{~d} \omega} \frac{1}{2 \sqrt{\vec{k}^{2}+m^{2}}} \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}}
$$

$$
\Theta(x)= \begin{cases}1 & x>0 \\ 0 & x<0\end{cases}
$$

and we obtain
Heaviside Θ function

$$
\mathrm{d} Q=\frac{\mathrm{d}^{3} p^{\prime}}{(2 \pi)^{3} 2 E^{\prime}} \frac{\mathrm{d}^{3} k^{\prime}}{(2 \pi)^{3} 2 \omega^{\prime}} 2 \pi \Theta\left(E-E^{\prime}-\omega^{\prime}\right) \delta\left(\left(p-p^{\prime}-k^{\prime}\right)^{2}\right)
$$

Then replace $\left[\mathrm{d}^{3} p^{\prime} \mathrm{d}^{3} k^{\prime}\right]$ with $\left[4 \pi E^{\prime 2} \mathrm{~d} E^{\prime} 2 \pi \omega^{\prime 2} \mathrm{~d} \omega^{\prime} \mathrm{d}(\cos \vartheta)\right] \xrightarrow[\mu^{-}(\mathrm{p})]{\longrightarrow}$ and $\delta\left(\left(p-p^{\prime}-k^{\prime}\right)^{2}\right)$ with $\delta\left(m_{\mu}^{2}-2 m_{\mu} E^{\prime}-2 m_{\mu} \omega^{\prime}+2 E^{\prime} \omega^{\prime}(1-\cos \vartheta)\right)$

$$
\delta\left(\cdots-2 E^{\prime} \omega^{\prime} \cos \vartheta\right)=\frac{1}{2 E^{\prime} \omega^{\prime}} \delta(\cdots-\cos \vartheta)
$$

Transition Rate

Putting everything together

$$
\begin{aligned}
\mathrm{d} \Gamma & =\frac{G_{F}^{2}}{2 m_{\mu}(2 \pi)^{5}} 32\left(m_{\mu}^{2}-2 m_{\mu} \omega^{\prime}\right) m_{\mu} \omega^{\prime} \frac{\mathrm{d}^{3} p^{\prime}}{2 E^{\prime}} \frac{\mathrm{d}^{3} k^{\prime}}{2 \omega^{\prime}} \delta\left(m_{\mu}^{2}-2 m_{\mu} E^{\prime}-2 m_{\mu} \omega^{\prime}+2 E^{\prime} \omega^{\prime}(1-\cos \vartheta)\right) \\
& =\frac{G_{F}^{2}}{2 m_{\mu} \pi^{5}}\left(m_{\mu}^{2}-2 m_{\mu} \omega^{\prime}\right) m_{\mu} \omega^{\prime} 4 \pi E^{\prime 2} \mathrm{~d} E^{\prime} 2 \pi \omega^{\prime 2} \mathrm{~d} \omega^{\prime} \delta(\cdots-\cos \vartheta) \mathrm{d}(\cos \vartheta)
\end{aligned}
$$

and integrating over $\cos \theta$, (i.e. the angle between the electron and the antineutrino)
$\mathrm{d} \Gamma=\frac{G_{F}^{2}}{2 \pi^{3}} m_{\mu} \omega^{\prime}\left(m_{\mu}-2 \omega^{\prime}\right) \mathrm{d} E^{\prime} \mathrm{d} \omega^{\prime} \quad$ with $m_{\mu}-E^{\prime}-\omega^{\prime}>0$
$\begin{aligned} & \text { with the following } \\ & \text { constraints } \\ & \text { (} \delta \text { function) }\end{aligned}$$\left\{\begin{array}{c}-1 \leq \cos \vartheta \leq 1 \\ 0 \leq E^{\prime} \leq \frac{1}{2} m_{\mu} \\ \frac{1}{2} m_{\mu}-E^{\prime} \leq \omega^{\prime} \leq \frac{1}{2} m_{\mu}\end{array}\right.$
$\mathrm{E}^{\mathrm{e}}{ }_{\text {min }}$ when the neutrinos share all available energy
$E^{e l}{ }_{\text {max }}$ when the electron recoils w.r.t. the neutrino pair

Electron Energy Spectrum

Integrating $\mathrm{d} \Gamma$ over ω^{\prime} (\bar{v}_{e} energy) gives the electron energy spectrum

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} E^{\prime}}=\frac{G_{F}^{2}}{2 \pi^{3}} m_{\mu} \int_{m_{\mu} / 2-E^{\prime}}^{m_{\mu}^{\prime / 2}} \mathrm{~d} \omega^{\prime} \omega^{\prime}\left(m_{\mu}-2 \omega^{\prime}\right)=\frac{G_{F}^{2}}{12 \pi^{3}} m_{\mu}^{2} E^{\prime 2}\left(3-\frac{4 E^{\prime}}{m_{\mu}}\right)
$$

the electron tends to take the max available energy $E^{\prime}=1 / 2 m_{\mu}$! i.e. the e recoils w.r.t. the v pair

Muon Lifetime

Integrate $\mathrm{d} \Gamma$ over E^{\prime} to obtain the muon decay rate

$$
\frac{1}{\tau}=\Gamma=\frac{G_{F}^{2}}{12 \pi^{3}} m_{\mu}^{2_{\mu}^{2}} \int_{0}^{m_{\mu} / 2} \mathrm{~d} E^{\prime} E^{\prime 2}\left(3-\frac{4 E^{\prime}}{m_{\mu}}\right)=\frac{G_{F}^{2}}{192 \pi^{3}} m_{\mu}^{5}\left[1-\frac{\alpha}{2 \pi}\left(\pi^{2}-\frac{25}{4}\right)\right] f\left(\frac{m_{e}^{2}}{m_{\mu}^{2}}\right)
$$

and the muon lifetime is

$$
\tau_{\mu}=\frac{192 \pi^{3} \hbar^{7}}{G_{F}^{2} m_{\mu}^{5} c^{4}}=2.1969811 \pm 0.0000022 \times 10^{-6} \mathrm{~S}
$$

radiative corrections $+\mathrm{m}_{\mathrm{e}}$ (i.e. $\Delta \tau=2.2 \mathrm{ps}$)
which gives the Fermi weak coupling constant (including m_{e} and the radiative corrections)

$$
\mathrm{G}_{\mathrm{F}}(\mu)=1.1663787 \pm 0.0000006 \times 10^{-5} \mathrm{GeV}^{-2}
$$

Compare to the β decay rate

$$
\begin{gathered}
\frac{1}{\tau}=\Gamma=\frac{G_{F}^{2}}{30 \pi^{3}} E_{0}^{5} \\
G_{F}(\beta)=1.136 \pm 0.003 \times 10^{-5} \mathrm{GeV}^{-2} \\
\Rightarrow G_{F}(\mu)-G_{F}(\beta)=0.030 \pm 0.003 \times 10^{-5} \mathrm{GeV}^{-2} \quad \text { i.e. } 10 \sigma \text { significance! }
\end{gathered}
$$

The weak coupling G_{F} does not seem to be universal. Do we have a problem?

Muon Lifetime Measurements - FAST

The muon stops in the active target measure time difference between stop time and decay time

Muon Lifetime Measurements - MuLAN

Balandin - 1974

Giovanetti - 1984
Bardin - 1984
Chitwood - 2007
Barczyk - 2008
MuLan - R06
MuLan-R07

MuLAN: $\quad 2196980 \pm 2 \mathrm{ps}$
world avarage : $2196981.1 \pm 2.2 \mathrm{ps} \rightarrow \mathrm{G}_{\mathrm{F}}=1.1663787 \pm 0.0000006 \times 10^{-5} \mathrm{GeV}^{-2}$

Helicity Considerations

Polarized Muon Decay

We do not average over the initial muon spin.

$$
\frac{\mathrm{d} \Gamma}{\mathrm{~d} E^{\prime}}=\underbrace{\mathrm{G}^{\prime}}_{\text {unpolarized spectrum } \mathrm{d} \Gamma / \mathrm{dE}} \frac{G_{F}^{2}}{12 \pi^{3}} m_{\mu}^{2} E^{\prime 2}\left(3-\frac{4 E^{\prime}}{m_{\mu}}\right)\left[1+\frac{1-4 E^{\prime} / m_{\mu}}{3-4 E^{\prime} / m_{\mu}} \cos \vartheta\right]\left[\frac{1}{2}\left(1-\frac{\vec{p}_{e} \cdot \hat{e}_{e}}{\left|\vec{p}_{e}\right|}\right)\right] \frac{\mathrm{d}(\cos \vartheta) d \varphi}{4 \pi}
$$

$$
\theta=\text { arigle between } \mathrm{e}^{-} \text {direction }\left(\mathrm{p}^{\prime}\right) \text { and } \mu^{-} \text {polarization } \mathbf{z}
$$

$$
\phi=\text { azimuthal angle }
$$

$$
\mathrm{n}=\text { unitary vector } / / \mathrm{p}^{\prime}
$$

$$
\mathbf{s}_{\mathrm{e}}=\text { direction } \mathrm{e}^{-} \text {spin in } \mathrm{e}^{-} \text {rest frame }
$$

e^{-}angular distribution w.r.t. \mathbf{z}, direction of μ^{-}polarization

for $E^{\prime}=m_{\mu} / 2 \quad[\ldots]=[1-\cos \theta]$ is \max for $\theta=180^{\circ}$
e^{-}preferentially emitted in direction opposite to muon polarization \mathbf{z}
μ^{+}decay: $[1+\ldots] \rightarrow[1-\ldots] ; \quad[\ldots]=[1+\cos \theta]$ is \max for $\theta=0^{0}$ e^{+}preferentially emitted in the direction of muon polarization z

Tau Lifetime

 muon lifetime $\frac{1}{\tau_{\mu}}=\Gamma\left(\mu^{-} \rightarrow e^{-} v_{\mu} \bar{v}_{e}\right)=\frac{G_{F}^{2}}{192 \pi^{3}} m_{\mu}^{5} \quad \begin{aligned} & \text { the factor m}{ }^{5} \text { comes from phase space } \\ & \text { (Sargent's law) }\end{aligned}$Therefore we find the same expression for the transition rate of weak decaying pointlike fermions, for example for the τ lepton (produced e.g. in $e^{+} e^{-} \rightarrow \tau^{+} \tau^{\text {) }}$:

$$
\Gamma\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}\right)=\operatorname{BR}\left(\tau^{-} \rightarrow e^{-} \bar{v}_{v_{\tau}}\right) \times \Gamma\left(\tau^{-} \rightarrow \operatorname{all}\right)=\frac{\operatorname{BR}\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}\right)}{\tau_{\tau}}=\frac{G_{F}^{2}}{192 \pi^{3}} m_{\tau}^{5}
$$

$$
\operatorname{BR}\left(\tau^{-} \rightarrow e^{-} \bar{v}_{e} v_{\tau}\right)=0.1782 \pm 0.0004
$$

$$
G_{F}=1.1663787(6) \times 10^{-5} \mathrm{GeV}^{-2}
$$

$$
m_{\tau}=(1776.86 \pm 0.12) \mathrm{MeV}
$$

predicted $\quad \tau_{\tau}^{\text {theo }}=(290.3 \pm 0.5) \times 10^{-15} \mathrm{~s}$
measured $\quad \tau_{\tau}^{\exp }=(290.6 \pm 1.0) \times 10^{-15} \mathrm{~s}$

Lepton Universality

Charged current weak interactions is universal and is equal for all fermions (when corrected for the masses of fermions). To test it, consider the following processes:
$\mathrm{e}-\mu$ universality: compare $\tau^{-} \rightarrow e^{-} \nu_{\tau} \bar{v}_{e}$ and $\tau^{-} \rightarrow \mu^{-} \nu_{\tau} \bar{v}_{\mu}$

$$
\Gamma\left(\tau^{+} \rightarrow e^{+} \bar{v}_{\tau} v_{e}\right) \propto \frac{g_{\tau}^{2}}{M_{W}^{2}} \frac{g_{e}^{2}}{M_{W}^{2}} m_{\tau}^{5} \quad \Gamma\left(\tau^{+} \rightarrow \mu^{+} \bar{v}_{\tau} v_{\mu}\right) \propto \frac{g_{\tau}^{2}}{M_{W}^{2}} \frac{g_{\mu}^{2}}{M_{W}^{2}} m_{\tau}^{5}
$$

and take the ratio of the branching ratios (B.R.) (ρ is the phase space)

$$
\begin{aligned}
& \frac{\Gamma\left(\tau^{+} \rightarrow \mu^{+} \bar{v}_{\tau} v_{\mu}\right)}{\Gamma\left(\tau^{+} \rightarrow e^{+} \bar{v}_{\tau} v_{e}\right)}=\frac{\Gamma_{\text {tot }} \cdot B R\left(\tau^{+} \rightarrow \mu^{+} \bar{v}_{v} v_{\mu}\right)}{\Gamma_{\text {tot }} \cdot B R\left(\tau^{+} \rightarrow e^{+} \bar{v}_{\tau} v_{e}\right)}=\frac{g_{\mu}^{2}}{g_{e}^{2}} \frac{\rho_{\mu}}{\rho_{e}} \\
& \frac{B R\left(\tau^{+} \rightarrow \mu^{+} \bar{v}_{\tau} v_{\mu}\right)}{B R\left(\tau^{+} \rightarrow e^{+} \bar{v}_{\tau} v_{e}\right)}=\frac{(17.36 \pm 0.05) \%}{(17.84 \pm 0.05) \%}=0.974 \pm 0.004 \quad \Rightarrow \quad \frac{g_{\mu}}{g_{e}}=1.001 \pm 0.002
\end{aligned}
$$

$\mu-\tau$ universality: compare $\tau^{-} \rightarrow e^{-} v_{\tau} \overline{\bar{v}}_{e}$ and $\mu^{-} \rightarrow e^{-} v_{\mu} \bar{\nu}_{e}$

$$
\begin{aligned}
& \frac{\Gamma\left(\mu^{-} \rightarrow e^{-} v_{\mu} \bar{v}_{e}\right)}{\Gamma\left(\tau^{-} \rightarrow e^{-} v_{\tau} \bar{v}_{e}\right)}=\frac{\Gamma_{\mu} \cdot 1}{\Gamma_{\tau} \cdot B R\left(\tau^{-} \rightarrow e^{-} v_{\tau} \bar{v}_{e}\right)}=\frac{\tau_{\tau}}{\tau_{\mu}} \frac{1}{B R\left(\tau^{-} \rightarrow e^{-} v_{\tau} \bar{v}_{e}\right)}=\frac{g_{e}^{2}}{g_{e}^{2}} \frac{g_{\mu}^{2}}{g_{\tau}^{2}} \frac{m_{\mu}^{5}}{m_{\tau}^{5}} \frac{\rho_{\mu}}{\rho_{\tau}} \\
& \Rightarrow \frac{g_{\mu}^{2}}{g_{\tau}^{2}}=\frac{\tau_{\tau}}{\tau_{\mu}} \frac{m_{\mu}^{5}}{m_{\tau}^{5}} \frac{\rho_{\mu}}{\rho_{\tau}} \frac{1}{B R\left(\tau^{-} \rightarrow e^{-} v_{\tau} \bar{\nu}_{e}\right)} \quad \Rightarrow \quad \frac{g_{\mu}}{g_{\tau}}=1.001 \pm 0.003
\end{aligned}
$$

These properties are evident for leptons, but not at all for quarks (quark mixing - CKM matrix).
π^{-}Decay: $\pi^{-} \rightarrow \mu^{-}+\bar{v}_{\mu}$

Compare π decays to e and μ

$$
\frac{\Gamma\left(\pi^{-} \rightarrow e^{-} \bar{v}_{e}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu}\right)}=(1.228 \pm 0.022) \times 10^{-4}
$$

The pion decays by far more likely to a muon rather than to an electron, while phase space ($p_{\mathrm{e}}=70 \mathrm{MeV}, p_{\mu}=30 \mathrm{MeV}$) would favor the decay to electrons, the lighter particles.
From phase space $\Gamma \propto p_{l}=\frac{m_{\pi}^{2}-m_{l}^{2}}{m_{\pi}}$ and $\frac{\Gamma\left(\pi^{-} \rightarrow e^{-} \bar{v}_{e}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu}\right)}=\frac{m_{\pi}^{2}-m_{e}^{2}}{m_{\pi}^{2}-m_{\mu}^{2}}=2.34$
There must be some dynamics involved (not only kinematics) to explain this!

Helicity Analysis

According to V - A theory the muons from pion decays are lefthanded and the anti-neutrinos are righthanded.

Angular momentum conservation $J=0$ requires the electron (muon) to have positive (wrong) helicity, which is forbidden in the limit $\mathrm{m}_{\mu}=0$.

For $m_{\mu} \neq 0$, the chirality eigenstates contain also a small component with the wrong helicity:

$$
\begin{aligned}
& \psi_{L}=\frac{1}{2}\left(1-\frac{\vec{p} \cdot \vec{\sigma}}{E+m}\right) \psi=\frac{1}{2}\left(1-\frac{p_{z}}{E+m}\right) \varphi_{+1 / 2}+\frac{1}{2}\left(1+\frac{p_{z}}{E+m}\right) \varphi_{-1 / 2} \\
& \psi_{L}=\frac{1}{2} \frac{m}{E} \varphi_{+1 / 2}+\varphi_{-1 / 2} \\
& \text { It is this component that enters into the pion decay. }
\end{aligned}
$$

Probability for a given chirality eigenstate to have the wrong helicity: $\frac{1}{4} \frac{m^{2}}{E^{2}}$
and $\frac{\Gamma\left(\pi^{-} \rightarrow e^{-} \bar{v}_{e}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu}\right)}=\frac{m_{e}^{2}}{m_{\mu}^{2}} \frac{\left(m_{\pi}^{2}-m_{e}^{2}\right)^{2}}{\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}}=1.28 \times 10^{-4}$
(cfr. experiment !)

So we understand the pion decay!

Invariant Amplitude

$$
M_{f i}=\frac{G_{F}}{\sqrt{2}}\langle 0| \bar{d} \gamma^{\mu}\left(1-\gamma^{5}\right) u\left|\pi^{+}\right\rangle \bar{u}(p) \gamma_{\mu}\left(1-\gamma^{5}\right) v(k)
$$

The weak quark current \neq "usual form" because quarks are bounded in the π meson, and we don't know how to calculate exactly the quark vertex.

Lorentz covariance \rightarrow must be a four-vector
π spinless \Rightarrow only $q^{\mu}\left(=p^{\mu}+k^{\mu}\right)$, no spin (with $\left.q^{2}=m_{\pi}^{2}\right)$
most general form for π current

$$
(\cdots \cdots)^{\mu} \rightarrow-q^{\mu} f_{\pi}\left(q^{2}\right)=-q^{\mu} f_{\pi}\left(m_{\pi}^{2}\right)=-q^{\mu} f_{\pi}
$$

f_{π} : π disintegration constant (can depend only on q^{2}, the only scalar available) $f_{\pi}=130 \mathrm{MeV} \sim m_{\pi}$

The matrix element of a vector current between a pion state (pseudo-scalar) and the vacuum is a pseudo four-vector and likewise the matrix element of an axial current between a pion state and the vacuum is a four-vector.
Since q^{μ} is a true four-vector, and there is no pseudo-vector at our disposal like spin, the two separate contributions are

$$
\langle 0| \bar{d} \gamma^{\mu} u\left|\pi^{+}\right\rangle=0 \quad \text { and } \quad\langle 0| \bar{d} \gamma^{\mu} \gamma^{5} u\left|\pi^{+}\right\rangle=f_{\pi} q^{\mu}
$$

Therefore all contributions come from the axial current.

The invariant amplitude is then given by

$$
\begin{aligned}
M_{f i} & =\frac{G_{F}}{\sqrt{2}}\left(p^{\mu}+k^{\mu}\right) f_{\pi}\left[\bar{u}(p) \gamma_{\mu}\left(1-\gamma^{5}\right) v(k)\right] \\
& =\frac{G_{F}}{\sqrt{2}} f_{\bar{\pi}} \bar{u}(p)(\not p+\not k)\left(1-\gamma^{5}\right) v(k) \\
& \quad \text { use Dirac eq. } \quad k^{\mu} \gamma_{\mu} v(k)=0 \quad \text { and } \quad \bar{u}(p)\left(p^{\mu} \gamma_{\mu}-m_{\mu}\right)=0 \\
& =\frac{G_{F}}{\sqrt{2}} f_{\pi} m_{\mu}\left[\bar{u}(p)\left(1-\gamma^{5}\right) v(k)\right]
\end{aligned}
$$

The initial state has spin 0 , sum only over final spin states

$$
\begin{aligned}
\overline{\left|M_{f i}\right|^{2}} & =\frac{G_{F}^{2}}{2} f_{\pi}^{2} m_{\mu}^{2} \sum_{s, t}\left[\bar{u}^{s}(p) \gamma_{\mu}\left(1-\gamma^{5}\right) v_{\uparrow}^{t}(k)\right] \times\left[\overline{\bar{v}}_{\uparrow}^{t}(k) \gamma_{\mu}\left(1+\gamma^{5}\right) u_{\uparrow}^{s}(p)\right] \\
& \quad \text { spin sums } \sum_{\text {spins }} u_{\delta}^{s} \bar{u}_{\alpha}^{s}=\left(\not p+m_{\mu}\right)_{\delta \alpha} \quad \sum_{\text {spins }} u_{\beta}^{t} \bar{u}_{\gamma}^{t}=\left(k+m_{\nu}\right)_{\beta \gamma}=k_{\beta \gamma} \\
& =\frac{G_{F}^{2}}{2} f_{\pi}^{2} m_{\mu}^{2} \operatorname{Tr}\left\{\left(\not p+m_{\mu}\right)\left(1-\gamma^{5}\right) \not k\left(1+\gamma^{5}\right)\right\} \\
& =\frac{G_{F}^{2}}{2} f_{\pi}^{2} m_{\mu}^{2} 4(p \cdot k) 2 \quad \mathbf{p}=-\mathbf{k} \Rightarrow \mathrm{p} \cdot \mathrm{k}=\omega(\mathrm{E}+\omega)
\end{aligned}
$$

$$
\overline{\left|M_{f i}\right|^{2}}=4 G_{F}^{2} f_{\pi}^{2} m_{\mu}^{2} \omega(E+\omega)
$$

with the phase space factor

$$
\mathrm{d} Q=\frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 E} \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3} 2 \omega}(2 \pi)^{4} \delta^{4}(q-p-k)
$$

π Transition Rate

$$
\mathrm{d} \Gamma=\frac{1}{2 m_{\pi}} \overline{\left|M_{f i}\right|^{2}} \mathrm{~d} Q
$$

Putting everything together we obtain

$$
\mathrm{d} \Gamma=\frac{1}{2 m_{\pi}} 4 G_{F}^{2} f_{\pi}^{2} m_{\mu}^{2} \omega(E+\omega) \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 E} \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3} 2 \omega}(2 \pi)^{4} \delta^{4}(q-p-k)
$$

The π transition rate is given by
$\Gamma=\frac{4 G_{F}^{2} f_{\pi}^{2} m_{\mu}^{2}}{2 m_{\pi}} \int \frac{\mathrm{d}^{3} p}{(2 \pi)^{3} 2 E} \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3} 2 \omega} \omega(E+\omega)(2 \pi)^{4} \underbrace{\delta^{4}(q-p-k)}$
After integration over $\mathrm{d}^{3} p$

$$
\delta\left(m_{\pi}-E-\omega\right) \delta^{3}(\vec{p}+\vec{k})
$$

$$
\begin{aligned}
\Gamma & =\frac{G_{F}^{2} f_{\pi}^{2} m_{\mu}^{2}}{2 m_{\pi}(2 \pi)^{2}} \int \frac{\mathrm{~d}^{3} k}{E}(E+\omega) \delta\left(m_{\pi}-E-\omega\right) \\
& =\frac{G_{F}^{2} f_{\pi}^{2} m_{\mu}^{2}}{2 m_{\pi}(2 \pi)^{2}} 4 \pi \int \omega^{2} \mathrm{~d} \omega(1+\omega / E) \delta\left(m_{\pi}-E-\omega\right)
\end{aligned}
$$

and integration over $\mathrm{d} \omega$ we arrive finally at

$$
\Gamma=\frac{G_{F}^{2} f_{\pi}^{2} m_{\mu}^{2}}{2 \pi m_{\pi}}\left[\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}}\right]^{2}=\frac{G_{F}^{2} f_{\pi}^{2} m_{\mu}^{2}}{8 \pi} m_{\pi}\left[1-\left(\frac{m_{\mu}}{m_{\pi}}\right)^{2}\right]^{2}
$$

π Lifetime and Branching Ratios

Lifetime

f_{π} is the only unknown, let's guess $f_{\pi}=m_{\pi}$

$$
\begin{aligned}
\rightarrow \Gamma=4.41 \times 10^{7} \mathrm{~s}^{-1} \quad \rightarrow & \tau=22.6 \mathrm{~ns} \quad \text { assuming } \mathrm{BR}(\pi \rightarrow \mu v) \sim 100 \% \\
\tau & =26.03 \pm 0.23 \mathrm{~ns} \quad \text { (exp.) }
\end{aligned}
$$

but $f_{\pi}=m_{\pi}$ was a guess!
Branching ratios
$\frac{\Gamma\left(\pi^{-} \rightarrow e^{-} \bar{v}_{e}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu}\right)}=\frac{m_{e}^{2}}{m_{\mu}^{2}} \frac{\left(m_{\pi}^{2}-m_{e}^{2}\right)^{2}}{\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}}=1.28 \times 10^{-4} \rightarrow 1.24 \times 10^{-4}$ after radiative corrections
$\frac{\Gamma\left(\pi^{-} \rightarrow e^{-} \bar{v}_{e}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu}\right)}=(1.228 \pm 0.022) \times 10^{-4} \quad$ experimental
Compare this result with previous calculations based on helicity arguments only, i.e. 1.24×10^{-4} vs. 1.28×10^{-4})!

$$
\begin{aligned}
& \text { Note that in a scalar theory } \frac{\Gamma\left(\pi^{-} \rightarrow e^{-} \bar{v}_{e}\right)}{\Gamma\left(\pi^{-} \rightarrow \mu^{-} \bar{v}_{\mu}\right)}=5.5 \\
& \text { olation in weak decavs. }
\end{aligned}
$$

This is yet another proof of parity violation in weak decays.
The V - A theory explains well the charged pion preference to decay to muons rather than electrons despite the unfavorable phase space ($p_{\mathrm{e}}=70 \mathrm{MeV}, p_{\mu}=30 \mathrm{MeV} 3$)

For Next Week

Study the material and prepare / ask questions
Study ch. 12 (sec. 3, 5,6) in Halzen \& Martin and / or ch. 11 (sec. 6) and ch. 12 (sec. 1) in Thomson

Do the homeworks
Next week we will study the quark mixing and the CKM matrix have a first look at the lecture notes, you can already have questions read ch. 12 (sec. 11 to 14) in Halzen \& Martin and / or ch. 12 (sec. 2 to 5) in Thomson

