Advanced Particle Physics 2 Strong Interactions and Weak Interactions L10 – Neutrino Interactions (http://dpnc.unige.ch/~bravar/PPA2/L10)

lecturerAlessandro BravarAlessandro.Bravar@unige.chtél.: 96210bureau: EP 206assistantJorge SabaterJorge SabaterJorge.Sabateriglesias@unige.ch

May 9, 2023

Charged Current $\nu_{\mu} e^{-} \rightarrow \mu^{-} \nu_{e}$ Scattering (inverse μ decay)

$$v_{\mu}(k) \qquad g_{W}^{-}/\sqrt{2} \qquad \mu^{-}(p') \qquad v_{\mu}(k) \qquad \mu^{-}(p') \qquad v_{\mu}(k) \qquad \mu^{-}(p') \qquad g_{W}^{-}/\sqrt{2} \qquad g_{W}^{-}/\sqrt{2} \qquad g_{\mu\nu}^{-} - g_{\mu}^{-}/\sqrt{M_{W}^{2}} \qquad g_{q^{2}} - M_{W}^{2} \qquad g_{W}^{-}/\sqrt{2} \qquad g_{W}^{-}/\sqrt{2}$$

Invariant Amplitude $\nu_{\mu}e^{-} \rightarrow \mu^{-}\nu_{e}$

Invariant amplitude

$$M = \frac{4G_F}{\sqrt{2}} \left[\bar{u}(p')\gamma^{\mu} \frac{1}{2}(1-\gamma^5)u(k) \right] \left[\bar{u}(k')\gamma_{\mu} \frac{1}{2}(1-\gamma^5)u(p) \right]$$

Spin averaged |invariant amplitude|²

$$\left\langle \left| M \right|^{2} \right\rangle = \frac{1}{2s+1} \sum_{\text{spins}} \left| M \right|^{2}$$

$$= \frac{1}{2} \frac{16G_{F}^{2}}{2} \sum_{s,t} \left[\sqrt[4]{u^{s}}(p')\gamma^{\mu} \frac{1}{2}(1-\gamma^{5})u^{t}(k) \right] \left[\sqrt[4]{u^{t}}(k) \frac{1}{2}(1+\gamma^{5})\gamma^{\nu}u^{s}(p') \right] \times$$

$$\sum_{s',t'} \left[\sqrt[4]{u^{s'}}(k')\gamma_{\mu} \frac{1}{2}(1-\gamma^{5})u^{t'}(p) \right] \left[\sqrt[4]{u^{t'}}(p) \frac{1}{2}(1+\gamma^{5})\gamma_{\nu}u^{s'}(k') \right]$$

Apply Casimir's trick ($\Gamma_i - 4 \times 4 \text{ matrix}$)

$$\sum_{spins} \left[\overline{u}(a) \Gamma_1 u(b) \right] \left[\overline{u}(a) \Gamma_2 u(b) \right]^* = \operatorname{Tr} \left[\Gamma_1 (\not p_b + m_b) \gamma^0 \Gamma_2 \gamma^0 (\not p_a + m_a) \right]$$

Finally ...

$$\left\langle \left| \boldsymbol{M} \right|^{2} \right\rangle = \frac{1}{2} \frac{G_{F}^{2}}{2} \operatorname{Tr} \left\{ \boldsymbol{k} \gamma^{\mu} (1 - \gamma^{5}) (\boldsymbol{p}' + m_{e}) \gamma^{\nu} (1 - \gamma^{5}) \boldsymbol{k}' \right\} \times \operatorname{Tr} \left\{ \gamma_{\mu} (1 - \gamma^{5}) \boldsymbol{k} \gamma_{\nu} (1 - \gamma^{5}) (\boldsymbol{p}' + m_{\mu}) \right\}$$
$$= 64 G_{F}^{2} (\boldsymbol{k} \cdot \boldsymbol{p}) (\boldsymbol{k}' \cdot \boldsymbol{p}') \qquad \text{(neglecting } m_{e} \text{ and } m_{\mu})$$

3

compare with muon decay (L8) \rightarrow "inverse" muon decay

 $p_f = p_i$ in the limit m_e , $m_\mu = 0$

$$=\frac{G_F^2 s}{4\pi^2} \xrightarrow{\int_{\Omega} = 4\pi} \sigma = \frac{G_F^2}{\pi} s \xrightarrow{LAB} \frac{G_F^2}{\pi} 2E_v m_e$$

 $\sigma_{LAB} = 1.7 \times 10^{-41} E_{\nu} [\text{GeV}] \text{ cm}^2$

extremely small study v scattering off nuclei much larger cross sections

angular distribution shows directly the V - A structure isotropic! (angular momentum conservation) σ grows linearly with E_v indefinitely! (no propagator) (in L7 we arrived at this conclusion using dimensional arguments only)

$v_e e^- \rightarrow e^- v_e$ Scattering

To be complete, have to consider also neutral currents ...

The neutral current interferes with the charged current; to obtain the amplitude for $M(v_e e \rightarrow v_e e)$ we have to add both diagrams: $M = M^{CC}(v_e e \rightarrow ev_e) + M^{NC}(v_e e \rightarrow v_e e)$

In practice high energy neutrino beams are obtained from charged pion decays: $\pi^+ \rightarrow \mu^+ \nu_{\mu}$. Neutrino beams are composed mainly of muon neutrinos (99%) and $\nu_{\mu}e \rightarrow \mu\nu_{e}$ scattering proceeds via charged current interactions only.

obtained by crossing CC t-channel ve \rightarrow ve scattering amplitude $M(k, p, k', p') = M(-k', p, -k, p') \quad s \leftrightarrow t$

 $\left\langle \left| M \right|^{2} \right\rangle = \dots = 16G_{F}^{2}t^{2} \qquad t \approx -\frac{1}{2}s(1+\cos\theta)$ $= 4G_{F}^{2}s^{2}(1+\cos\theta)^{2} \qquad \text{max for } \theta = 0, \text{ min for } \theta = 180^{0}$ $\frac{d\sigma}{d\Omega}(\overline{\nu}e) = \frac{1}{64\pi^{2}s} \frac{\left| \vec{p}_{f} \right|}{\left| \vec{p}_{i} \right|} \left\langle \left| M \right|^{2} \right\rangle = \frac{G_{F}^{2}}{16\pi^{2}}s(1+\cos\theta)^{2} \quad \text{angular dependence } !$ $\sigma(\overline{\nu}e) = \frac{1}{2}\frac{G_{F}^{2}}{\pi}s \xrightarrow{LAB} \frac{1}{2}\frac{G_{F}^{2}}{\pi}2E_{\nu}m_{e} \qquad \sigma(\overline{\nu}e) = \frac{1}{2}\sigma(\nu e)$

Helicity Considerations

Neutral Currents

NC anticipated by Glashow in 1961 Until then no weak neutral current effects have been observed Note: no flavor change at the vertex, NC conserve flavor!

Very stringent limits on (flavor changing) neutral currents by the absence of decays

 $K^{0} \rightarrow \mu^{+} \mu^{-}$ $BR = 7 \times 10^{-9}$ $K^{+} \rightarrow \pi^{+} \mu^{+} \mu^{-}$ $BR < 4 \times 10^{-11}$

These small (non-zero!) branching ratios explained well by SM (GIM mechanism), also:

$$B_s^0 \to \mu^+ \mu^- \qquad BR = 3 \times 10^{-9}$$

However in ve, vq scattering NC events are as abundant as CC events, difficult to detect isolated electron, study on nuclear targets.

Neutral Currents: $\overline{v_{\mu}} e^{-} \rightarrow \overline{v_{\mu}} e^{-}$ Scattering

$\begin{array}{lll} \textbf{CC and NC} & -\nu \textbf{N} \ \textbf{Scattering} \\ \\ \textbf{CC: } \nu_{\mu} \textbf{N} \rightarrow \mu^{-} + \textbf{X} & \textbf{NC: } \nu_{\mu} \textbf{N} \rightarrow \nu_{\mu} + \textbf{X} \end{array}$

one lepton (μ^{-}) detected all other particles identified as hadrons

$$R_{\nu} = \frac{\sigma^{NC}(\nu)}{\sigma^{CC}(\nu)} = \frac{\sigma(\nu_{\mu}N \to \nu_{\mu}X)}{\sigma(\nu_{\mu}N \to \mu^{-}X)} \approx 0.31 \pm 0.01$$

$$R_{\overline{\nu}} = \frac{\sigma^{NC}(\overline{\nu})}{\sigma^{CC}(\overline{\nu})} = \frac{\sigma(\overline{\nu}_{\mu}N \to \overline{\nu}_{\mu}X)}{\sigma(\overline{\nu}_{\mu}N \to \mu^{+}X)} \approx 0.38 \pm 0.02$$

all particles identified as hadrons no leptons detected!

almost as abundant as CC

NC Scattering Amplitude

develop in analogy to CC at low $q^2 \ll M_Z^2$ a priori:

i) not necessarily pure V – A, what structure?

ii) can have right handed components (not for v) try $c_V V - c_A A$ (c_V and c_A from experiment)

iii) new coupling g', new massive neutral boson

iv) no flavor change at the interaction vertex $\delta_{ff'}$

$$M^{NC} = \frac{g'}{\sqrt{2}} \left(\overline{u}_e \gamma^{\mu} \frac{1}{2} (c_V^e - c_A^e \gamma^5) u_e \right) \frac{g_{\mu\nu} - q_{\mu} q_{\nu} / M_Z^2}{q^2 - M_Z^2} \frac{g'}{\sqrt{2}} \left(\overline{u}_v \gamma_{\mu} \frac{1}{2} (c_V^\nu - c_A^\nu \gamma^5) u_v \right)$$

effective 4-fermion theory as for CC with new coupling constant $G_{NC} / \sqrt{2} = g'^2 / 8 M_Z^2$ and $c_V^{\nu} = c_A^{\nu} = 1/2$ (neutrinos are left-handed) [in a V + A theory $c_V^{\nu} = -c_A^{\nu} = 1/2$]

$$M^{NC} = \frac{4G_{NC}}{\sqrt{2}} 2\left(\overline{u}_{e} \ \gamma^{\mu} \frac{1}{2}(c_{V}^{e} - c_{A}^{e} \gamma^{5})u_{e}\right) \frac{1}{2}\left(\overline{u}_{v} \ \gamma_{\mu} \frac{1}{2}(1 - \gamma^{5})u_{v}\right)$$

$$(J^{NC})^{\mu} (e) \qquad (J^{NC})_{\mu} (v)$$

neutrino neutral current

$$J^{NC}{}_{\mu}(\nu) = \frac{1}{2} \left[\overline{u}_{(\nu)} \gamma_{\mu} \frac{1}{2} (1 - \gamma^5) u_{(\nu)} \right]$$
$$J^{NC\mu}(e) = \left[\overline{u}_{(e)} \gamma^{\mu} \frac{1}{2} (c_V^e - c_A^e \gamma^5) u_{(e)} \right]$$

electron neutral current

"point-like" interaction of two neutral currents $(J^{NC})^{\mu}$ (e) and $(J^{NC})_{\mu}$ (v)

$$M^{NC} = \frac{4G_F}{\sqrt{2}} 2\rho J_{\mu}^{NC}(e) J^{NC\mu}(v) \qquad \rho = \frac{G_{NC}}{G_F} \approx 1.010 \pm 0.015 = 1 \quad (SM)$$

 ρ determines the relative strength of NC to CC, in the SM ρ = 1

In the SM all c_V^i and c_A^i are given in terms of one parameter, the electroweak mixing Weinberg angle θ_W

$$\tan \mathcal{G}_W = g' / g \qquad e = g \cdot \sin \mathcal{G}_W = g' \cdot \cos \mathcal{G}_W$$

 $\theta_{\rm W}$ measures the relative strength of CC and NC couplings with $\rho = \frac{M_W^2}{M_\pi^2 \cos^2 g} = 1$

 $c_V^e = -1/2 + 2\sin^2\theta_W$ $c_A^e = -1/2$

(all this will be developed in L11)

In summary, we have a basis for calculating NC amplitudes. From now on, assume $\rho = 1$ and $G_{NC} = G_F$. The only unknowns are c_V^e and c_A^e .

12

NC $v_e e^- \rightarrow v_e e^-$ Cross Sections

To start, let's consider $v_{\mu}e^{-}$ or $v_{\tau}e^{-}$ scattering (no CC channel!). The NC amplitude is

$$M^{NC}(\nu_{\mu}e^{-} \to \nu_{\mu}e^{-}) = \frac{4G_{F}}{\sqrt{2}} 2\rho \left(\overline{u}_{e} \gamma^{\mu} \frac{1}{2}(c_{V}^{e} - c_{A}^{e}\gamma^{5})u_{e}\right) \frac{1}{2} \left(\overline{u}_{V} \gamma_{\mu} \frac{1}{2}(1 - \gamma^{5})u_{V}\right)$$

Using the CC current results

$$\frac{d\sigma(v_e e^- \to e^- v_e)}{dy} = \frac{G_F^2}{\pi} s \text{ and } \frac{d\sigma(\overline{v_e}e^- \to \overline{v_e}e^-)}{dy} = \frac{G_F^2}{\pi} s (1-y)^2$$
("left-handed")
("right-handed")
we obtain directly
$$\frac{d\sigma^{NC}(v_\mu e^- \to v_\mu e^-)}{dy} = \frac{G_F^2 s}{4\pi} \left[(c_V^e + c_A^e)^2 + (c_V^e - c_A^e)^2 (1-y)^2 \right]$$
and after integrating over v (or d cos θ)
$$C_L$$

and after integrating over y (or d $\cos\theta$)

$$\sigma^{NC}(v_{\mu}e^{-} \to v_{\mu}e^{-}) = \frac{G_{F}^{2}s}{3\pi} \left[\left(c_{V}^{e} \right)^{2} + c_{V}^{e}c_{A}^{e} + \left(c_{A}^{e} \right)^{2} \right]$$

$$\sigma^{NC}(\overline{v}_{\mu}e^{-} \to \overline{v}_{\mu}e^{-}) = \frac{G_{F}^{2}s}{3\pi} \left[\left(c_{V}^{e} \right)^{2} - c_{V}^{e}c_{A}^{e} + \left(c_{A}^{e} \right)^{2} \right]$$

And now, we can derive the full $v_e e^-$ scattering amplitude! Both the CC (W exchange) and NC (Z exchange) channels contribute: add the amplitudes $M = M^{CC}(v_e e^- \rightarrow e^- v_e) + M^{NC}(v_e e^- \rightarrow v_e e^-)$

$$\begin{split} M(v_{e}e^{-} \to v_{e}e^{-}) &= \frac{4G_{F}}{\sqrt{2}} \Big(\overline{u}_{e} \ \gamma^{\mu} \frac{1}{2} (1 - \gamma^{5}) u_{e} \Big) \Big(\overline{u}_{v} \ \gamma_{\mu} \frac{1}{2} (1 - \gamma^{5}) u_{v} \Big) + \\ & \frac{4G_{F}}{\sqrt{2}} 2\rho \Big(\overline{u}_{e} \ \gamma^{\mu} \frac{1}{2} (c_{v}^{e} - c_{A}^{e} \gamma^{5}) u_{e} \Big) \frac{1}{2} \Big(\overline{u}_{v} \ \gamma_{\mu} \frac{1}{2} (1 - \gamma^{5}) u_{v} \Big) \end{split}$$

Adding the amplitudes ($\rho = 1$ and $G_{NC} = G_F$)

$$M(v_{e}e^{-} \to v_{e}e^{-}) = \frac{4G_{F}}{\sqrt{2}} \left(\overline{u}_{e} \ \gamma^{\mu} \frac{1}{2} (c_{V}^{e} + 1 - (c_{A}^{e} + 1)\gamma^{5})u_{e} \right) \left(\overline{u}_{v} \ \gamma_{\mu} \frac{1}{2} (1 - \gamma^{5})u_{v} \right)$$

(i.e. equivalent to replace $c_V^e \rightarrow c_V^e + 1$ and $c_A^e \rightarrow c_A^e + 1$ in the NC amplitude)

finally leads to

$$\frac{\mathrm{d}\sigma(v_e e^- \to v_e e^-)}{\mathrm{d}y} = \frac{G_F^2 s}{4\pi} \Big[(c_V^e + c_A^e + 2)^2 + (c_V^e - c_A^e)^2 (1-y)^2 \Big]$$

$$\sigma(v_e e^- \to v_e e^-) = \frac{G_F^2 s}{4\pi} \left[(c_V^e + c_A^e + 2)^2 + \frac{1}{3} (c_V^e - c_A^e)^2 \right]$$

equation of an ellipse in (c_V, c_A)

NC Parameters

In the Standard Model all c_V^i and c_A^i (i = v, l, u or d quarks) expressed in terms of 1 parameter θ_W

 $c_V^e = -1/2 + 2sin^2 \theta_W$ $c_V^v = +1/2$ $c_A^e = -1/2$ $c_A^v = +1/2$ c_V^i and c_A^i are determined experimentally (including e⁺e⁻ scattering at the Z⁰ peak)

 $c_V^l = -0.03772 \pm 0.00041$ $c_A^l = -0.50117 \pm 0.00027$ $c_V^\nu = c_A^\nu = +0.50085 \pm 0.00075$

W⁺ couples to d and u quarks, but not to u nor to d quarks

W⁻ couples to u and d quarks, but not to d nor to u quarks (very selective!)

V – A structure: left handed (~negative helicity) u and d quarks right handed (~positive helicity) u and d anti-quarks

CC v-q Cross Sections

Follow the same arguments as for v e scattering, assume same coupling for quarks and for leptons

Summary v–q Scattering

CC v–N Scattering

To study v-q scattering study v-N interactions:

- quarks embedded in nucleons, similar formalism to $\mu\text{-DIS}$
- additional information on parton distribution functions (quark's flavor!)
- ν beams mainly ν_{μ} from π decays produced at accelerators by a high intensity p beam

Quarks embedded in nucleons, describe v-N in terms of v-q scattering.

$$M = \frac{4G_F}{\sqrt{2}} \left(\overline{u}_{(\mu)} \gamma^{\mu} \frac{1}{2} (1 - \gamma^5) u_{(\nu)} \right) \left(\overline{u}_{(u)} \gamma_{\mu} \frac{1}{2} (1 - \gamma^5) V_{ud} u_{(d)} \right)$$

$$\beta \text{ decay}$$

$$v - \text{N scattering}$$

$$(\text{inverse } \beta \text{ decay})$$

$$\psi_{\mu}$$

$$w_{\mu}$$

v - N Scattering

kinematical variables

The energy of the incoming ν_{μ} beam not well determined

Measure scattered μ energy E_{μ} and angle θ and (possibly) all the final state hadrons (calorimeter)

infer ν_{μ} energy from scattered lepton plus final state hadron system (X)

 $\mathsf{E}_{v} = \mathsf{E}_{\mu} + \mathsf{E}_{had}$

$$Q^{2} = -q^{2} = 4\left(E_{had} + E_{\mu}\right)E_{\mu}\sin^{2}\frac{\vartheta}{2}$$
$$x = \frac{\left(E_{had} + E_{\mu}\right)E_{\mu}\sin^{2}\frac{\vartheta}{2}}{2M_{N}E_{had}}$$
$$v = E_{\nu} - E_{\mu} = E_{had}$$
$$y = \frac{E_{had}}{E_{had} + E_{\mu}} \cong \frac{1}{2}\left(1 - \cos\vartheta^{*}\right)$$
$$W^{2} = M_{N}^{2} + 2M_{N}E_{had} + Q^{2}$$

The Experiments

for a given E_{v} ,

Detection of a v–N Events

23

neutral current event

charged current event

ν –N cross section

р

$$\frac{d\sigma_{i}}{dy} \bigvee_{i}^{k} \bigvee_{i}^{k} \bigvee_{j}^{k} \bigvee_{i}^{k} \bigvee_{i}^{k}$$

(origin of 1/2: we assumed an isoscalar target N = (p+n) / 2)

cfr. QED
$$\frac{d\sigma(e^{\pm}N \to e^{\pm}X)}{dx \, dy} = \frac{4\pi\alpha^2}{q^4} xs \frac{1}{2} \Big[1 + (1-y)^2 \Big] \frac{5}{18} \Big[Q(x) + \overline{Q}(x) \Big]$$

24

comparison of v and \overline{v} angular distribution allows one to separate of q and \overline{q} : one finds a small angular dependence in vN and a small flat component in $\overline{v}N \Rightarrow$ consistent with ~ 5% antiquarks in nucleon

Quark Distributions

Valence and Sea quark distributions extracted from v (anti-v) D interactions ($Q^2 \sim 5 \text{ GeV}^2$)

quark and anti-quark distributions at $Q^2 \sim 10 \text{ GeV}^2$

~ 5% \overline{Q} component in proton

NC v - q Scattering

Because $v_e e$ cross sections are very small, extensive studies of NC interactions carried out using isoscalar (#p = #n) nuclear targets, like Fe (almost isoscalar)

The v - N Cross Section

The calculation proceeds in a similar way as $e\mu \rightarrow e\mu$, $ep \rightarrow ep$, $ep \rightarrow eX$ cross sections $j^{\mu} = \overline{u}_{(\mu)} \gamma^{\mu} \frac{1}{2} (1 - \gamma_5) u_{(\nu)}$ lepton current (both V and A currents possible) hadron current $J_{had}^{F} = \langle \mathbf{A} | \mathbf{J}_{W|F}^{F}, \mathbf{v}_{f} \rangle$ invariant amplitude $M = \sqrt{2}G_{F}j_{\mu}J^{\mu} \rightarrow \sqrt{2}G_{F}\frac{1}{1+Q^{2}/M_{W}^{2}}j_{\mu}J_{had}^{\mu}$ W propagator $\frac{-i(g_{\mu\nu}-q_{\mu}q_{\nu}/M_{W}^{2})}{q^{2}-M_{W}^{2}}$ leptonic tensor
$$\begin{split} L_{\alpha\beta} &= \left[\overline{u}(k)\gamma_{\alpha}(1-\gamma^{5})u(k') \right] \left[\overline{u}(k')\gamma_{\beta}(1-\gamma^{5})u(k) \right] \\ &= 8 \left[k'_{\alpha}k_{\beta} + k'_{\beta}k_{\alpha} - (k \cdot k' - m_{\mu}^{2})g_{\alpha\beta} \mp i\varepsilon_{\alpha\beta\gamma\delta}k^{\gamma}k'^{\delta} \right] \end{split}$$
hadronic tensor $W^{\alpha\beta} = -g^{\alpha\beta}W_{1} + \frac{p^{\alpha}p^{\beta}}{M^{2}}W_{2} - \frac{i\varepsilon^{\alpha\beta\gamma\delta}p_{\gamma}q_{\delta}}{2M^{2}}W_{3} + \frac{q^{\alpha}q^{\beta}}{M^{2}}W_{4} + \frac{p^{\alpha}q^{\beta} + p^{\beta}q^{\alpha}}{M^{2}}W_{5} + i\frac{p^{\alpha}q^{\beta} - p^{\beta}q^{\alpha}}{2M^{2}}W_{6}$ (most general form)

where $\epsilon^{\alpha\beta\gamma\delta}$ is the fully antisymmetric tensor

Contract the tensor $L_{\mu\nu}W^{\mu\nu}$ the terms W_4 , W_5 , and W_6 are proportional to lepton masses $\rightarrow 0$ the antisymmetric term W_3 stays, and violates parity

$$L_{\mu\nu}W^{\mu\nu} = 4W_1(k \cdot k') + \frac{2W_2}{M^2} \Big[2(p \cdot k)(p \cdot k') - M^2(k \cdot k') \Big] - \frac{2W_3}{M^2} \Big[(p \cdot k)(q \cdot k') - (q \cdot k')(k \cdot p) \Big]$$

The cross section in the lab frame becomes (v experiments only fixed target so far ...)

$$\left(\frac{d^2\sigma}{dxdy}\right) \binom{vN}{\bar{v}N} = \frac{G_F^2 s}{2\pi \left(1 + Q^2/M_W^2\right)^2} \left[vW_2\left(1 - y - \frac{Mxy}{2E_v}\right) + \frac{y^2}{2} 2xMW_1 \pm y\left(1 - \frac{y}{2}\right)xvW_3\right]$$

For \overline{v} N we replace $(1-\gamma_5)$ by $(1+\gamma_5)$ in the lepton tensor and this changes the sign of W_3 . Recall that E_v is not directly measurable, need the total energy E_{had} of the hadronic final system

$$\left(\frac{d^2\sigma}{dQ^2d\nu}\right) \binom{\nu N}{\overline{\nu}N} = \frac{G_F^2}{2\pi M} \frac{E_{\mu}}{E_{\nu}} \left[W_2 \cos^2\frac{\vartheta}{2} + 2W_1 \sin^2\frac{\vartheta}{2} \pm \left(\frac{E_{\nu} + E_{\mu}}{M}\right) W_3 \sin^2\frac{\vartheta}{2} \right]$$

The structure functions W_1 , W_2 , W_3 are different functions from those encountered in e – p scattering, and also differ from v N to v N scattering. No assumption on the underlying structure of the hadron is made so far.

DIS Region

The structure functions W are functions of $W(Q^2, v)$.

In DIS region the probe sees the constituents inside the hadron (Bjorken scaling limit)

- \rightarrow scattering off point-like partons
- \rightarrow W depends on only 1 variable $x = Q^2/2M_V$

(compare to $e\mu$ elastic scattering, QPM, ...)

$$2MW_1(Q^2, v) = \frac{Q^2}{2Mv} \delta\left(1 - \frac{Q^2}{2Mv}\right)$$
$$vW_2(Q^2, v) = \delta\left(1 - \frac{Q^2}{2Mv}\right)$$
$$vW_3(Q^2, v) = \delta\left(1 - \frac{Q^2}{2Mv}\right)$$

and the structure functions In the Bjorken limit take the familiar form

$$MW_1(Q^2,\nu) \to F_1^{\nu}(x)$$
$$\nu W_2(Q^2,\nu) \to F_2^{\nu}(x)$$
$$\nu W_3(Q^2,\nu) \to F_3^{\nu}(x)$$

In total there are 12 nucleon structure functions for neutrino scattering: F_1 , F_2 , F_3 for each of the vp, vn, $\overline{v}p$, $\overline{v}n$ processes.

Charge symmetry implies $F_i(vp) = F_i(\overline{vn})$ and $F_i(vn) = F_i(\overline{vp})$, which reduces them to 6.

Experiments conducted usually using massive isoscalar targets (#p = #n) and measure cross sections per nucleon (p or n) reducing thus the number of structure functions to 3

E_{μ}, θ_{μ} $v_{\mu}(\overline{v_{\mu}})$ **QPM** Interpretation $\mu^{-}(\mu^{+})$ k₁ k2 Interpretation similar to μN scattering $W^+(W^-)$ $q = k_1 - k_2$ The exchanged W[±] strikes a quark in the nucleon and changes the flavor of the struck quark $q(\overline{q})$ (probability given by CKM matrix) хP QPM cross section (isoscalar target) Hadron nucleon Shower $\frac{d^{2}\sigma}{dxdy}(vN) = \frac{G_{F}^{2}ME_{v}}{\pi(1+Q^{2}/M_{W}^{2})^{2}}2x\left[\sum_{i}c_{i}^{2}q_{i}(x) + \sum_{j}c_{j}^{2}q_{j}(x)(1-y)^{2}\right]$

 c_i and c_j are the Cabibbo mixing angles (cos θ_c and sin θ_c , assuming 4 flavors only)

Assuming the Callan-Gross relation (spin $\frac{1}{2}$ quarks) $F_2 = 2xF_1$ and an isoscalar target

 $F_{2}(x) = 2\sum_{i,j} \left[c_{i}^{2} x q_{i}(x) + c_{j}^{2} x \overline{q}_{j}(x) \right]$ $xF_{3}(x) = 2\sum_{i,j} \left[c_{i}^{2} x q_{i}(x) - c_{j}^{2} x \overline{q}_{j}(x) \right]$

the striking difference between F_2 and F_3 is the sign for the anti-quark densities

and the cross section finally reads

$$\frac{d^{2}\sigma}{dxdy}\binom{\nu N}{\nu N} = \frac{G_{F}^{2}s}{2\pi\left(1+Q^{2}/M_{W}^{2}\right)^{2}} \left[\frac{F_{2}\pm xF_{3}}{2} + \frac{F_{2}\mp xF_{3}}{2}\left(1-y\right)^{2}\right]$$

Quark Content of F₂ and F₃

vN Cabibbo favored ($\cos^2 \theta_{\rm C}$) $d \to u, s \to c, \overline{u} \to \overline{d}, \overline{c} \to \overline{s}$ \overline{v} N Cabibbo unfavored ($\sin^2 \theta_{\rm C}$) $d \to c, s \to u, \overline{c} \to \overline{d}, \overline{u} \to \overline{s}$ vN Cabibbo favored transitions $u \to d, c \to s, \overline{d} \to \overline{u}, \overline{s} \to \overline{c}$

vp:	$F_2 = 2x\left[d + s + \overline{u} + \overline{c}\right]$	$F_3 = 2x\left[d + s - \overline{u} - \overline{c}\right]$
vn:	$F_2 = 2x\left[u + s + \overline{d} + \overline{c}\right]$	$F_3 = 2x\left[u + s - \overline{d} - \overline{c}\right]$
$\overline{v}p$:	$F_2 = 2x\left[u + c + \overline{d} + \overline{s}\right]$	$F_3 = 2x\left[u + c - \overline{d} - \overline{s}\right]$
$\overline{v}n$:	$F_2 = 2x\left[d + c + \overline{u} + \overline{s}\right]$	$F_3 = 2x[d+c-\overline{u}-\overline{s}]$

For an isocalar target (p+n)

$$vN: F_{2} = 2x\left[u + d + \overline{u} + \overline{d} + 2s + 2\overline{c}\right] \qquad F_{3} = 2x\left[u + d - \overline{u} - \overline{d} + 2s - 2\overline{c}\right] = 2x\left[u_{v} + d_{v} + 2(s - \overline{c})\right]$$

$$\overline{vN}: F_{2} = 2x\left[u + d + \overline{u} + \overline{d} + 2\overline{s} + 2c\right] \qquad F_{3} = 2x\left[u + d - \overline{u} - \overline{d} + 2c - 2\overline{s}\right] = 2x\left[u_{v} + d_{v} + 2(c - \overline{s})\right]$$

since $s = \overline{s}$ and $c = \overline{c}$ (sea quarks)

$$F_2(\overline{\nu}N) = F_2(\nu N)$$

$$F_3(\overline{\nu}N) = F_3(\nu N) - 4x[s-c] \approx 2x[u_V + d_V]$$

(basically, F_3 measures the distribution of valence quarks)

Comments on F_2 and F_3

v and $\overline{v} F_2$ structure function on isoscalar targets $\frac{1}{2}(p+n)$ measures the SUM of quark and anti-quark PDFs in the nucleon

$$F_{2}^{\nu N} = F_{2}^{\overline{\nu}N} = 2x \left[u + d + \overline{u} + \overline{d} + 2\left(s + \overline{s}\right) \right]$$

Cfr. EM scattering

$$F_2^{ep} = x \left[\frac{4}{9} \left(u + \overline{u} \right) + \frac{1}{9} \left(d + \overline{d} \right) + \frac{1}{9} \left(s + \overline{s} \right) \right]$$

The average of xF_3 for v and \overline{v} scattering on isoscalar targets measure the VALENCE quark PDFs

$$\frac{F_3^{\nu N} + F_3^{\overline{\nu} N}}{2} = 2x \left[u + d - \overline{u} - \overline{d} \right] = 2x \left[u_V + d_v \right]$$

Comparison of F_2 for v and e/µ lepton scattering confirms the fractional charge assignment to the quarks.

The difference

$$\Delta(xF_3) = xF_3(\nu N) - xF_3(\overline{\nu}N)$$

is sensitive to the strange and charm quark content of the nucleon

F_2 and F_3 Structure Functions in v – Fe Scat.

 F_2 v Fe scattering

$v - e/\mu$ Comparison

An early check of fractional charges comes from F_2 comparisons in eN and vN scattering off isoscalar targets

$$F_{2}^{e/\mu} = \frac{5}{18} x \left[u + d + \overline{u} + \overline{d} + \frac{2}{5} [s + \overline{s}] + \frac{8}{5} [c + \overline{c}] \right]_{0.8}^{F_{2}(x)} = \frac{1}{16} x^{*} x \left[x + d + \overline{u} + \overline{d} + 2s + 2\overline{c} \right]_{0.8}^{F_{2}(u)} = \frac{5}{18} F_{2}^{\nu} - x \frac{1}{6} (s + \overline{s}) x^{0.4} = x^{0.4}$$

1.2

Note that the total area under the curve measures the momentum fraction in the nucleon carried by quarks, $P_q \sim 0.5$. The missing momentum fraction is ascribed to gluons, which cannot be seen directly in DIS experiments

0.2

 $F_2^{\nu N}$

0.4

 $\frac{18}{5}F_2^{eN}$

0.6

CC e + N $\rightarrow v_e$ + X Scattering

At very high energies, in ep scattering also a W boson can be exchanged instead of a γ (or Z boson) \rightarrow CC DIS. Only a hadronic jet will be observed (the outgoing v is undetected)

Sum Rules

Various predictions can be made for integrals – sum rules – over quark densities, which have simple interpretations in the QPM.

These sum rules are predictions based on QCD, therefore a powerful test of QCD.

There are 2 such sum rules for v interactions

(we already encountered the Gottfried sum rule comparing p and n quark distributions):

the Adler sum rule

$$I_{A} = \int_{0}^{1} \frac{F_{2}^{\nabla p} - F_{2}^{\nabla p}}{x} dx = \int_{0}^{1} \frac{F_{2}^{\nu n} - F_{2}^{\nu p}}{x} dx = \int_{0}^{1} 2(u_{V} - d_{V}) dx = 2$$
this sum rule is Q² independent and hence has no QCD corrections
the Gross - Llewellyn Smith
$$I_{GLS} = \int_{0}^{1} \frac{xF_{3}}{x} dx = \int_{0}^{1} (u_{V} + d_{V}) dx = 3\left(1 - \frac{\alpha_{S}}{\pi}\right)$$

$$I_{GLS} = 2.64 \pm 0.06$$

to derive these sum rules use the definitions of F_2 and F_3 in terms of quark densities

For Next Week

Study the material and prepare / ask questions Study ch. 12 (sec. 7 to 10) and ch. 13 (sec. 5) in Halzen & Martin and / or ch. 12 (sec. 2 to 5) in Thomson

Do the homeworks

Next week we will study the Electroweak unification have a first look at the lecture notes, you can already have questions read ch. 13 (sec. 1 to 7) in Halzen & Martin and / or ch. 15, ch. 16, and app D in Thomson