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Electro-Weak Interactions

weak interaction phenomenology identify the underlying symmetries
— put on solid grounds: {—) gauge invariance (massive gauge bosons?)
renormalizability
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The Weak Current Triplet

Add the 3" component to the J,mand J currents, i.e.
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[it cannot be identified with the y or J =™ (massless, also a right-handed component!).}

and introduce the “weak isospin” triplet of weak currents
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by construction, t; matrices

The “charges” T, generate an SU(2), algebra of left-handed weak currents.

Note: J,*=1/20+iJ2) and J =1/2(J1-iJ2)

Can also introduce the triplet of weak vector bosons

wh) ((1/2wWF W) )
W2 |=| =i /2W* -W")
WO

3
wo) )

W+
WO
W_

1/ 2WE +iw?))
_ W3

1/\N2W*-iw?)




The Electro Magnetic Interaction

Let’s rewrite the electromagnetic current as (here e represents the electron spinor)

I =ey,Qe=8y,Qe,+87,Qe, -  Q=[d%xIM(x)

with Q the charge operator (with eigenvalue -1 for the electron).
Q is the generator of the U(1)g,, Symmetry group.

J,=M contains left-handed and right-handed components with equal weights.

We could stop here, however J 3 and W° have never been observed.

J,=M does not belong to SU(2), since it contains left-handed and right-handed
components.

In the attempt to save the SU(2), symmetry include also J ™ (Glashow 1961)

and enlarge the symmetry group — electro-weak unification,

By combining J 2 and J ™ with different weights, one could build the physical current
J NC, which contains left- and right-handed components. This, however, will require the
introduction of a new weak hypercharge current J* orthogonal to J 2.



“Unification”

Both "neutral” currents J N© and J EM contain left-handed and right-handed components.
Neither respects the SU(2), symmetry. Nan can be identified with J 2.

Glashow’s proposal (1961), well before the discovery of Neutral Currents (1973):

Form two orthogonal combinations starting with J N and J =M .
These two new currents must have definite transformation properties under SU(2), :

one combination, J *, with coupling g is to complete the weak isospin triplet Jui
and it is purely left-handed,;

the second combination, orthogonal to J 2, is the new weak hypercharge current J,*
introduced by Glashow with coupling g'/2. J ¥ is a singlet under SU(2), .

The weak hypercharge current J,” contains right-handed and left-handed components
(although with different weights):

Y=pyYy - Y:jd&Jgu)

The weak hypercharge operator Y is defined by

Q:B+%Y-+ Y =2(Q-T,)

Y generates the U(1), symmetry group with B ° the associated gauge boson. 5



We have two “neutral currents”, J * and J ¥ (associated to the W° and B®), nan physical.
The photon J Mis a linear superposition of the J * and J ¥ currents

with equal amounts of left- and right-handed components.

A new current, J N©, orthogonal to J =V, is thus predicted,

with different amounts of left- and right-handed components.

All this might work, if e ~ g’ (i.e. similar strength).

The electromagnetic current
In terms of J * and J ¥ reads

The weak hypercharge current
for the electron (Q = -e)
IS given by

EM 3 1 Y
M =30,

Y EM 3
J,=23"-2J;
= _2(§R7ﬂeR T §L7/yeL) B (17|_7/ﬂV|_ B é'-]//‘e'-)
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We have incorporated the electromagnetic interaction and the symmetry group has been

enlarged to SU(2), x U(1),.

In a sense we have unified the electromagnetic and weak interactions.

However two open issues remain:

massive gauge bosons W and Z (Weinberg 1967 and Salam 1968 via Higgs mech.)
renormalizability (t'Hooft 1975 using the Higgs field) 6



SU(2), xU (@),

Two symmetry groups and two coupling constants g,, (W) and g,'/2 (Y).

Classify all particles according to the weak isospin T and the hypercharge Y = 2(Q-T5) .

% (v.) (uj u
leptons __ R quarks __ R
4 = - _ V4 =
L {e j e; - d)

Note that [Y,T;] = O (i.e. they commute — different symmetry groups).
= all members of a weak isospin multiplet have the same weak hypercharge Y.

Weak Isospin and Weak Hypercharge quantum numbers for leptons and quarks

T T, QY T T, Q Y
v., 12 12 0 -1 u Y2 12 2/3 13
e 12 -12 -1 -1 d, Y2 -1/2 -13 1/3
v..) 0 0 0 © u, 0 0 2/3 4/3
e, 0 0 -1 -2 d, 0 0 -3 -2/3

—

X

Ug and di are singlets, i.e. they do not form a right-handed doublet.
Note that vy , if it exists, carries no quantum numbers,
i.e. it does not interact via any known force, not even the neutral current J N©.



The Basic Electro-Weak Interaction

Iso-triplet vector field, W, — J ' coupling g, w,/ / ~ (thereis no V2
SU(2), symmetry group -TT T J, because we are
S E— S 1 “1Qw dealing with W")
_IgW‘Jy.W#:_IgW;—(Lny Wy, (T :Efj
Iso-singlet vector field, B, — JMY coupling g,//2 B O /
U(1), symmetry group - - Y
ig’y/2 K

., 1 N {
—19y E‘J;Bﬂ =—19,v7, EWBﬂ

Basic ElectroWeak interaction
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W, :ﬁ(wﬂiuwﬂ) Wf and Bfl — Z° and y 8




The Photon and the Z Boson

Express the “observed” massless photon field AM and the massive field ZMO
in terms of W ° and B °

(AﬂJ _( cosd, sing, j[ sz A, =cos 4, B +sin g, W°

Z,) \-sing, cosd, \W, Z,=-sing,B, +cosg,W,
«9\,\, — electroweak mixing angle Ay O
(Weinberg angle, originally introduced by Glashow) > 0 H
sin®4, (M) =0.23126 +0.00005 ) A,
with the condition | gsin.4, =e=g'cos.4, %
Have we really unified the EM and Weak interactions? | B>

We have started with two independent theories with couplings g, and e

and we have arrived at coupling constants which are related,

but at the cost of introducing a new parameter, the Weinberg angle 6, .

The interactions are not unified from any “higher” principle, but it works!

(For a “real” unification one would need a larger symmetry group

containing SU(2), and U(1), as subgroups with only one coupling constant.)



Electro-Weak Neutral Current Interaction

Express the electro-weak Neutral Current interaction —igJ AW 4 —j g'/2 J'B#
In terms of the fields A, and Z, - -

—i{gsin&WJfﬁg'cosSW%J;}Aﬂ + (s—ieJEMA”)

—i{gcos&WJj—g’sin&W%J;}Z“ (z—i COS?S JDCZ“]
W

The Electromagnetic Current is a linear combination of the 3@ component of the
weak isospin current W° and of the weak hypercharge current Y

1 . , ,
eJEMze(JjJrEJ;j = gsin4, =e=g'cos Y, tand, =g’/ g

= 2
sin“ &, 1
The Neutral Current (Z°) J JDC = COS .9WJ2 - W _ J;
cos 4, cosd, 2
sin® &, sin® 4,

3 EM 3
:g(COSlgWJ”_cosg J, + 05 J“j
W W

NC _ 73 - 2 EM
J, =3, -s1n"{,J, 0




SU(2), x U(1)y Lagrangian

In order to construct an electro-weak theory we start from the “free” Dirac Lagrangian

LZW(i}/ﬂ@ﬂ —m)w

and make it invariant under local SU(2), and U(1), transformations.
Note that the group SU(2) is non abelian (like SU(3)), while U(1) is abelian.

The left-handed fields y, enter in all interactions, electromagnetic and weak.
We require the v, fields to be invariant under local SU(2), x U(1), transformations:

o (X)T; AIB(X)Y /2
€ 4t

el

The right-handed fields, on the other hand, are required to be invariant under U(1), only:

iB(X)Y/2

Wg —>Wg =€ Wr

The operators T and Y are the generators of the SU(2), and U(1), groups.
They act on “properties” of the fields that we call weak isospin and weak hypercharge
(in analogy to the spin and the electric charge).

commutation rules [Ti T ] — igijka and ['I'I ,Y] =0

11



The requirement that a field theory is gauge invariant under a particular symmetry group
strictly fixes the form or the interaction and the number of gauge bosons.

To restore local gauge invariance we introduce the covariant derivative involving four

new gauge fields W' and B°

i0“ - iD* =io* —gT -W* — g’%YB“

3 1 : 2
e[ W W —iw
Wheiw? o —w?®

with g and g’/2 the coupling constants, and T2 the generators of the SU(2), and

Y the generator of U(1), gauge groups. This leads to the following interaction term

L = _igWLy‘u-l:) °V\7#WL - igll)pj/‘u

Y
_ B~
5 4

T

The first term involves only left-handed fields, the second term involves left-handed and

right-nanded fields.

In terms of the currents interacting with the vector fields, L

int

can be expressed as

Ly =—igd, -W* —ig’%J;B”

-

with J , the weak isospin current triplet Jﬂ =Y 7.

1.
ETWL

=Y =
and J ¥ the weak hypercharge current b, =y uYW

12



Gauge Terms

To complete the Lagrangian we have to add the kinetic terms describing the gauge fields

1= = 1
Lgauge = _ZWy 'W/w _Z B” B,uv

where the field strength tensors for SU(2), and U(1) are

. _ _ _ last term from gauge
W), =0 W —0W —ge, W W/ invariance requirement

B,=0,B -0,B,

Recall that the SU(2) , symmetry group is non Abelian, which leads to the self coupling
terms between W gauge bosons (triple and quartic vertices).
Moreover, to restore the gauge invariance, the gauge fields must transform as

a a 1 a . |
W2 (x) >W2(x) —aﬁﬂa (X) — gy (W |

B, () - B, (X) —éaﬂﬂ(x)

For the moment we will ignore that the W and B gauge bosons are massive (Glashow), 5



The NC Interaction Terms

The neutral component of the interaction term can be expressed in terms of
the A, and Z  fields as

e
sin &, cos 4,

Ly =—igd ;W™ —ig'= J B =ieJ " A" -

int

[Jfl —sin’ SWsz]Z"‘

The requirement that the electromagnetic interaction must appear in the Lagrangian

fixes the coupling constants
‘e =gsing, =g'cosY, ‘

The interaction term for the charged currents is given by

Loe =—ig(J,W™“+JW"*)

int

with the weak isospin charged currents

1

+ . — |4
I =(3+102)= 77,00 =(V, 9)7@,5(1_75)@((9)

and the gauge bosons Wﬂ‘ = —(Wl +1W 2)

\/_ 14




Neutral Currents

1973 experimental birth of Standard Model vo(K) g/ \/2 vo(K)
NC
ve >ve o (v) o(v,N—->v X)
Vi Vu L= e = G(VﬂN - €X) ~0.31+0.01
vMN - VMX H H : 70
_ _ o (V) o ,N —v X) I
v,N = v X R, =——=—= ——~0.38+0.02
o (V) oW N->uX)
’ ] g'/\2 o
First evidence of a weak neutral current e~ (p) e (p’)

NC anticipated by Glashow in 1961
Until then no weak neutral current effects have been observed.
Note: no flavor change at the vertex, NC conserve flavor!

Very stringent limits on (flavor changing) neutral currents by the absence of decays

K> uu BR=7x10"
K" >ztutu BR<4x10™

These small (non-zero!) branching ratios explained well by SM (GIM mechanism), also:
BY —» utu BR=3x10"

However in ve, v scattering NC events are as abundant as CC events,
difficult to detect isolated electron, study on nuclear targets. 15



Neutral Currents:
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CC and NC - vN Scattering

CC: vN—)u +X

;,L

one lepton (u) detected
all other particles identified as hadrons

NG N-o>v X
o ) _oUNDVY) hai00
o (v) o(W,N—>uX
NC (v v N—>v X
_o 1) _oUNDVX) 6381002
o () o(,N—uX)

NC: v,N = v, + X

all particles identified as hadrons
no leptons detected!

almost as abundant as CC

17



NC Scattering Amplitude

: Develop in analogy to CC at low g? << M.?
Ve(k) g'/\/z Ve(k ) o .
A priort:

| 1) not necessarily pure V — A, what structure?
0
: z i) can have right handed components (not for v)
try ¢,V — c,A (c, and c, from experiment)

g'/\/2 e(p) i) new coupling g’, new massive neutral boson
IV) no flavor change at the interaction vertex o

2
NC__g_— ,ul e  ~€,5 g,uv_q,uqv/MZ gl — 1 vV AV,5
M = ﬁ(uey 3 (& —Cay )Ue) M2 ﬁ(uvng(cv Ca? )uv)

effective 4-fermion theory as for CC with new coupling constant G, / V2 = g2/ 8 M,?2
and c,¥ = c,¥ =1/2 (neutrinos are left-handed) [in a V + A theory c,,¥ = —c,¥ =1/2]

4GNC — ,ul e e b5 1 — 1 5 \
i 2(0, 75 (e~ )5 (8 7, 5 -,

MNC:

1 I
(INC)“ (e) (IN¢), (v) 18




1| _ 1
neutrino neutral current J p (v)= E[U(V) Vi E (1- 7/5) U(v)}

1
NC — e e .5
electron neutral current ] “(e) = {u(e) 7/” E(C\, —C,7 ) U(e)

“point-like” interaction of two neutral currents (JN¢)~ (e) and (IN¢),, (v)

4G G
MNC _ F ZPJNC(e)JNCy(V) ,0: NC
J2 G,

p determines the relative strength of NC to CC, inthe SMp = 1

~1.010+0.015=1 (SM)

In the SM all ¢,/ and c,' are given in terms of one parameter,
the electroweak mixing Weinberg angle &4,

tan4, =g'/g e=g-sind, =g'-cos, 2

M? cos® 4,

0,y measures the relative strength of CC and NC couplings with o =

c,®=-1/2 + 2sin%0,, C,®=-1/2

In summary, we have a basis for calculating NC amplitudes.
From now on, assume p =1 and G\ = Gg. The only unknowns are c,® and c,® .

19



NC Couplings ¢, and c,

Ve(k)

e"(p)

g'/N2

ZO

ve(K)
M NC

J2

e (p)

4G,

Recall the NC transit

lon amplitude (L10)

N R 1(_ 1
(e 7”5(‘3\/ —Car”) 9)5(‘/ 7y§(1—75) V)

(IN©)“ (e)

Y
(%), (v)

where we have introduced the neutral current
couplings c, and c,, to allow for a RH component

for the electron field.

Rewrite the Neutral Current interaction as
-ig'(3} —sin® g, j)z* =

~ig'(7 7,3 A= 7T, v )27 +ig (7 7,5in* 8, Qw) 2" =

-ig'7 7, | 3 A=y =sin* 4, Q |y 2

and compareto —ig'e y, %(c\, —-c,7°) e

C,, =

ce

_CZ

e_
C. =

ey +Ch

q—

1 1 . 2
50 =5 Ty —=sin" 4, Q
1 1

20



Cy and C,

Q G,
f f v, Vv 0 +1/2 +1/2
Ca =Ts e, o, | -1 —Y2 —y2+2sin?g,
I N P S :
c, =Ty —2sIn" 8, Q; u, ¢, t | 2/3 +12 +1/2—-4/3sin? 4,
d, s, b | -3 -12 -1/2+2/3sin’ 3,
cy and c, determined from ve elastic scattering 10—
and e*e- annihilation at Z pole, cie | e
which allows also to determine sin? 6, R e
c; =-0.03772+£0.00041 TN e
c;, =—0.50117+0.00027 e
¢, =c’ =0.50085+0.00075 N\
e =c— c; ~ +O.463 ct = +¢8 ~—0.539 L “
vV AV v vV AV v 10 . . . !
C,=C, —C,=0 c, =C, +c =1 T Sy
Electroweak unification achieved ifg = e
Inreality e = g sin0y sin? 6, (M,) = 0.23126 + 0.00005
~0.3 = ~0.6 -~0.5 21



NC v.e- — v.e Cross Sections

To start, let's consider v e~ or v.e~ scattering (no CC channel!). The NC amplitude is

2@~ )2 (@ 7, saru, )

NC (Vﬂe_ —>Vﬂe‘) = 4Ge 2,0(

NG

Using the CC current results

do(v,e” >ev,) G?
dy T
(“left-handed”)

S

we obtain directly

and

do(v.e” > ve ) G

dy
(“right-handed”)

S(l y)*

\ N
e —>v,e) 2

do™ (v
7 - CES e ey (6~ -y
dy . R
and after integrating over y (or d cose) L Cr
2 _
- _ S 2 2
e ove) =" () +dci+(ci)

NC f— - — -\
(Ve >ve)=

N
1
| € +

= (c¢)’

T L

22



Finally, we can derive the full

v.e~ scattering amplitude!

Both the CC (W exchange) and NC (Z exchange) channels contribute:

add the amplitudes M = MtC(v e — ev,) + MNC (vem — v e)

M(v.ee >ve )= nic;

J2 ( (1 y°)U, )(Uv yﬂ%(l_VS)Uv) N .

%ZP(EQ/”%(CS C]f)u)l(u 7”5(1 7/)U) NC

Adding the amplitudes (p =1

and Gy = Gg)

4G

J2

M(ve  »>ve )=

(0, 7 3 (€ +1- (5 + 7). ) (1, 7, @77, )

(i.e. equivalent to replace c,® — c¢,# + 1 and c,® — c,® + 1 in the NC amplitude)

Putting all together leads to

do(v.e —>ve) G

S

dy

—[ (@ +ea+ 2"+ (@ e -y ]

2

oc(ve —»ve )=

FS[<c3+cz+z>2+5<cs—cz>2}
T 3

equation of an
ellipse in (c,, C,) 23



Feynman Rules (for Leptons)

vertex factor o Interaction term
Y / o,
QED ---- —ie(7 7'Qw)A,
—ley” e\
Ve
weak W / g (- .1 )
charge raising -—=- _IT XY ETJJ(L W,
Lt (1- ) e\ ’
J2°© 2
o
weak | W- / g (- .1 )
charge lowering -——- —l—=| v -t (W,
g 1 \ J2 2
—i—=y"=(1-9° v
N (1-7°) Ve
2 2 f g IR
. _ ; -
weak n J/ —'mww”g(% —c\7°)wiZ, =

neutral
. g ul f f 5 \ . g _ 1 _
-1 -~ —C _ ul =(1_.5 Y
wsg, 2% ) osg Vi | TSIt 4R v Z,
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Effective Current-Current Interaction

Charged Current interactions can be described with
invariant amplitudes of the form (Fermi theory) M~ = ﬁ J Jﬂ

Let the interaction proceed via the exchange of massive charged vector bosons W=,
First rewrite the basic charged current interaction in the form

—i%(aﬂv\/;uww;)

then calculate the amplitude using the low g? approximation for the W propagator

1 g
() ()
) w2 o
Comparison of the two gives \/% = 3

My,

Similarly for the Neutral Current amplitude in terms of Z exchange express the amplitude

MNC:( g J“NC] 1 ( g JNC]
cos 4, M |cosd, *“

Comparison with the effective current — current interaction form gives (p = NC / CC)

pGF: g = p= M, =1 (SM)
J2  8MZcos? 4, M2 cos® 4, oe




ete~ Annihilation
In addition to the electromagnetic interaction (y),
the e*e~ annihilation can proceed also via the weak neutral interaction (Z).

e % f e 7 f
+
e f ¢ f

The final states are indistinguishable = add the amplitudes, which generates an
interference between the y and Z exchange diagrams

‘O‘tot(e+e_ —>,u+,u_) =0, +0, +0, ‘




The Z° Amplitude

We already studied the electromagnetic interaction

. g do o’ )
iM” = —e? “leyel — 1+ cos® 4
(Eru)iEEre) > gl
~ 19 rl( e _c® 5)
~ " e’ e vertex c0s 9, 4 2 &=l
c
N Z° propagator 10 *ik,K, /M
) i k?—M:
’ " ut p vertex 7 -9 y° (0\7 cly )ﬂ
. o cosd, = 2 A
The amplitude for Z exchange is given by
. ? 1 }g —kk/MZ[ 1
IMZ - _ g - = .0 —C 5 § =7 —C 5 e
vy {u 57 (o —car®)u VY 7 (e, —ca®)

Letting k? = s and setting

leads to

¢, =C,—C, and ¢ _=¢, +C, = CV—CA7/5=CR%(1+7/5)+CL%(1—75)

M7 -9
cos’ 9,

|:CR (ﬁR7/0:UR ) +

C, (ﬁLQ/U,uL ):| S Jor

_|\/|Z2

[CR (Grieq)+c (Bre, )]

where we have separated the LH components and the RH components.

27



Helicity Decomposition

To calculate [M,|?, we have to evaluate 4 terms
according to the lepton chiralities (~ helicities, i.e. orientation of spins)
[instead of summing over spins, we study each helicity configuration separately)

2

Men =~ cosgz 4,
Ma == 005922.9W
Min =~ COSg;SW
Mo=- COSg;SW

L / R refers to the chirality of the initial / final state fermions.

{c; (6.7, )
{Cg (gRyUeR)
{cs (77e.)

(e

gO'T

s—M?

gO'T
s—M:?

gO'T

2
z

gO'T

2
z

i (Hey" 1 )}
CL (ﬁU/TﬂL )}
Cr (ﬁRVT,uR )}

et (my m )}

27 B
e- -; = et
W
/ n
— - >
e > e+
W
/ 2
o —
e - - gt
l’|’+
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We have already encounter in QED similar terms, a2 92 1
also'v e —» v e scattering (s-channel, J = 1), —
So we can borrow the results from there (angular dependence)

’ l»l_ ‘1v1>9 A
e_}/’< -e+ —- |1a1> —
; >
"l+ MRR -1 cosf +1
: A :
2 2 ? I\/IRL2 IVILR2
Ml = L | o) () st eosa
—M? :
M, [ = g°)/cos” 4, 2(ce)z(c”)zsz(l+cos.9)2 \ M |25+||v| |2
LL] S—M; L L [ RRE >L|_
| |
2 2 2 -1 coso +1
M= 9L (oo (e 7 (1-cos )
Z
N cos(7z—9)=—-cos g
2 e 2
M| = S—MZW (cf) (c4) s*(1-cos 9)
Z

29



Around the Z° Peak

Need to consider carefully the Z propagator, which diverges for Vs — M, .

Account also for the fact that the Z boson is an unstable particle (i.e. a resonance)
which is equivalent to the replacement in the wave function M, — M, +iTl, /2
(relativistic Breit — Wigner).

Make same replacement in the propagator, valid if [', << M, :
1| 1 2 1
s—M; S=Mz +iMI | (s—MZ) +MZT?

For instance, the matrix element |[Mgg|?> becomes

‘2_ (9?/cos® &, ) (
(s-MZ) +MZr?

M Cr )2 (céj)z s? (1+cos 9)’
giving 2
d 1 9°/cos® 4 e
CZ;R — 64225 (S( M 2)2 N I\V;zzl“; (CR )2 (Cs )2 52 (1+ 0039)2

z

do, 1 (gz/coszgw)z (

0 \2 2 2
do _647zzs(5_|v|§)2+|\/|§r§ AT AL
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Unpolarized o,

To calculate the o, cross section need to sum over all 4 matrix elements (spin states)

and average over the initial spin states.
Assuming unpolarized beams there are 4 combinations of initial electron/positron spins

<‘Mﬁ‘2>:%.%(‘MRR‘2+‘MLL‘2+‘MRL‘2+‘MLL‘2)

2 2 g 2
= % (s(—gl\/l/;)):+ I\V;zzl“; 52 {((CECS )2 + (CECf)Z)(1+ cos )’ +((C§Cf)2 +(cres )2)(1—005 9)2}

The partin {...} can be rearranged as
[)= %[(c\‘,’ )2 + (ci\)z}[(c&l )2 +(ch )ZJ(H cos® 9) + 2¢; ¢ci/ch cos I
and the cross section follows
do 1 2
dQ  64x’s <‘M | >

g?/cos? 4, ) . . .
_ 64jz25411(s( M/22)2 - I\V:Izzl“; 52 {%[(c\, )2 +(cA)2J[(c\§‘)2 +(ch )ZJ(H cos’ 9) +2¢;c;cl ch cos&}
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Integrating over dQ gives

L (&) e ) ()]

GeJref—)Z_)/jr'u’ = 1927[5 (S B M 2 )2 n M 2F2
Z Z- Z

The o, cross section is proportional to the sums of the squares of the
vector- and axial-vector couplings of the initial and final state fermions

10 T T T T T T
2 2 e 1987
f f C :
+(C ) AT ete— utu ]
(CV ) A Vpe — — T
0s R g o N -
/ f {f:’__ ‘:«‘:'::\\\ .\.\ '1\

. ign “ . . . . . . - t. .'“:"’ g \\\ I I He 1
This is the additional “relation” which in conjunction \K\
with ve scattering experiments 00 [ AN
allows us to determine c,, and c,. [ N )

vee AN NS /)
_ . o5 p R e = Vg
Fore* e~ — q q introduce e
the corresponding vector- and axial-vector couplings vee/ Jo | vee™
and the color factor N. = 3 T T

ST S 1) M Y (PRI

19275 (s—M2) + M2r
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The Interference Term

To derive the interference term between y and Z amplitudes |, « 2Re[MyM§]

let’'s rewrite the e* e~ — u* u~ scattering amplitude as

_ 2 2 exf
Mﬁ:hi__)ﬁ _ S(l—l— hehf C089)|:47Z'0( + g /COS '9w C,C, :|

s  s—M:—iM,T,
where h, is the helicity (~chirality) of the incoming electrons and h; the helicity of

outgoing fermions, g the charge of the outgoing fermions and
the c,’'s the helicity dependent neutral current weak couplings (ci or c,).

The squared amplitude becomes

2
‘Mﬁghef_” ¢ (1+hh, cos )’ |:(47Smj y exchange
4z 9°/cos’§, cicy -2(s-M7)
+ - 2 - Interference
s (s—=MZ) +Mirs
2 2 2( e f)?
+(g fcos ’9W) (Chch) Z exchange

(s-MZ2) +MZr? .



The ete~ Cross Section

Putting together all 3 terms, the e*e~ differential cross section, can be expressed as

3?2 Zs[pb(s)(“cos 9)+A(s)cosg] :Ele

with

1 1 2
Ab(s)=1+§Re(r)(CR +CL)2+Z‘r‘2<C§ wel)
=1+2Re(r)c; +\F\Z(Cv2 +Ci)2

2 1, 2 2
A (s) =Re(r)(c, +c, ) +§M (ca—c?)
= +4Re(r)c +8]r| ¢ic?
where r “describes” the Breit-Wigner line shape characteristic of the Z° resonance
(the energy dependence of A, and A, is contained in r)
g°/cos’ 4, sM 2
" 167« M2 s—MZ +iM,T,

This decomposition of A, and A; shows the repatrtition between the electromagnetic
term, the interference terms o« Re(r) and « g2, and the week terms oc |r|? and o« g* .
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Summary ete- Cross Section

e*e~ annihilation involves Z /
vy and Z exchange + interference
f

- K mterference
Y
108 e f 2
Z
e f I
1041
2 e’e{—hadrons e~ f
well below Z peak *3 \\ at Z peak
y exchange dominates ™ =, Z exchange dominates
102} & ~ 200
mmsAan LEP I O
e LEP Il 4
02104lOBIOBlO 100”1}20‘1-;0‘180I I
\/s

above 2I\/IW, W*W- pair productlon dominates

R el M 35




Forward — Backward Asymmetry

QED (A,=1and A, =0, valid forr —» 0, i.e. well below the Z pole) gives
a symmetric angular distribution.

Because M [ +[Mue| #[M [ +|M

The weak interaction introduces a Forward — Backward asymmetry

i , the differential cross section is asymmetric,
l.e. parity violation (although not maximal as was the case for the W boson).

A, =2F" _[dcos&l do jdcos& do
(TF-I-GB dcos g dcosd B
a’ 1
or =— dcosQ[AO 1+cos .9 +A&cos‘9]=g( Ao+§A1j o

>

Op =— dcos&[ 1+cosl9+A100319] a_s( AO—%AIJ 4
3| (¢

) (k) | [ (et) (k) |3 o pe gl cict

A = : =—AA"=3

8/3Ao 4 (cf )2 +(C§ )2 (Cf )2 +(C§ )2 4 (C\; )2 +(C/: )2

2

Observe a non-zero asymmetry because the couplings of the Z to LH and RH fermions
are different. Contrast with QED, where the couplings to LH and RH fermions are the

same (parity is conserved) and the interaction is F — B symmetric.
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=
b

{‘E 1 ;_ ;;iiil PEP PETRA  TRISTAN .L]ip _g E E-l-E-_)M—I-u- OP AL
075 E #MAC OJADE ATOPAZ ~ Lot
; YVENU CD':- I
05 F ¢PLUTO 4 0.3 - at Z peak 1
025 :_ S TASSO u 1
- = 0.6 - .
0 Fod_ jj IS ]
025 | (e T 04 f Z peak + 2T
05 b b4 02 f -
- ee —uu [ ) ]
-0.75 ;— 0'“ P | JZ.p.ejall( i |2r. 1
N AN AT T 1 05 0 05 1
0 20 40 60 80 100 120 140 160 180 cosO .
Vs [GeV] H
A° =0.1514 +0.0019
f 26, C, G, /Ca
A* =0.1456 + 0.0091 A = Y Y =2 Y
A" = 0.1449 +0.0040 (o) +(ea)  1+(ev/ea)

The measured F — B asymmetries give the ratio of vector to axial-vector Z couplings.
In SM these are related to the weak mixing angle

¢, T,—2Qsin’4,
CA T3

=1-4|Q|sin* 4, =  sin’$,(M?7)=0.23154+0.00016
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Z° Width

Around the Z° peak can ignore the EM and interference terms, because o, dominates.

Rewrite o, in terms of the Z boson partial decay rates
(use Fermi’s golden rule to derive I" and set s = M,?)

Oy

N\ 9°/c0S* R T( e\ (02 .\ g*/costd, , )
F(Z—>ee)=g/ W[(C\,) +(CA)}MZ and F(Z—)lulu):g/ [(05) +(C§)}Mz
A8 _ A8,r
as g ————
+ + - 127 S ; i o )
olee >Zouu) =0 2\2 212 Feel = ? ALEPH
|\/IZ (S—MZ) —I—MZFZ £ DELFI
_::'d 30:_ OPAL
and t
N
O'(e+e‘ -7 - ff_) = 12722 3 r.r, T 20 |
MZ (S—MZZ) —I—MZZF; _'_u.;r - . mh‘ mri‘:"r,-::
\-Eir 10 " — o from fit g
with peak cross section equal to b [
1271 I rer o IO it
2) — ee” ff 86 88 90 92 94
Gﬁ(MZ)_MZ T2 /s [GeV]
Z Z

which allows the determination of M, and I'; (including the partial widths)

M, =91.1875+0.0021 GeV

I, =2.4952+0.0023 GeV
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Number of Generations

The total decay width is the sum of all partial widths

[, =T+l,, +T  +T+NT + 7

Although we cant observe Z decays into neutrinos (invisible decay mode),
these decays affect the Z resonance shape for all final states.

If there were an additional 4t generation would expect Z — Vv,V,decays
even if the charged fermions were too heavy (as long as m, < M./2)

. . . 40
Assuming lepton universality -

E - L3 m 1990-92
FZ — BFII +Fhad + NVFW 20 L hadrons . 1004
from Z line from peak calculated N
shape Cross sections 30 [ e
N, =2.9840+0.0082 L

86 38 90 92 94 96
Vs [GeV] 39




The W Bosons

Areal (i.e. not virtual) massless spin-1 boson (i.e. the photon) can exist in two
transverse polarization states (circular polarization),
although off-mass shell virtual photons can be longitudinally polarized.

A massive spin-1 boson (i.e. the W and Z bosons) acquires also a longitudinal
polarization (3" polarization component).

Spin-1 boson wave-functions can be written in terms of the polarization four-vector &*:

W/u — g/ue_ip'x — gﬂel(ﬁi_Et) g/u p —
7]
with
”—101'0 "—1 0,0, E "= 1010
_ __( ) 1_|1 ) 8|_ __(p21 1 VY ) €+ ___( 1|1 )
J2 m J2
_ % - :' CcMS, I‘I!ilplh"BTe\F ' ! W; |
W bosons can also be produced in o 10 = o 7 TeV / W -
pp and pp collisions S EE?' /// -
B Z |
v 'E / E
d W+ H - -
== —
E Theory: NNLO, FEWZ and MSTWOB PDFs E
u w ' — 5 7 10 20

Collider Energy [TeV] 40



ete- > W+W- Pair Production

17/02/2005

30

— T y T
¢ W ra’s ! LEP Only‘)
o= = PR o
Vv, - 4 2 S yYWHW
96sin™ 4, M,, & s
— _ . 20_
¢ W divergent !
¢ Al
We have a problem however: ' + ZW+W-
the cross section violates unitarity 10- / N
(i.e. for s —» o the outgoing W* flux is larger than / S Racoon W
the incoming e”e flux) | F e
The W* bosons carry electric charge and 0 160 180 200
W bosons can be produced for example in e*e~ annihilation. Vs (GeV)
e W
4
e W™
but the cross section is still divergent. e W
This problem can be “cured” by introducing a new boson, the Z°, Z
The new Z° diagram interferes negatively with the W diagrams
(almost) solving the unitarity problem. e~ W



Add the amplitudes
e W+
Ve M M
e W
Moy + My + M ZWW\ <M

Only works if Z, v, W couplings are related — Electroweak Unification

Finally, the cross section becomes

2

o
°- 2sin* g, IOg(S/MVZV)

but still exhibits a mild logarithmic divergency.

The presence of the Z (almost) fixes this problem.
Question: What is missing? Answer: the Higgs boson.
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W Decay in the W center of mass (W rest frame)

Ve
P P4

W

P3N o

The transition rate can be written in terms of the scalar product of the
W-boson polarization ¢ (p;) and the weak charged current J - :

M, =% £ (p,) U(pg)n%(l—f)v(m)

Take J - from the helicity decomposition of the e*e~ — p"u~annihilation:
J, =2E(0,+cos0,+,—sin o)

and the polarization four-vectors for a W at rest

gf:iz(o,l,—i,O) £ =(0,0,0,1) gf:—iz(o,l,i,O)

V2 V2

and calculate separately the matrix elements for the three different polarization states
of the W boson with E = M,,/2 (ignore the masses of the decay fermions). 43



Helicity Decomposition

We obtain the following 3 amplitudes for each polarization state of the W boson

. 1
E . M 0,1,-1,0)M,, (0,—cos8,-1,sin@) =—gM,, (1+cos &
: _ J‘J‘( IM,, ( )= My ( )
. 1 :
g : M, :T(O,O,O,l)MW(O,—cos@,—l,sm 0) :_T gM,, siné
g, M, = (Ol,l,O)M (0,—cos@,-li smH)_—gM (1-cosé)
N
and after taking the modulo squared
g MZ:%gZMVZV(lJrcosé?)2
: 2 1 o000 .2
& - M, :Eg M, sIin“ &
. 2 1 5000 2
g, : M, :Zg M,, (1—cos8)
Note ||\/|_|2 +||\/| L|2 +||\/|+|2 =g°M; For a sample of unpolarized W bosons,

the decay is isotropic (as expected).
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Angular Distributions

transverse longitudinal

transverse

S,=+1
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W Decay Rate

The decay rate is obtained using Fermi’s golden rule

dQ  327°M2
with p* = M,/2
2 2 2
dr, _ g M;V l(1+ cos 9)° ar, _ g Mgv Lsinzo ar. _Jd M‘év E(1—0059)2
dQ 64z° 4 dQ 64z° 2 dQ 64z° 4

and after integration over the solid angle dQ2 = dcos6 d¢ one finds that the three
polarization decay rates are identical

=T =I, =

QZMW
A87r

as one would expect since the decay rate cannot depend on the arbitrary definition

of the z-axis.

For a sample of unpolarized W bosons, the decay is isotropic since each polarization
state is equally likely: sum over all possible matrix elements and average over the

three initial polarization states (

ie.3x1/3=1):

W™ —>ev)=

g°M,,
487

=230 MeV

exp.t: 223 MeV
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For Next Week

Study the material and prepare / ask questions
Study ch. read ch. 13 (sec. 1 to 7) in Halzen & Martin
and / or ch. 15, ch. 16, and app D in Thomson

Do the homeworks

Next week we will study the Higgs Mechanism
have a first look at the lecture notes, you can already have questions
read ch. 14 (sec. 5to 9) and ch. 15 (sec. 1 to 6) in Halzen & Martin
and / or ch. 17 in Thomson
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