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charge raising

charge lowering

Introduce left-handed doublet and right-handed singlet(s)
(weak isospin doublet)

and rewrite the charged currents as

charge raising

charge lowering

Electro-Weak Interactions
weak interaction phenomenology identify the underlying symmetries

 put on solid grounds:  gauge invariance (massive gauge bosons?)

renormalizability
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The Weak Current Triplet
Add the 3rd component to the J

+ and J
- currents, i.e.

[it cannot be identified with the  or J
EM (massless, also a right-handed component!).}

and introduce the “weak isospin” triplet of weak currents

The “charges” Ti generate an SU(2)L algebra of left-handed weak currents.

Note:   J
+ = 1/2(J

1 + i J
2)  and   J

- = 1/2( J
1 - i J

2 )

Can also introduce the triplet of weak vector bosons
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The Electro Magnetic Interaction
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Let’s rewrite the electromagnetic current as (here e represents the electron spinor)

with Q the charge operator (with eigenvalue -1 for the electron).

Q is the generator of the U(1)EM symmetry group.

J
EM contains left-handed and right-handed components with equal weights.

We could stop here, however J
3 and W0 have never been observed.

J
EM does not belong to SU(2)L since it contains left-handed and right-handed

components.

In the attempt to save the SU(2)L symmetry include also J
EM (Glashow 1961)

and enlarge the symmetry group  electro-weak unification.

By combining J
3 and J

EM with different weights, one could build the physical current

J
NC, which contains left- and right-handed components. This, however, will require the

introduction of a new weak hypercharge current J
Y orthogonal to J

3.
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“Unification”
Both ”neutral” currents J

NC and J
EM contain left-handed and right-handed components.

Neither respects the SU(2)L symmetry. Nan can be identified with J
3.

Glashow’s proposal (1961), well before the discovery of Neutral Currents (1973):

Form two orthogonal combinations starting with J
NC and J

EM .

These two new currents must have definite transformation properties under SU(2)L:

one combination, J
3, with coupling g is to complete the weak isospin triplet J

i

and it is purely left-handed;

the second combination, orthogonal to J
3, is the new weak hypercharge current J

Y

introduced by Glashow with coupling g’/2. J
Y is a singlet under SU(2)L.

The weak hypercharge current J
Y contains right-handed and left-handed components

(although with different weights):

The weak hypercharge operator Y is defined by

Y generates the U(1)Y symmetry group with B
0 the associated gauge boson.
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We have two “neutral currents”, J
3 and J

Y (associated to the W0 and B0), nan physical.

The photon J
EM is a linear superposition of the J

3 and J
Y currents

with equal amounts of left- and right-handed components.

A new current, J
NC, orthogonal to J

EM , is thus predicted,

with different amounts of left- and right-handed components.

All this might work, if e ~ g’ (i.e. similar strength).

The electromagnetic current

In terms of J
3 and J

Y reads

The weak hypercharge current

for the electron (Q = -e)

is given by

We have incorporated the electromagnetic interaction and the symmetry group has been

enlarged to SU(2)L  U(1)Y.

In a sense we have unified the electromagnetic and weak interactions.

However two open issues remain:

massive gauge bosons W and Z (Weinberg 1967 and Salam 1968 via Higgs mech.)

renormalizability (t’Hooft 1975 using the Higgs field)
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(2) (1)L YSU U

Two symmetry groups and two coupling constants gW (W) and gY’/2 (Y).

Classify all particles according to the weak isospin T and the hypercharge Y = 2(Q-T3) .

Note that [Y,Ti] = 0 (i.e. they commute  different symmetry groups).

 all members of a weak isospin multiplet have the same weak hypercharge Y.

Weak Isospin and Weak Hypercharge quantum numbers for leptons and quarks

uR and dR are singlets, i.e. they do not form a right-handed doublet.

Note that nR , if it exists, carries no quantum numbers,

i.e. it does not interact via any known force, not even the neutral current J
NC.
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The Basic Electro-Weak Interaction
Iso-triplet vector field, W

i  J
i coupling gW

SU(2)L symmetry group

Iso-singlet vector field, B  J
Y coupling gY’/2

U(1)Y symmetry group

Basic ElectroWeak interaction

Weak Charged Bosons Neutral Bosons
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The Photon and the Z Boson
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Express the “observed” massless photon field A and the massive field Z
0

in terms of W
0 and B

0

qW – electroweak mixing angle

(Weinberg angle, originally introduced by Glashow)

with the condition

Have we really unified the EM and Weak interactions?

We have started with two independent theories with couplings gW and e

and we have arrived at coupling constants which are related, 

but at the cost of introducing a new parameter, the Weinberg angle qW .

The interactions are not unified from any “higher” principle, but it works!

(For a “real” unification one would need a larger symmetry group

containing SU(2)L and U(1)Y as subgroups with only one coupling constant.)
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Electro-Weak Neutral Current Interaction
Express the electro-weak Neutral Current interaction

in terms of the fields A and Z

The Electromagnetic Current is a linear combination of the 3rd component of the

weak isospin current W0 and of the weak hypercharge current Y

The Neutral Current (Z0)
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SU(2)L  U(1)Y Lagrangian
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In order to construct an electro-weak theory we start from the “free” Dirac Lagrangian

and make it invariant under local SU(2)L and U(1)Y transformations.

Note that the group SU(2) is non abelian (like SU(3)), while U(1) is abelian.

The left-handed fields L enter in all interactions, electromagnetic and weak.

We require the L  fields to be invariant under local SU(2)L  U(1)Y transformations:

The right-handed fields, on the other hand, are required to be invariant under U(1)Y only:

The operators T and Y are the generators of the SU(2)L and U(1)Y groups.

They act on “properties” of the fields that we call weak isospin and weak hypercharge

(in analogy to the spin and the electric charge).

commutation rules                               and
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The requirement that a field theory is gauge invariant under a particular symmetry group

strictly fixes the form or the interaction and the number of gauge bosons.

To restore local gauge invariance we introduce the covariant derivative involving four

new gauge fields Wi and B0

with g and g’/2 the coupling constants, and Ta the generators of the SU(2)L and

Y the generator of U(1)Y gauge groups. This leads to the following interaction term

The first term involves only left-handed fields, the second term involves left-handed and

right-handed fields.

In terms of the currents interacting with the vector fields, Lint can be expressed as

with J the weak isospin current triplet

and J
Y the weak hypercharge current
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To complete the Lagrangian we have to add the kinetic terms describing the gauge fields

where the field strength tensors for SU(2)L and U(1) are

Recall that the SU(2) L symmetry group is non Abelian, which leads to the self coupling

terms between W gauge bosons (triple and quartic vertices).

Moreover, to restore the gauge invariance, the gauge fields must transform as

For the moment we will ignore that the W and B gauge bosons are massive (Glashow).

Gauge Terms
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The NC Interaction Terms
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The neutral component of the interaction term can be expressed in terms of

the A and Z fields as

The requirement that the electromagnetic interaction must appear in the Lagrangian

fixes the coupling constants 

The interaction term for the charged currents is given by

with the weak isospin charged currents

and the gauge bosons
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1973 experimental birth of Standard Model

ne ne

nN nX

nN nX

First evidence of a weak neutral current

NC anticipated by Glashow in 1961

Until then no weak neutral current effects have been observed.

Note: no flavor change at the vertex, NC conserve flavor!

Very stringent limits on (flavor changing) neutral currents by the absence of decays

These small (non-zero!) branching ratios explained well by SM (GIM mechanism), also:

However in ne, nq scattering NC events are as abundant as CC events,

difficult to detect isolated electron, study on nuclear targets.

Neutral Currents
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Neutral Currents: n e- n e- Scattering

n

e-

e-  e-+ 

 e+ + e-
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CC and NC – nN Scattering

all particles identified as hadrons

no leptons detected!

NC: nN n + XCC: nN - + X

nn
-

one lepton (-) detected

all other particles identified as hadrons
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NC Scattering Amplitude
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Develop in analogy to CC at low q2 << MZ
2

A priori:

i) not necessarily pure V – A, what structure?

ii) can have right handed components (not for n)

try cVV – cAA (cV and cA from experiment)

iii) new coupling g’, new massive neutral boson

iv) no flavor change at the interaction vertex dff’ 

effective 4-fermion theory as for CC with new coupling constant GNC / 2 = g’2 / 8 MZ
2

and cV
n = cA

n =1/2 (neutrinos are left-handed) [in a V + A theory cV
n = –cA

n =1/2]
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r determines the relative strength of NC to CC, in the SM r= 1

In the SM all cV
i and cA

i are given in terms of one parameter,

the electroweak mixing Weinberg angle qW

qW measures the relative strength of CC and NC couplings with

cV
e = -1/2 + 2sin2qW cA

e = -1/2 

In summary, we have a basis for calculating NC amplitudes.

From now on, assume r = 1 and GNC = GF. The only unknowns are cV
e and cA

e .
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Recall the NC transition amplitude (L10)

where we have introduced the neutral current

couplings cA and cV to allow for a RH component

for the electron field.

NC Couplings cV and cA
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Rewrite the Neutral Current interaction as

and compare to
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cV and cA
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Electroweak unification achieved if g = e

In reality  e    =      g     sin qW sin2 qW (MZ) = 0.23126 ± 0.00005

~0.3   =  ~0.6    ~0.5

cV and cA determined from ne elastic scattering

and e+e– annihilation at Z pole,
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NC nee
-  nee

- Cross Sections
To start, let’s consider ne

– or ne
– scattering (no CC channel!). The NC amplitude is

Using the CC current results

and

(“left-handed”) (“right-handed”)

we obtain directly

and after integrating over y (or d cosq)
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Finally, we can derive the full nee
– scattering amplitude!

Both the CC (W exchange) and NC (Z exchange) channels contribute:

add the amplitudes M = MCC(nee
- e-ne) + MNC (nee

- nee
-)

Adding the amplitudes (r = 1 and GNC = GF)

(i.e. equivalent to replace cV
e  cV

e + 1 and cA
e  cA

e + 1 in the NC amplitude)

Putting all together leads to
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vertex factor interaction term

QED

weak

charge raising

weak

charge lowering

weak

neutral

Feynman Rules (for Leptons)
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Effective Current-Current Interaction
Charged Current interactions can be described with

invariant amplitudes of the form (Fermi theory)

Let the interaction proceed via the exchange of massive charged vector bosons W±.

First rewrite the basic charged current interaction in the form

then calculate the amplitude using the low q2 approximation for the W propagator

Comparison of the two gives

Similarly for the Neutral Current amplitude in terms of Z exchange express the amplitude

Comparison with the effective current – current interaction form gives (r = NC / CC)
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In addition to the electromagnetic interaction (),

the e+e– annihilation can proceed also via the weak neutral interaction (Z).

The final states are indistinguishable  add the amplitudes, which generates an

interference between the  and Z exchange diagrams 

e+e– Annihilation

( tot Z Ie e       -  -   
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The Z0 Amplitude
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The amplitude for Z exchange is given by

Letting k2 = s and setting

leads to 

where we have separated the LH components and the RH components.
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Helicity Decomposition
To calculate |MZ|2, we have to evaluate 4 terms

according to the lepton chiralities (~ helicities, i.e. orientation of spins)

[instead of summing over spins, we study each helicity configuration separately)
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We have already encounter in QED similar terms,

also n e  n e scattering (s-channel, J = 1),

so we can borrow the results from there (angular dependence) 
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Around the Z0 Peak
Need to consider carefully the Z propagator, which diverges for s  MZ .

Account also for the fact that the Z boson is an unstable particle (i.e. a resonance)

which is equivalent to the replacement in the wave function

(relativistic Breit – Wigner).

Make same replacement in the propagator, valid if GZ << MZ :

For instance, the matrix element |MRR|2 becomes

giving
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Unpolarized Z

To calculate the Z cross section need to sum over all 4 matrix elements (spin states)

and average over the initial spin states. 

Assuming unpolarized beams there are 4 combinations of initial electron/positron spins

The part in {…} can be rearranged as

and the cross section follows
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cV
e

cA
e

Integrating over d gives

The Z cross section is proportional to the sums of the squares of the

vector- and axial-vector couplings of the initial and final state fermions

This is the additional “relation” which in conjunction

with ne scattering experiments

allows us to determine cV and cA.

For e+ e–  q q introduce

the corresponding vector- and axial-vector couplings

and the color factor NC = 3
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The Interference Term
To derive the interference term between  and Z amplitudes

let’s rewrite the e+ e–  + – scattering amplitude as

where he is the helicity (~chirality) of the incoming electrons and hf the helicity of

outgoing fermions, q the charge of the outgoing fermions and

the ch’s the helicity dependent neutral current weak couplings (cR or cL).

The squared amplitude becomes
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The e+e– Cross Section
Putting together all 3 terms, the e+e– differential cross section, can be expressed as

with

where r “describes” the Breit-Wigner line shape characteristic of the Z0 resonance

(the energy dependence of A0 and A1 is contained in r)

This decomposition of A0 and A1 shows the repartition between the electromagnetic

term, the interference terms  Re(r) and  g2, and the week terms  |r|2 and  g4 .  
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Summary e+e– Cross Section
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e+e– annihilation involves

 and Z exchange + interference

2

interference

2

at Z peak

Z exchange dominates

well below Z peak

 exchange dominates

2

above 2MW, W+W- pair production dominates

s

2

2

200Z






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Forward – Backward Asymmetry
QED (A0 = 1 and A1 = 0, valid for r  0, i.e. well below the Z pole) gives

a symmetric angular distribution.

Because                                                  , the differential cross section is asymmetric,

i.e. parity violation (although not maximal as was the case for the W boson).

The weak interaction introduces a Forward – Backward asymmetry

Observe a non-zero asymmetry because the couplings of the Z  to LH and RH fermions

are different. Contrast with QED, where the couplings to LH and RH fermions are the

same (parity is conserved) and the interaction is F – B symmetric.
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0.1514 0.0019

0.1456 0.0091

0.1449 0.0040
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The measured F – B asymmetries give the ratio of vector to axial-vector Z couplings. 

In SM these are related to the weak mixing angle
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Z0 Width
Around the Z0 peak can ignore the EM and interference terms, because Z dominates.

Rewrite Z in terms of the Z boson partial decay rates

(use Fermi’s golden rule to derive G and set s = MZ
2)

as

and

with peak cross section equal to

which allows the determination of MZ and GZ (including the partial widths)

(  (  (  (  (  ( 
2 2 2 2

2 2 2 2cos cos
and
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Number of Generations
The total decay width is the sum of all partial widths

Although we cant observe Z decays into neutrinos (invisible decay mode),

these decays affect the Z resonance shape for all final states.

If there were an additional 4th generation would expect                  decays

even if the charged fermions were too heavy (as long as mn < MZ/2)

Assuming lepton universality

? Z ee had Nn n  nG  G G G  GG  

4 4Z n n

3Z ll had Nn nnG  G G  G

from Z line

shape

from peak

cross sections

calculated

2.9840 0.0082Nn  
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The W Bosons

40

A real (i.e. not virtual) massless spin-1 boson (i.e. the photon) can exist in two

transverse polarization states (circular polarization),

although off-mass shell virtual photons can be longitudinally polarized.

A massive spin-1 boson (i.e. the W and Z bosons) acquires also a longitudinal

polarization (3rd polarization component).

Spin-1 boson wave-functions can be written in terms of the polarization four-vector :

with

W bosons can also be produced in

pp and pp collisions 

( ) 0ip x i p x EtW e e p   

  -   -  

1 1 1
(0,1, ,0) ( ,0,0, ) (0,1, ,0)

2 2
L zi p E i

m

    -  -   -

u -

nd
W+



ZW+W–

W+W–

only n

We have a problem however:

the cross section violates unitarity

(i.e. for s the outgoing W± flux is larger than

the incoming e+e– flux)

The W± bosons carry electric charge and

W bosons can be produced for example in e+e– annihilation.

but the cross section is still divergent.

This problem can be “cured” by introducing a new boson, the Z0.

The new Z0 diagram interferes negatively with the W diagrams

(almost) solving the unitarity problem.

e+e–  W+W– Pair Production

2

4 296sin W W

s

M







divergent ! 
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Add the amplitudes

Only works if Z, , W couplings are related  Electroweak Unification

Finally, the cross section becomes

but still exhibits a mild logarithmic divergency.

The presence of the Z (almost) fixes this problem.

Question: What is missing?   Answer: the Higgs boson.

2 2

WW WW ZWW WW WWM M M M Mn  n    
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W Decay

43

in the W center of mass (W rest frame)

The transition rate can be written in terms of the scalar product of the

W-boson polarization  (p1) and the weak charged current J
- : 

Take J
- from the helicity decomposition of the e+e– +– annihilation:

and the polarization four-vectors for a W at rest 

and calculate separately the matrix elements for the three different polarization states

of the W boson with E = MW/2 (ignore the masses of the decay fermions).

5

1 3 4

1
( ) ( ) (1 ) ( )

22
fi

g
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   -

2 (0, cos , , sin )J E i q q   -

1 1
(0,1, ,0) (0,0,0,1) (0,1, ,0)

2 2
Li i    -  -   -

ne
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We obtain the following 3 amplitudes for each polarization state of the W boson

and after taking the modulo squared

Note For a sample of unpolarized W bosons,

the decay is isotropic (as expected).

Helicity Decomposition
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Angular Distributions
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W Decay Rate
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The decay rate is obtained using Fermi’s golden rule

with p* = MW/2

and after integration over the solid angle d = dcosq df one finds that the three

polarization decay rates are identical

as one would expect since the decay rate cannot depend on the arbitrary definition

of the z-axis.

For a sample of unpolarized W bosons, the decay is isotropic since each polarization

state is equally likely: sum over all possible matrix elements and average over the

three initial polarization states  (i.e. 3  1/3 = 1):

exp.t: 223 MeV
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2 232 W

d p
M

d M

G




2 2 2
2 2 2

2 2 2

1 1 1
(1 cos ) sin (1 cos )

64 4 64 2 64 4

W W WL
g M g M g Md d d

d d d
q q q

  
 -G G G
    -

  

2

48

W
L

g M


- G  G  G 

2

( ) 230 MeV
48

Wg M
W e n



- -G   



For Next Week

Study the material and prepare / ask questions

Study ch. read ch. 13 (sec. 1 to 7) in Halzen & Martin

and / or ch. 15, ch. 16, and app D in Thomson 

Do the homeworks

Next week we will study the Higgs Mechanism

have a first look at the lecture notes, you can already have questions

read ch. 14 (sec. 5 to 9) and ch. 15 (sec. 1 to 6) in Halzen & Martin

and / or ch. 17 in Thomson 
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