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Massive Gauge Bosons
1. massive gauge bosons break local gauge invariance of QED, QCD and EW theory

Consider the QED Lagrangian with a massive photon (add the mass term m2AmA
m)

Under local U(1) gauge transformations, the fermion field Y and the photon field Am

transform as

while the photon mass term transforms as

which is explicitly non invariant.

2. massive fermions break local gauge invariance of EW theory (not QED nor QCD)

Likewise the fermion mass term

mixes terms with different chiralities and is not invariant under SU(2)L  U(1)Y

transformations because of different transformation properties of the fermion fields

yL and yR . This mass term, however, is invariant under QED U(1) and QCD SU(3) local

gauge transformations because the yL and yR fields transform in the same way.
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Why insist on rejecting terms like ?

 the theory is not renormalizable and loses all predictive power

(or each order in the perturbative expansion one has to introduce cutoffs specific to the

order)

Consider for instance a higher order contribution to the scattering of two fermions.

To calculate the amplitude integrate over all propagators (loop)

All possible 4-momenta q appear in the amplitude (internal

lines), the momentum transfer q is not limited from above.

In QED, this box diagram represents the exchange of 2 photons (vacuum polarization).

The propagator igm/q
2 makes the integral finite (all orders renormalized with eR and mR). 

In the case the boson is massive, the propagator 

yields a divergent integral for large 4-momenta q.

Introduce a cutoff on q? New parameter in the theory!

For each new diagram a new set of cutoff parameters are required and the theory cannot

be renormalized because of too many cutoff parameters. 

Any theory breaking local gauge invariance is not renormalizable!
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The Higgs Mechanism
Gauge invariance can coexists with massive boson fields, if the mass of these fields is

in reality an artefact, a fake conclusions that we infer from their sub-luminal propagation.

There are different possibilities how to realize the sub-luminal propagation of a particle,

which in reality is massless (a massless particle propagates at the speed of light).

We will study the spontaneous symmetry braking or the Higgs mechanism. 

The Higgs mechanism provides a mechanism for W+, Z0, and W– gauge bosons to

acquire mass without violating the local gauge invariance principle.

We will arrive at this result in several steps:

1. symmetry breaking for a real scalar theory (discrete symmetry)

2. symmetry breaking for a complex scalar theory (continuous symmetry)

3. symmetry breaking in a local gauge theory (U(1) local symmetry)

4. symmetry breaking in a local SU(2) gauge theory

5. symmetry breaking of the electroweak gauge group SU(2)L  U(1) Y

At the same time, fermions acquire mass via Yukawa couplings to the same Higgs field.

With the discovery of the Higgs boson in 2012 (MH ~ 126 GeV) the Standard Model of

particle physics is complete.
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The Higgs Mechanism
Propose a scalar spin-0 field h(x) that permeates the space-time (i.e. it is everywhere)

with a non-zero vacuum expectation value (VEV)                        .

But what is the vacuum?

1) state of lowest energy (otherwise the system can always evolve to that state)

2) state with no fields f = 0 (VEV =                  )  state with fields f  0 (VEV  0)

Gauge bosons propagating through the vacuum with a non-zero Higgs VEV

correspond to massive particles.

- the Higgs boson is electrically neutral but carries weak isospin T = ½ and T3 = -1/2,

and weak hypercharge Y = 1

- the W± and Z bosons couple to the weak isospin and hypercharge and acquire mass

- the photon does not couple to the Higgs field and stays massless

- the Higgs mechanism results in absolute predictions for the masses of gauge bosons

- fermion masses are also ascribed to interactions with the Higgs field, however no

predictions of masses are made (Higgs boson couplings are proportional to their mass)
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Real Scalar Field
We start with a world containing only a real scalar field f(x), without fermions,

without matter, characterized by the Lagrangian density

in which T is the kinetic term (it depends only on the components of the field gradient),

while V is a potential function. For the “usual” free scalar field, V(f) is a second-order

function in f, V = m2/2 f2 . The “zero” solution corresponds to the minimum of the

potential function, and the quantization of the free scalar field corresponds to the 

excitations (small oscillations) around the equilibrium point at f = 0.

The Lagrangian is symmetric w.r.t. the reflection transformation f  f,

and its lower state f = 0 is symmetric and stable. 

Now, let’s introduction into V(f) a positive term of the form f4 describing self-interactions

of the field (it can also be seen as an expansion of V(f) around f = 0):

and the Lagrangian becomes

where we have introduced the term           , which describes the self-interactions among

the field f, with constants m2, l>0 . This Lagrangian is symmetric for f f.
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Comparison with the Lagrangian for the free scalar fields of mass m

(Klein-Gordon Lagrangian)

shows that Lf describes a field of mass m (provided m2 > 0), which interacts with itself via

a quartic vertex with a coupling l (f– 4 theory).

The potential density

has a minimum for f 0,                       and

with the vacuum expectation value (VEV)                     .

That is expected, since the potential energy should have a minimum in absence of fields.

Note that there are no odd power terms, otherwise V would have no minimum.

The interpretation changes dramatically, if m2 < 0 ( imaginary mass).

The term proportional to f2 cannot be interpreted as a mass term, since the mass is an

observable and must be real. This may suggest the introduction of supraluminal

particles with imaginary mass (tachions). To us, however, what is important,

is that the point f = 0 in not a minimum of the potential V.

This Lagrangian, however, is still symmetric for f f.
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The potential has a local maximum for f = 0, because and                    .

Local minima appears for                     in two points (stable equilibrium) , i.e.

with v, the vacuum expectation value VEV of the field

The VEV is therefore not zero. We call vacuum the state of minimal energy.

Both minima have the same energy

as a result of which the corresponding system has a doubly-degenerate vacuum state.
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To study excitations of the field around the ground sate with this Lagrangian

(m2 0and l>0), we must develop the field around a minimum of the energy Emin.

In this case the minimum corresponds to a finite value of the field f : fmin v or fmin v.

The vacuum, therefore, does not correspond to a situation with no fields,

but it contains a field f(x) v for all the space-time points x. We have to choose a

minimum among two possibilities, +v and –v, we choose +v (arbitrary decision).

To perform the expansion of the field around Emin we transform f (shift f to the minimum)

as

The Lagrangian can be rewritten in terms of the field h(x)

as

Lh is not invariant for h h (the term lvh3 changes sign): the symmetry is broken.

The coefficient lv2 of the h2 term is now positive and comparison with the

Klein-Gordon Lagrangian allows us to interpret this term as a real mass term

The Lagrangian can be finally rewritten as

with 

The potential V describes triple and quartic self-interactions among the fields h.
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Spontaneous Symmetry Breaking
1. Find a non-symmetric solution of a theory which is otherwise symmetric.

2. The symmetric state does not coincide with the ground state.

3. Identify a mechanism that evolves the system

from the symmetric state to the non-symmetric state.

With the transformation f h we have lost the symmetry of the initial Lagrangian.

Lh is not invariant for h h (the term lvh3 changes sign)    different physics. 

This is due to the fact that we choose the minimum at +v. We could have also chosen

the vacuum at –v, but not both at the same time. Our choice has broken the symmetry

of the system, and this symmetry breaking has given mass to the field h(x).
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The choice of the ground state among various possibilities, which are linked by a

symmetry is what we call spontaneous symmetry breaking.

The symmetry of the system is no longer evident in its ground state; more precisely,

we should speak of hidden symmetry, since the system does not exhibit in its ground

state the symmetry, which is well visible in the excited states of the system.

One can ask how such a trivial transformation, which leaves the Lagrangian intact,

can transform the massless field f into the massive filed h. 

With an exact calculation one would find perfectly equivalent solutions with Lf and Lh .

We are not seeking, however, an exact solution, but we approximate the solution with

a perturbative expansion. The perturbative expansion is possible only for Lh around a

minimum of the potential energy h = 0 (i.e. f = v).

Both Lagrangians describe a massive particle, but we know how to calculate only with Lh.



In Nature, many systems exhibits spontaneous symmetry breaking. These systems are

described by some functions (Lagrangians, Hamiltonians, forces, …) possessing some

symmetry, while the real physical state of the system corresponding to a particular

solution of the equation of motion does not exibit this symmetry.

This arises when the lowest symmetric state does not have the lowest possible energy

and it is itself unstable (see e.g. magnetization). The actual cause of symmetry breaking

may turn out to be an infinitesimal non-symmetric perturbation.

A simple example is provided by the bottom of a bottle and a small ball inside it.

The bottle has rotational symmetry around the vertical axis.

Let the ball fall along this axis.

When the ball reaches the bottom, the ball will not rest on the central protuberance

but will roll down to the periphery. 

The final state has lost its initial rotational symmetry and the ball has acquired an angular

momentum L around the symmetry axis.
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Mechanical Analogy
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The following is usually presented as a mechanical example to develop an appreciation

of this surprising phenomenon of symmetry breaking.

Imagine a one dimensional needle. Around its axis,

the needle has no angular momentum.

Then press the needle with a vertical force larger

than the elasticity limit of the needle.

Initially nothing happens, the system remains in an

equilibrium state (well, you will just feel pain …).

Starting from a quantum fluctuation, the lattice

of the needle weakens in an unpredictable point,

and the needle bends in a random direction.

The cylindrical symmetry of the system has

disappeared spontaneously.

At the same time an angular momentum around

the initial symmetry axis has appeared.

The system has acquired a kind of mass.
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Electromagnetic Analogy
Gauge symmetry assures that a Quantum Field Theory gives finite results and requires

massless fields. However real fields can be massive: it is possible that the quanta of the

fields do not have a “real” mass, but that their free propagation is slowed down by

constraints connected to the space-time.

Consider for instance the electromagnetic radiation propagating through a plasma of

electrons. Because the plasma acts as a polarisable medium  “dispersion relation”

with wp the plasma cutoff-frequency. 

Electromagnetic waves propagate in the plasma only for frequencies w > wp :

Above this frequency EM waves propagate with a group velocity vg

Rearranging gives

with

Massless photons, which propagate through a plasma, behave as massive particles 

propagating in a vacuum with velocity vg < c !
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Complex Scalar Fields
A quite simple but profound generalization arises in the transition from the

single-component field to an isotopic multiplet f = (f1, f2, … fN). For simplicity, let’s

consider a scalar complex field

where f1 and f2 are two spin-0 real fields,

with the following Lagrangian density

and m2 < 0, i.e. without a real mass term and l > 0.

The discrete reflection symmetry is replaced by the continuous symmetry of isotopic 

rotations, i.e. Lf is invariant under global phase transformations

with  a real constant.

This Lagrangian is invariant under global phase transformations of the U(1) group.

Rewritten in terms of the f1 and f2 fields, the Lagrangian becomes
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As before, the potential has a local, unstable, maximum for f 0. 

Local minima occur for 

This is the equation of a circle in the f1  f2 plane.

Now let’s shift the field f by a constant vector f0 = v,

satisfying v2 = -m2 / l . 

We have the freedom to choose any minimum of the

potential for our (perturbative) vacuum.

Without loss of generality we choose f1 v and f2 0,

such that

where we introduced two new local fields h(x) and x(x).

Inserting this f(x) into the Lagrangian gives

The terms o ~ (3) and o ~ (4)

describe (self)interactions

between the fields h and x.
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The resulting Lagrangian is not invariant under global phase transformations of

the h and x fields, because we have chosen a particular ground state.

We can recognize a mass term for the field h with the correct sign

corresponding to a real mass                       (recall m2 < 0): the shifted component has 

acquired a mass. There is no mass term for the field x, even though L’ contains the

kinetic term                   (there is no potential in the x “direction”: the other component

corresponds to massless degrees of freedom).

The theory contains a massless scalar field x(x), referred to as Goldstone boson.

This is an example of the Goldstone theorem, which predicts the appearance of a

massless scalar field whenever we spontaneously break the continuous symmetry of

a system. This property is invariably associated with the spontaneous breakdown of a

continuous symmetry, because each of the massless degrees of freedom corresponds

to an infinite degree of degeneracy of the vacuum state.

(virtual motion of the ball within the circular hollow at the bottom of the bottle) 

In summary, the field f (field h) has acquired the mass                    ,

but also a new massless scalar particle x has appeared.

Goldstone Theorem
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Symmetry Breaking In a Local Gauge Theory
It seems that we are moving in the wrong direction:

by giving mass to a field f by spontaneously breaking the symmetry of the system,

we generated a Goldstone boson that we did not foresee.

Let’s study the symmetry breaking of a local gauge theory of the U(1) type:

To realize it in the Lagrangian we replace the m derivative by the covariant derivative

with the gauge fields Am transforming as

The gauge invariant Lagrangian becomes

For m2 >0this resembles the QED Lagrangian for a scalar particle of mass m and

charge q, enlarged by a self-interaction of the field f.

I’m using the same notations Am(x) and q to indicate the associated gauge field and its

coupling, but this is not QED!

We are working with scalars and a Lagrangian of the Klein-Gordon type.
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However, for m2 0,the term            , as before,

cannot be interpreted as mass term for the field f.

For the ground state we choose (as before)

After substitution, the Lagrangian becomes

We can identify the mass terms for the fields h(x) (Klein-Gordon eq. –sign) and

Am(x) (Proca eq. +sign), but not for x(x):

We succeeded in generating dynamically a mass for the gauge field Am,

but we are not yet done because of the massless Goldstone boson x.

By giving mass to Am(x) we gained 1 d.o.f.! i.e. one more polarization state for Am(x)

3 spin components instead of 2).

Moreover, the term              describes the interaction of a spin-1 field

with a spin-0 field, in which the spin “disappears” and such

terms cannot exist.

We have the freedom to make a gauge transformation to eliminate the unphysical d.o.f.

or the Goldstone field x(x) by choosing the phase (x) for the ground state.
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20

Let’s group the terms in L’ involving the Goldstone field x(x) and Am(x)

and apply the following gauge transformation on Am

Since the starting Lagrangian was constructed to be invariant under local U(1) gauge

transformations, the physical predictions are unchanged.

With this A’ (x) the transformed L’ becomes

With the appropriate choice of the gauge,

the Goldstone field x(x) no longer appears in the Lagrangian.

This choice of gauge corresponds to taking (x) = -x(x) / v , i.e. a particular value for the 

phase (x) corresponds to a particular choice for the filed x(x),

with f(x) transforming as

We expanded the field f(x) around the physical vacuum as
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The effect of the gauge transformation on f(x) is then

i.e. f(x) is real.

The gauge in which the Goldstone field x(x) is eliminated from the Lagrangian

corresponds to choosing the complex scalar field f(x) real (unitary gauge).

(with different notation) We choose a ground state with

the fields h(x), q(x), and Am(x), all real (also set e = q), such that

with (x) = - q(x) / v .

With these substitutions, the Lagrangian becomes (the constant term lv4/4 is left out)

The field q(x) has disappeared in the gauged Lagrangian and the Goldstone boson has

been reabsorbed. The new Lagrangian describes the massive scalar Higgs field h(x) 

and the massive gauge field Am(x).
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The Higgs field interacts with itself and with Am(x):

The mass of the gauge boson Am

is completely determined by the strength of the coupling e and the VEV v of the Higgs

field.

The mass of the Higgs boson is given by

The VEV v

sets the scale for the masses of both the gauge boson and Higgs boson.

This is the Higgs mechanism. 

We have introduced two new parameters in the Standard Model:

the vacuum expectation value v and the mass of the Higgs boson MH. 
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Local SU(2) Gauge Invariance
Let’s consider now an SU(2) complex field doublet (no spin, 4 real scalar fields)

The resulting Lagrangian is invariant under global phase transformations of the SU(2)

symmetry group

with a a 3 component vector in SU(2) space and ta the Pauli matrices that generate the

transformation.

When requiring local gauge invariance 

we have to allow the complex fields to interact with “vector” gauge fields Wm
a(x)

introduced via the covariant derivative (see L3 and L11)

and the Wm
a(x) fields transforming as

g is the coupling constant of the fields f(x) with the gauge fields Wm
a(x).
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The resulting gauge invariant Lagrangian describing the complex field doublet f(x)

is given by

with the potential energy term V(f) (we have chosen this potential!)

and the kinetic term for the 3 W gauge fields expressed in terms of field tensors

The “vector products” in the field transformations and the tensors appear because

the SU(2) group is non Abelian and the generators do not commute.

For m2 >0this Lagrangian describes 4 scalar particles, f1, f2, f3, and f4, with mass m,

invariant under local SU(2) transformations,

that interact among themselves                and with the 3 gauge fields Wm
1, Wm

2, and Wm
3.

The gauge fields interact also between themselves. 
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Local SU(2) Symmetry Breaking
Again, we are interested in the case m2 0and l >0, because it will allow us to

spontaneously break the symmetry of the system.

The potential V(f) has an infinite set of degenerate minima for

The ensemble of these minima is invariant under SU(2) transformations of the fields f.

To study the excitation of the fields around a vacuum point (minimum of energy) we

choose a specific minimum and the symmetry of the system will not be manifest anymore.

We choose for the ground state

The fields can be expanded around this minimum by posing

Instead of repeating the derivation as for the U(1) symmetry breaking case and gauge

away the Goldstone fields, the f(x) doublet is already written in the unitary gauge

(i.e. we choose it real) 
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with the vacuum state

By this choice, the SU(2) symmetry is not manifest anymore and we say that

the symmetry has been spontaneously broken.

Thanks to the gauge invariance, after a (small) rotation is SU(2) we recover the initial

form of the field f(x):

[the Lagrangian is invariant under gauge transformations by construction]

All 4 fields can be described in terms of the field h(x).

With our choice of the vacuum state, only the Higgs field h(x) remains.

In the unitary gauge the Lagrangian does not contain the fields q1, q2, and q3 .

In other words we can absorb 3 out of 4 fields, q1, q2, and q3, giving mass to the 3 gauge

bosons. The remaining field is the Higgs field. With an appropriate gauge transformation

(unitary gauge) no Goldstone boson appears.
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To obtain the mass term for the W fields, insert the vacuum state f0(x) in the Lagrangian

The term proportional to W2 (i.e. the mass term) is

Comparison with a typical mass term for massive vector bosons shows that

These 3 Wm
i gauge fields have eaten up 3 Goldstone bosons and have become massive:

the massive gauge bosons have 3 d.o.f. (longitudinal polarization) instead of 2.

The Lagrangian describes 3 massive boson fields Wm
i, vectors under the Lorentz group,

and a scalar field h(x), the Higgs boson.

In summary, in a theory that does not contain fermions we succeeded to transform

the SU(2) locally invariant Lagrangian into a SU(2) locally invariant Lagrangian describing

3 massive vector bosons and one massive scalar boson via the spontaneous symmetry

breaking. The massless Goldstone bosons, associated with the symmetry breaking,

are not present thanks to the appropriate choice of a gauge transformation (ground state).

     
2

3 1 22 2 2
2 2 22

1 2 3

1 2 30
8 8

0
a

a

W W iWg g v
igT W W W W

vW iW W

m m m

m m m m

m m m

f
            

 
 
 

1

2
WM gv

27

     
† 1

4

a a a

a a aL igT W ig VT W W Wm m m

m m mff f f f      



The Standard Model Higgs
Finally, we apply the Higgs mechanism to the Electroweak Lagrangian (L11):

We introduce 4 real scalar fields and an SU(2)L  U(1)Y gauge invariant Lagrangian

with the usual potential with m2 0and l >0

This additional term LH is invariant under combined transformations of the SU(2) L  U(1) Y

group provided that f(x) belongs to a multiplet of the SU(2) L  U(1) Y group.

The minimal choice is to arrange the 4 fields in a weak isospin doublet T = ½ with weak

hypercharge Y = 1 (Weinberg 1967)

With this minimal choice and the above Lagrangian we have specified the electro-weak

sector of the Minimal Standard Model, i.e. the Glashow – Weinberg – Salam model.   
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We choose the following vacuum state f0(x)

with v2 m2/l.

This ground state is characterized by T = 1/2, T3 = – 1/2, and Y = 1,

The resulting Lagrangian is no longer invariant under SU(2)L or U(1)Y transformations.

On the other hand the electric charge of the field is Q = T3 + Y/2 = 0, 

and the system is symmetric under U(1)Q transformations.

The charge of the state f0(x) is Qf0 = 0, and for each transformation (phase (x))

This means that the U(1)Q symmetry is preserved and no mass is generated for the .
On the contrary, the SU(2)L and U(1)Y symmetries are broken and

the W± and Z0 bosons acquire mass.

The mass term is obtained by inserting the ground state f0(x) in the Lagrangian LH
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From the first term we deduce the mass of the W± bosons

The second term is non diagonal in the (W3, B) basis

The “mass matrix” M can be diagonalized.

The masses of physical gauge bosons are given be the eigenvalues of M

with eigenvalues

In the diagonal basis M becomes

where the Am and Zm fields correspond to eigenvectors of the mass matrix M.

The masses of the physical gauge bosons can be identified as

1

2WM gv

30

   
2 3, 3,2 2

3 3

2
M, ,

8 8

g gg W Wv v
W B W B

gg g B B

m m

m m m mm m

    
    

     

    2 2 2 2Mdet 0I g g g gl l l      

2 2

1 20 and g gl l   

   
2

2

2

2 2

0 0 01
, ,

08 2 0

A

Z

A Av
A Z A Z

g g Z

M

M Z

m m

m m m mm m

     
           

0AM 
2 21

2
ZM v g g 



The physical sates, which correspond to the normalized eigenvectors of M, are

By introducing qW (see L11)

the fields Am and Zm can be re-expressed as

with                                    and

The GSW model is described by 4 free parameters, the SU(2) L  U(1) Y couplings

g and g’ (or e and qW), and the parameters m and l of the Higgs potential

with v the vacuum expectation value of the Higgs field
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The Glashow – Weinberg – Salam Model
In summary, the GWS model is based on the hypothesis that there exist two gauge fields.

One of them (Wi, i = 1, 2, 3) has three components and corresponds to the adjoint

representations of the gauge group SU(2)L, while the second one (B) has one

component and the gauge group is the group U(1)Y.

The gauge group of the GWS model is the compact group SU(2)L  U(1)Y with couplings

g and g’. Of the four particles, W1 and W2 are charged and W3 and B are neutral.

As the fields W3 and B have the same quantum numbers (Q=0, Y=0) mixing between

them can take place. The physical neutral vector

particles, the photon and the Z boson are superpositions of the fields W3 and B.

To make the vector bosons massive, one uses the mechanism of spontaneous symmetry

breaking,  for which one introduces and auxiliary two-component complex (4 d.o.f.)

scalar field f. Three of the four d.o.f. are used for providing via the Higgs mechanism,

an additional polarization state for each of the three vector components, while the fourth

one leads to the physical massive Higgs boson.

The vector boson sector of the GWS model is based on the Lagrangian LIVB

with the covariant derivative Dm
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Spontaneous symmetry breaking is realized when the second component of the field f is

shifted by a real constant v

As a result of the shift, the term |Dmf|2 gives the following contribution to the mass matrix

After diagonalization of the mass matrix it becomes

The mass terms are given by

The last term in LIVB can be rewritten as

with F2= f1
2 + f2

2 + f4
2, from which it follows that the filed h has mass Mh = lv,

while the components fi represent Goldstone fields. They can be removed by a gauge

transformation, as a result of which three components of the non-Abelian gauge field

will acquire a third polarization component (the Higgs mechanism). 
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Fermion Masses
The mass term

does not respect the SU(2)L  U(1)Y gauge symmetry because yL is an SU(2)L doublet

and yR a singlet with different transformation properties.

Therefore, a term which mixes left and right handed particles cannot be gauge invariant.

Remarkably the Higgs mechanism can also be used to give masses to fermions,

without the introduction of new particles.

The same SU(2)L local gauge transformation of the Higgs field

applies also to yL

It follows that is invariant under SU(2)L transformations

and               under SU(2)L  U(1)Y transformations.

Therefore the term                                          is invariant under SU(2)L  U(1)Y

transformations, note
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To generate the mass term for the charged leptons we couple the Higgs field to the

leptons doublet as

ge – Yukawa coupling constant of the electron to the Higgs field, which is not predicted

by the SM and which must be determined from the experiment.

Yukawa coupling  coupling of a fermion field with a scalar field (i.e. NpN)

After spontaneous symmetry breaking of the Higgs doublet,

with the substitution                                     the Lagrangian becomes

where the Yukawa coupling ge

has been identified with the electron mass me.

Note that the neutrino remains massless.
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first term in Le :

coupling of the electron

to the Higgs field

gives mass to e

second term in Le :

coupling between the electron

and the Higgs boson

(interaction term)
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In addition to give mass to the electron (fermion) via the coupling of the left and right

handed components to the Higgs field, the Higgs mechanism introduces also a direct

interact between the fermion and the Higgs boson itself.

Note that the coupling to the Higgs field is flavor conserving.

So far, only the lower components of the weak isospin doublet are present!

This mechanism can be used to generate the masses of the down quarks

but not of the up quarks.

To give masses to up quarks consider the conjugate doublet fC

(recall the isospin transformation for antiparticles)

which transforms exactly in the same way as f (property of SU(2) only).

To generate the mass term for the up quarks we couple the Higgs field as

which, after spontaneous symmetry breaking, becomes
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Finally, the gauge invariant mass terms for all fermions can be constructed from 

with the Yukawa couplings of the fermions to the Higgs field
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The Discovery of the Higgs Boson (2012)

H  H ZZ e e e e     
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Properties of the Higgs Boson
Neutral spin-0 particle with weak isospin T = 1/2, T3 = -1/2, and weak hypercharge Y = 1

The Higgs mass is a free parameter of the SM

The Higgs boson couples to all fermions with a coupling strength

proportional to the fermion mass

Feynman rules for the Yukawa interaction vertex

The resulting matrix element is proportional to the mass of the particle, which couples

to the Higgs boson

determines dominant process for production and decay of the Higgs boson.
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Higgs Boson Decay
The Higgs boson can decay to all SM particles provided that mf < 1/2 mH.

Because of the coupling, the Higgs boson decay predominantly to heaviest particles

which are energetically allowed (largest BR).

H bb

H – scalar particle  no polarization 
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Remember that also the masses run with q2 (not only S),

hence the masses appearing in  are estimated at q2 = mH
2 (mb = 3 GeV).

The Higgs boson can decay also to 2 g or 2 

via a virtual top quark or a W loop

or and H WW  H ZZ 
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Higgs Decay Branching Ratios
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Higgs decay branching ratios

at 125 GeV (calculated)

B.R. measurements are

under way.

125.10 0.14 GeVHm  

Higgs boson couplings are proportional to the mass

 Higgs decays predominantly to heaviest particles which are energetically allowed
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Higgs Couplings
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in excellent agreement with data



Higgs Production in Hadronic Collisions

   
1 1

1 2 1 2
0 0

~ d d ( ) ( )pp HX x x g x g x gg H   
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Higgs production at the Large Hadron Collider LHC

The LHC will collide 7 TeV protons on 7 TeV protons

However underlying collisions are between partons

Higgs production the LHC dominated by “gluon-gluon fusion”

p

p

7 TeV

7 TeV

t
t

t

H0

Uncertainty in gluon PDFs lead to a ±5 % uncertainty in Higgs production cross section.



Higgs Boson Production in e+e– Annihilations

e–

e+

Z

Z f

f

b

b

e

e–

e+

Z
Z

H0

f

f
b

b

Clear experimental signature (“Higgsstrahlung”),

but small cross section with large  “backgrounds”,

Need enough energy to produce a Z boson and the Higgs (ILC?):

main background to

“Higgssthralung”

beam beam2 217 GeV 115 GeVZ HE s M M E >    >

The only way to distinguish the two diagrams is from

the invariant mass of the jets from the boson decays.

Hbb
m M

Zbb
m M
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Concluding Remarks

The Standard Model

Dirac Equation QFT Gauge Principle Higgs Mechanism
Experiment

Experimental Tests

We covered almost all aspects of modern particle physics.

We did not discuss BSM physics, i.e.  masses, dark matter, (anti)matter asymmetry, …

The Standard Model, now completed with the discovery of the Higgs boson, is one of

the greatest scientific triumphs of the late 20th century.

Many people contributed to this success with their insight and hard work.

The Standard Model developed through close interplay of experiment and theory.

Experiment is the ultimate “test bench” of any physical theory.

Experimental particle physics provides many precise measurements.

The Standard Model describes (almost) all current data.

Despite its great success, do not forget that it is just a model: a collection of beautiful

theoretical ideas put together to fit with experimental data.

There remains many issues / open questions / new discoveries / … 45



Standard Model Open Issues
The Standard Model has too many free parameters (19 + 7 = 26):

Why three generations?

Why SU(3)C x SU(2)L x U(1)Y?

Unification of Forces

Origin of CP violation in early Universe and of the matter – antimatter asymmetry

What is the Dark Matter? and the Dark Energy?

Why is the weak interaction V – A?

Massive neutrinos

Why are neutrinos so light?

Where are the right-handed neutrinos?

The Higgs field gives rise to a huge cosmological constant

Ultimately need to include gravity

1 2 3

12 13 23 12 13 23

, , ; , , , , , , , ;

, , , ; , , ; , ; , , , ;

e u d c s t b

q

CP W S H CP CP

m m m m m m m m m m m m

e g v M

m t   

   q q q   q q q q 
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The Dark Mystery of Matter
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