Advanced Particle Physics 2

(Spring semester 2024)

In addition to the **Lecture Notes** the following textbooks should be consulted

F. Halzen and A. D. Martin (H&M)

Quarks and Leptons

M. Thomson

Modern Particle Physics (Thomson)

There are many textbooks at the same level that you can consult and that complement the course, but **you should not get lost in the literature**:

Experimental:

R. N. Cahn and G. Goldhaber (2nd Ed.)

The Experimental Foundations of Particle Physics

W. S. C. Williams

Nuclear and Particle Physics

Introduction to particle physics:

D. Griffiths

Introduction to Elementary Particles (2nd Ed.)

G. Kane

Modern Elementary Particle Physics (2nd Ed.)

D. Perkins

High Energy Physics (careful, Perkins uses $x_4 = ict$) (4th Ed.)

Quantum Field Theory:

C. Quigg

Gauge Theories of the Strong, Weak, and Electromagnetic Interactions (2nd Ed.)

M. Maggiore

A Modern Introduction to Quantum Field Theory

I. J. R. Aitchinson and A. J. Hev

Gauge Theories in Particle Physics (4th Ed.)

Do as many exercises as you can!!!

INTRODUCTION

Lecture 1: Introduction to the Standard Model

H&M ch. 1, ch. 3

Thomson ch. 1, ch. 2 sect.s 1, 3.6, ch. 3 sect.s 1, 2, 4, 5

STRONG INTERACTIONS

Lecture 2: The Quark Model and the Hadron Spectrum

H&M ch. 2 sect.s 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

Thomson ch. 9 sect.s 2, 3, 4, 5, 6, 7, ch. 10 sect. 8

Lecture 3: Introduction to QCD (QCD lagrangian, running of α_S , qq scattering)

H&M ch. 14 sect. 3, 4, ch. 2 sect. 15, ch. 7 sect.s 9, 10

Thomson ch. 10 sect.s 1, 2, 3, 4, 5, 7, app. F

Lecture 4: QCD Parton Model (scaling violations and QCD evolution equations)

H&M ch. 8 sect. 4, 5, ch. 10 sect.s 1, 2, 3, 4, 5, 6, 7, 8

Thomson ch. 8

Lecture 5: $e^+e^- \rightarrow hadrons (e^+e^- \rightarrow q \overline{q}, e^+e^- \rightarrow q \overline{q} + g, hadronization)$

H&M ch. 11 sect.s 1, 2, 3, 4, 5, 6, 7

Thomson ch. 10 sect. 6

Lecture 6: Hadron – Hadron Interactions (low energy, Drell-Yan qqbar $\rightarrow 1\bar{1}$, jet production, HF)

H&M ch. 11 sect.s 8, 9

Thomson ch. 10 sect. 9

WEAK INTERACTIONS

Lecture 7: Phenomenology of Weak Interactions

H&M ch. 12 sect.s 1, 2

Thomson ch. 11 sect.s 1, 2, 3, 4, 5, 7

Lecture 8: Weak Decays (beta, μ , π , n)

H&M ch. 12 sect.s 3, 5, 6

Thomson ch. 11 sect. 6, ch. 12 sect. 1

Lecture 9: Quark Mixing, CKM Matrix, $K^0 - \overline{K}^0$ and $B^0 - \overline{B}^0$ oscillations, CP violation

H&M ch. 12 sect.s 11, 12, 13, 14

Thomson ch. 14

Lecture 10: v—e Scattering and v—q Scattering (Charged and Neutral Currents)

H&M ch. 12 sect. 7, ch. 13 sect. 5, ch. 12 sect.s 8, 9, 10

Thomson ch. 12 sect.s 2, 3, 4, 5

ELECTROWEAK INTERACTIONS AND THE HIGGS BOSON

Lecture 11: Electroweak Unification

H&M ch. 13 sect.s 1, 2, 3, 4, 5, 6, 7

Thomson ch. 15, ch. 16, app. D

Lecture 12: Spontaneous Electroweak Symmetry Breaking and the Higgs Mechanism

H&M ch. 14 sect.s 5, 6, 7, 8, 9, ch. 15 sect.s 1, 2, 3, 4, 5, 6

Thomson ch. 17

NEUTRINOS

Lecture 13: Neutrino Oscillations

Thomson ch. 13