

The NA61/SHINE Experiment at the CERN SPS (& future prospects)

study of hadro production in hadron-nucleus and nucleus-nucleus collisions at the CERN SPS

Dec. 05, 2013

Alessandro Bravar

NA61 physics program

Physics of strongly interacting matter in heavy ion collisions Search of the QCD critical point Study the properties of the onset of deconfinement

Measurement of hadron production off the T2K target (p+C) to characterize the T2K neutrino beam

Measurement of hadron production in p+C interactions for the description of cosmic-ray air showers

Study the Onset of Deconfinement

QCD phase space

water strongly interacting matter 10¹² quark gluon plasma Temperature (MeV) VII VIII 200 10⁹ Liquid Pressure (Pa) Ic Ih Solid 100 10³ Vapor hadrons color super-1 conductor M. 600 400 700 100 200 300 500 800 0 5/0 1000 Temperature (K) Baryochernical potential (MeV) critical point

1st order phase transition

Schematic of Relativistic Heavy Ion Collisions

AGS SPS

RHIC

NA 49

NA49 results (PRC77:024903): evidence for the onset of deconfinement at the low CERN SPS energies

High-p_T Suppression at RHIC (& LHC)

The observation of the suppression of high p_T hadrons in central Au+Au collisions with respect to p+p interactions is one of the most important RHIC discoveries

Study of energy dependence of the high p_T suppression in Au+Au collisions (jet quenching in high density matter) is necessary for its final interpretation

the first 2D scan in A+A collisions

Study the Onset of Deconfinement

Search for the QCD Critical Point

large acceptance spectrometer for charged particles (> 70% of charged particles detected)4 large volume TPCs as main tracking devices

2 dipole magnets with bending power of max 9 Tm over 7 m length

high momentum resolution $\Delta p/p^2 \sim 10^{-4}$

vertex resolution $\sigma_z \sim 5 \text{ mm}$

good particle identification: $\sigma(\text{ToF-L/R}) \approx 100 \text{ ps}, \sigma(dE/dx) / (dE/dx) \approx 0.04, \sigma(m_{\text{inv}}) \approx 5 \text{ MeV}$

new ToF-F to entirely cover T2K acceptance (σ (ToF-F) \approx 110 ps, 1\theta < 250 mrad)

NA61 Collaboration KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary

The Universidad Tecnica Federico Santa Maria, Valparaiso, Chile Faculty of Physics, University of Warsaw, Warsaw, Poland Faculty of Physics, University of Sofia, Sofia, Bulgaria Karlsruhe Institute of Technology, Karlsruhe, German Joint Institute for Nuclear Research, Dubna, Russia Warsaw University of Technology, Warsaw, Poland Fachhochschule Frankfurt, Frankfurt, Germany Jan Kochanowski University in Kielce, Poland University of Geneva, Geneva, Switzerland University of Belgrade, Belgrade, Serbia Jagiellonian University, Cracow, Poland University of Silesia, Katowice, Poland University of Athens, Athens, Greece ETH, Zurich, Switzerland University of California, Irvine, USA University of Bern, Bern, Switzerland University of Bergen, Bergen, Norway University of Wrocław, Wrocław, Poland Rudjer Boskovic Institute, Zagreb, Croatia University of Frankfurt, Frankfurt, Germany Institute for Nuclear Research, Moscow, Russia State University of New York, Stony Brook, USA NA61/SHINE LPNHE, University of Paris VI and VII, Paris, France COLLABORATION National Center for Nuclear Studies, Warsaw, Poland St. Petersburg State University, St. Petersburg, Russia Institute for Particle and Nuclear Studies, KEK, Tsukuba, Japan Laboratory of Astroparticle Physics, University Nova Gorica, Nova Gorica, Slovenia

~ 140 physicists from30 institutes and15 countries

Particle identification

Particle Identification (2)

inelastic ⁷Be+⁹Be cross section

NA61 measurements (combined with the 1A GeV/c BEVALAC measurements) established energy dependence of the inelastic cross section

π^- meson spectra in ⁷Be+⁹Be collisions

 π^- meson rapidity spectra in ⁷Be+⁹Be collisions (integrated in p_T)

comparison with p+p (NA61) and most central Pb+Pb (NA49) collisions

 π^- m_T spectra and inverse slope T in ⁷Be+⁹Be collisions

p + p at 158A GeV/c

 $\frac{\mathrm{d}n}{\mathrm{d}m_{\mathrm{T}}} = A \, m_{\mathrm{T}} \, \exp\left(-\frac{m_{\mathrm{T}}}{T}\right)$

the T parameter is significantly larger in Be+Be collisions than in p+p interactions \rightarrow \Rightarrow evidence for transverse collective flow in Be+Be collisions

<π⁻>

π^- Spectra in p+p Interactions (final)

Reference data for ion program (h⁻ method)

Spectra of π^- in p+p collisions at 20, 31, 40, 80, and 158 GeV/c

Different shape in p+p and central (7%) Pb+Pb, independent of beam energy

Mean transverse mass independent of system size

NA61 Measurements for T2K (preliminary)

Results for the full set of identified hadrons produced in p+C interactions at 31 GeV/c

NA61 Upgrades

Facility modifications

- Projectile Spectator Detector (2014)
 - Cooling system
 - Slow control system
 - LED for the control of the readout gains
 - INR Moscow
- The ToF-L/R (2014)
 - Upgrades of HV distributors
 - University of Belgrade
- Drift velocity monitoring system
 - New monitoring system for the GAP-TPC (ready by summer 2014) and later for other TPCs
 - University of Warsaw
- DRS-based read-out upgrade (2015)
 - Detectors: ToF, PSD and beam detectors
 - University of Geneva, Warsaw, Budapest, Pittsburgh
- Vertex detector (2018)
 - Frankfurt

Entry window

How To Measure Best Timing (1)

basically two options:

1. (CF) discriminator + multihit TDC

The waveform approach combines different functionalities with no D.T.: CFD, (multi-hit) TDC, Q-ADC, peak-sensing ADC, etc.

PROBLEM: ~10 ps resolution requires very high sampling rate > 1 GHz

Signals in Particle Physics

Waveforms

ToF-L signals

BPD signals

"Traditional" Approach

Signal Discrimination

 $\overline{1}$

How To Measure Best Timing (2)

17 ps (σ) can be achieved with waveform digitizing (and 40 photoelectrons)

Waveform Digitizing

Advantages :

- General trend in signal processing ("Software Defined Radio")
- Less hardware (Only ADC and FPGA)
- Algorithms can be complex (peak finding, peak counting, waveform fitting)
- Algorithms can be changed without changing the hardware
- Storage of full waveforms allow elaborate offline analysis

Nyquist-Shannon Sampling Theorem

Undersampling of Signals

Undersampling: Acquisition of signals with sampling rates < 2.3 highest frequency in signal.

Waveform Processing

Undersampling of Signals

Undersampling:

acquisition of signals with sampling rates $\ll 2 \times$ highest frequency in signal

Image Processing

Waveform Processing

Undersampling of Signals

Undersampling:

acquisition of signals with sampling rates $\ll 2 \times$ highest frequency in signal

Waveform Processing

Digital Constant Fraction Discriminator

200 ps sampling

without doing nothing $\rightarrow \sigma = 200 \text{ ps} / \sqrt{12} \sim 60 \text{ ps}$

with interpolation can obtain $5 \times better performance$

Limits of Waveform Digitizing

aliasing occurs if f_{signal} > 0.5 x f_{sampling} features of the signal can be lost ("pile-up") measurement of time becomes hard ADC resolution limits energy measurement need very fast high resolution ADC

500 MHz WFD (< 2000 a. d.)

Switched Capacitor Array

"Time stretcher" $GHz \rightarrow MHz$

DRS Functional Block Diagram

8 IN

OUT

DRS "Philosophy"

waveform stretcher

since cannot sample waveforms continuously at ~ 10 GHz rates, use a ~ 10 GHz capacitor array to store the waveform and digitize with ~ 100 MHz ADC (introduces some dead time \circledast)

based on a circular capacitor array (1024 capacitors per channel), 12 bit resolution

sampling frequency5 GHz (200 ps)buffer depth200 nsseveral channels (up to 16) can be daisy chained \rightarrow increase buffer depth

~ GHz sampling \rightarrow 30 MHz conversion \rightarrow 30 kHz readout (30 μ s d. t.)

needs frequent "re" calibration in time and energy of the CSCA + synchronization

DRS4 @ PSI

http://drs.web.psi.ch

DRS4 Evaluation Board 4 channels 1-5 GSPS 12 bit USB power

DRS Not the Only One

Domino Wave Circuit (Digital Delay Line)

DRS NON-Linearity

Intrinsic Performance (1)

PSI TestBox Exponential Fit Algorithm

with CAEN DRS module better results:

6 – 7 ps for large amplitudes 11–12 ps for small amplitudes

Constant Fraction Algorithms

We observed that simple implementations of the Constant Fraction Algorithm with linear extrapolation do not work ...

while fitting the whole waveform is not possible in real life (for an ideal circuit one can calculate the waveform)

algorithm used:

1. determine max amplitude

cubic interpolation around the max ampli

2. exponential fit of the leading edge

3. def. const. fract. of max. ampli.

and project on time axis

resolution depends on CF

Intrinsic Performance (2)

PSI TestBox Exponential Fit Algorithm

 $t_1 - t_2$

even though the digital delay line is common to all channels in the chip, the capacitor arrays are not uniform must calibrate channel by channel

Intrinsic Performance (3)

Influence of Noise

Influence of Noise (2)

Calibration

new time calibration :

calibrate each channel individually

- \Rightarrow new calibration scheme (internal and external)
- \Rightarrow new design of input stage

calibration will generate plenty of calibration "constants" for each capacitor (>3000 / ch.)

Conceptual Layout

DRS mother board (9U format)

The Dead Time Issue

2 MHz sustained event rate planned for > 2014

Outlook

Completed energy scan for p + p interactions Large stat for p + Pb underway

Completed energy scan for ⁷Be+⁹Be interactions Inelastic cross-section for ⁷Be+⁹Be collisions at 13 to 30*A* GeV/c Pion spectra in central ⁷Be+⁹Be collisions at 40 to 150*A* GeV/c Hadron spectra in inelastic p+p interactions at 20 to 158 GeV/c

Several upgrades completed or underway (including the DRS)

Highest priority to proceed with ion program: Ar (2015), Xe (2017)

Possible extension of program to Pb+Pb energy scan with open charm measurements

