

http://hyperk.org

The Hyper-Kamiodande Project A New Adventure in v Physics

Alessandro Bravar on behalf of the HK Proto-Collaboration

ICNFP2017 Kolymbari, Crete August 26, '17

Hyper-K Physics Overview

Broad Science Program with Hyper-K

Neutrino oscillation physics

comprehensive study with beam and atmospheric neutrinos determination of neutrino mass hierarchy determination of θ_{23} octant measurement of CP Violation in leptonic sector reveal exotic scenarios

Search for nucleon decay

possible discovery with ~ 10 × SK sensitivity all visible modes including p \rightarrow e⁺ π^0 and p $\rightarrow \overline{\nu}$ K⁺ reach 10³⁵ years sensitivity

Solar neutrino physics

precision measurement of Δm^2_{21} measurement of energy spectrum up-turn discovery & measurement of hep neutrinos

Neutrino Astrophysics

high statistics measurement of SN burst neutrinos detection and study of relic SN neutrinos indirect Dark Matter search from Galactic Core, Sun, Earth

Geophysics ("neutrinography" of Earth's interior)

The Hyper-Kamiokande Detector

Large Water Cherenkov Detector

Larger mass for more statistics

Better sensitivity by more photons with improved sensors

Photo-Sensors

Optimized for cost and quick start Total volume: 260kton × 2 Fiducial volume: 190kton × 2 (~×10 of Super-K per tank) Start with one tank, staging 40% coverage with new sensor ×2 photon sensitivity 40,000 50cm ID PMTs

×2 photon sensitivity 40,000 50cm ID PMTs 6,700 20cm OD PMTs

3 Generations of Kamioka Detectors

Super-Kamiokande (1996-)

3 kton 20% coverage with 50 cm PMT

Observation of SN1987A

50 kton 40% coverage with 50 cm PMT

Discovery of v oscillations

Hyper-Kamiokande (~2026-)

260 kton x 2 40% coverage with high-QE 50 cm PMT

The Hyper-K Timeline

Hyper-K is listed in the MEXT (funding agency) Large Projects Roadmap

2018 – 2015 Hyper-K construction

2026 onwards

CPV study, Atmospheric v, Solar v, Supernova v, Proton decay, ...

Staged approach: 2nd identical tank starts operation 6 years after the first one 6

The Hyper-K Collaboration

Formed in Jan. 2015 15 countries ~300 members (and gowing)

From J-PARC to Kamioka

260 kton Water Cherenkov Detector

Upgraded J-PARC neutrino beam New / upgraded near detectors

Nominal design: 1st tank in Tochibora with the second tank following after 6 years

J-PARC Neutrino Beam Upgrade

Continuous upgrade plan of the neutrino beam

MR power supply upgrade

1.3 MW by ~2026

repetition cycle from 2.48 s to 1.3 s # protons 2.4×10^{14} / spill to 3.2×10^{14} / spill

Given highest priority in KEK Project Implementation Plan (2016)

The Near Detectors @ J-PARC

4.POT-sais Plan

2.5" Off-axis Flux

1.0° Off-cals Plus

Upgraded ND280 Near Detector

Designed to address ν – Nucleus interactions and modeling

Enlarge phase space (4π coverage)

Efficiency for short hadron tracks with proton reconstruction

Improve electron neutrino selection

New: horizontal TPCs scintillator target

The Kamioka Site

The candidate site located in Tochibora, under Mt. Nijugo-yama ~8 km south from Super-K, 295 km from J-PARC, 2.5° off-axis overburden ~650 m (~1755 m w.e.)

Cavern can be built with existing technologies

Upgraded Photo-Sensors

Relative single photoelectron hit efficiency

Photo-Sensor Developments

Hybrid Photo Detectors (HPDs)

R&D development and validation

Multi-PMT

w/ 20mm \ AD

directional sensitivity

usage for ID/OD

higher pressure tolerance

no geomegnetisem compensation

Cavern and Tank

Cavern geological survey and find analysis undertaken

Water containment: 3 layers of lining

outer water-proof sheet; concrete; High Density Polyethylene (HDPE) sheet (constructed simultaneously to reduce cost and time)

The Tank

Hyper-K detector consists of inner detector (ID) and outer detector (OD)

Seismic response analysis shows that earthquake does not damage the detector (PMTs) even if no water in the tank

Electronics

Candidates for signal digitization:

- 1. Charge to Time converter with FPGA-based TDC (similar to SK)
- 2. ~100MHz FADC + digital signal processing
- 3. GHz digitizers based on capacitor arrays

Front-end electronics requirements:

- wide charge dynamic range

0.1 to 1250 p.e.

- good time resolution

 $\Delta T = sub-nsec$,

- self triggering (channel by channel)
- low power consumption
 - < 1W/ch

Front-end electronics and network connections under water

Beam Events in Hyper-K

10 years data taking

nearly entire parameter space

>3- σ octant determination for $|\theta_{23} - \pi/2| > 8^{\circ}$

Hyper-K Sensitivity to δ_{CP}

sin $\delta_{CP} = 0$ exclusion:

- ~8- σ significance if δ_{CP} = ±90°
- ~6- σ significance if $\delta_{CP} = \pm 45^{\circ}$

~80% coverage of δ_{CP} parameter space

sinδ=0 exclusion		
> 3σ	> 5σ	
76%	57%	

The comparison with DUNE is just for a reference The real sensitivity depends on the assumption

Best discovery potential for GUT signal!

Other Proton Decay Channels

22

Nucleon Decay Searches

Will be sensitive to a wide variety of nucleon decay modes

Robust estimate based on Super-K performance

 $3-\sigma$ potential exceeds current limits by an order of magnitude (or more)

Mode	Sensitivity (90% CL) [years]	Current limit [years]
$p \to e^+ \pi^0$	1.2×10^{35}	1.4×10^{34}
$p\to \overline{\nu}K^+$	2.8×10^{34}	0.7×10^{34}
$p \to \mu^+ \pi^0$	9.0×10^{34}	1.1×10^{34}
$p \to e^+ \eta^0$	5.0×10^{34}	$0.42{ imes}10^{34}$
$p \to \mu^+ \eta^0$	3.0×10^{34}	0.13×10^{34}
$p \to e^+ \rho^0$	1.0×10^{34}	0.07×10^{34}
$p \to \mu^+ \rho^0$	0.37×10^{34}	$0.02{ imes}10^{34}$
$p \to e^+ \omega^0$	0.84×10^{34}	0.03×10^{34}
$p \to \mu^+ \omega^0$	0.88×10^{34}	0.08×10^{34}
$n \to e^+ \pi^-$	3.8×10^{34}	0.20×10^{34}
$n \to \mu^+ \pi^-$	2.9×10^{34}	0.10×10^{34}

Discovery possible !

Day / Night Asymmetry of Solar ν

- ~2σ tension of Δm²₂₁
 by solar and KamLAND
 - Measurement with V_e only possible w/ solar V
- Day-Night asymmetry due to Earth matter effect sensitive to Δm^2_{21}
 - ~4% for solar best
 - ~2% for KL best
- ~5σ resolution expected with 0.3% syst error (0.5% achieved by SK)

Spectrum Upturn of Solar ν

25

- Spectrum upturn in low energy not yet seen
 - Various non-standard scenario possible
- >5σ possible with BG/ calibration similar to SK
 - Low E threshold w/ high photon efficiency essential

Also solar physics: short time variation, hep neutrinos, ...

Solar Burst Neutrinos

 Measurements of neutrino flavor, energy, time profile will provide detailed information of corecollapse supernova Expected number of event 98k~136k ev (IBD) 4.2k~5k ev (ve ES) (12~80 for neutronization) 160~8200 ev (ve CC) 1300~7800 ev (ve CC) at 10kpc Livermore simulation

Supernova Relic Neutrinos

- Neutrinos from past SN fill our universe
 - History of star formation and black hole generation process encoded
- BG suppression with more light
 → Measurement with
 - >5σ signal

Investigate dim-SN's and BH formation

- · Use neutron tagging.
- Expected events in HK in 10y: ~98 ± 20 (4.8σ).

Indirect Dark Matter Searches

- Unique sensitivities, especially for low mass region
- Improve ×3-10 over SK limit

Other Physics with Atmospheric $\boldsymbol{\nu}$

Provides neutrinos with various energy, flight length, and flavor

- V_T cross section measurement
- Sterile neutrino
- Lorentz violation
- Geophysics
 - Information on the chemical composition of Earth's outer core using matter effect

Sensitivity to outer core chemical composition (10Mtyr)

New Idea: 2nd Tank in Korea

Advantages of a second tank in Korea

Measure CP effect at 2^{nd} oscillation maximum (3 × larger)

Enhanced mass hierarchy sensitivity (longer baseline)

Reduced backgrounds due to the deeper site

Conclusions

Proto-Collaboration established on January 15th 2015 Collaboration growing ~300 members from 15 countries

A rich physics program: atmospheric, SN, solar, accelerator neutrinos proton decay

Optimized detector configuration: built on successful technology established with past/ongoing experiments higher photo-coverage improved PMTs (higher QE)

International R&D efforts underway photo-sensors electronics and DAQ calibrations geological surveys

Hyper-K is listed in the MEXT (funding agency) Large Projects Roadman Construction to begin in 2018, start physics in 2016

Hyper-K Physics Potential

		HK (2TankHD w/ staging)
LBL (13.5MWyr)	δ precision	7°-21°
	CPV coverage (3/5σ)	78%/62%
	$sin^2 \theta_{23}$ error (for 0.5)	±0.017
ATM+LBL (10 years)	MH determination	>5.3 0
	Octant (sin ² θ ₂₃ =0.45)	5.8σ
Proton Decay (10 years)	e ⁺ π ⁰ 90%CL	1.2×10 ³⁵
	∨K 90%CL	2.8×10 ³⁴
Solar (10 years)	Day/Night (from 0/from KL)	6σ/I2σ
	Upturn	4.9σ
Supernova	Burst (10kpc)	104k-158k
	Nearby	2-20 events
	Relic (10 yrs)	98evt/4.8σ