T2K replica target measurements in NA61/SHINE and T2K neutrino flux predictions

Alexis Häsler
Under the supervision of Prof. Alain Blondel

DPNC
University of Geneva

June 22, 2015

The Standard Model

- With the discovery of the Higgs Boson, all particles of the Standard Model have been found.
- Is the standard model complete and correct?
- In the SM neutrinos are massless !
- In the SM only left handed neutrinos (and right handed anti-neutrinos)!
- No unique way to give mass to neutrinos.
\Rightarrow Very probably new degrees of freedom

spin 0

Neutrino Physics

Observed phenomenon that cannot be explained by the present Standard Model:

- neutrino oscillations: observed in solar, reactor, atmospheric and accelerator neutrino experiments
- oscillation probability (in a first approximation) is given by:

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \approx \sin ^{2}(2 \theta) \sin ^{2}\left(\frac{\left(m_{2}^{2}-m_{1}^{2}\right) L}{4 E}\right)
$$

\Rightarrow neutrinos have non-zero masses
\Rightarrow neutrinos mix and all neutrino experiments can be explained (with some tensions) in the PMNS framework that relates weak states to mass states:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta_{23} & \sin \theta_{23} \\
0 & -\sin \theta_{23} & \cos \theta_{23}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{13} & 0 & \sin \theta_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-\sin \theta_{13} e^{+i \delta} & 0 & \cos \theta_{13}
\end{array}\right)\left(\begin{array}{ccc}
\cos \theta_{12} & \sin \theta_{12} & 0 \\
-\sin \theta_{12} & \cos \theta_{12} & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{-i \alpha / 2} \\
0 & 0 & e^{-i \beta / 2}
\end{array}\right)
$$

Extension of the Standard Model is mandatory for our understanding of the neutrino physics

Extension of the Standard Model

Which extension of the Standard Model can generate neutrino masses ? What are the values of the mixing parameters in the PMNS matrix?

Answering these questions might shed light on fundamental features of the universe

- Baryon asymmetry of the universe:
leptongenesis based on Majorana neutrinos is one potential model to explain the matter-antimatter asymmetry of the present universe.
- Dark matter:
right handed neutrinos could be interesting candidates. what are their masses ?

Neutrino Masses

Standard Model	Dirac mass term only	Majorana mass term only	Dirac+Majorana mass terms
$\begin{array}{rc} n o & m a s s \\ \nu_{L} & \overline{\nu_{R}} \\ I_{w}=\frac{1}{2} & \frac{1}{2} \end{array}$		$\left.\begin{array}{ll} \\ m_{3} \\ m_{2} \\ m_{1} \end{array} \right\rvert\, \overline{\overline{\overline{\nu_{L}}}} \quad \overline{\overline{\overline{\nu_{R}}}}$	$\begin{aligned} & \substack{M_{3} M_{2} \\ M_{1} \\ m_{3} \\ m_{2}} \\ & m_{1} \end{aligned} \overline{\overline{\overline{\nu_{L}}}} N_{R} \overline{\overline{\overline{\nu_{R}}}} \overline{\overline{N_{L}}}$
- 6 massless states	- 3 masses - 12 states - 3 active ν - 3 active $\bar{\nu}$ - 6 sterile ν - 3 mixing angles - 1 CP violating phase - $0 \nu \beta \beta=0$	- 3 masses - 6 active states - No sterile ν - 3 mixing angles - 3 CP violating phases - $0 \nu \beta \beta \neq 0$	- 6 masses - 12 states - 6 active states - 6 sterile ν - More mixing angles and CP phases - $0 \nu \beta \beta \neq 0$ - See-Saw mechanism \Rightarrow Baryon asymmetry of the universe and dark matter candidates

Dirac+Majorana mass terms seems to be the preferred and most convincing scenario

Neutrino Physics

Current knowledge:

- 3 neutrino flavors have been observed ($\nu_{e}, \nu_{\mu}, \nu_{\tau}$)
- All mixing angles have been measured (with different accuracies) ($\theta_{23} \simeq 45^{\circ}, \theta_{13} \simeq 9^{\circ}, \theta_{12} \simeq 34^{\circ}$)
- Two mass splittings are known $\left(\Delta m_{23}^{2} \simeq 2.4 \times 10^{-3} \mathrm{eV}^{2}, \Delta m_{12}^{2} \simeq 8 \times 10^{-5} \mathrm{eV}^{2}\right)$ Open questions:
- Nature of the neutrino masses (Dirac or/and Majorana)?
- Do neutrino transformation violate CP ?
- Absolute mass scale of neutrinos?
- Mass hierarchy ?
- More than 3 mass eigenstates (Are there non-weakly-interacting
 "sterile" neutrinos)?

The T2K experiment addresses some of these questions through its physics goals:

- study electron neutrino appearance in a muon neutrino beam ($\nu_{\mu} \rightarrow \nu_{e}$) \Rightarrow measure θ_{13} and explore CP violating phase $\delta_{C P}$
- precise measurements of muon neutrino disappearance \Rightarrow precise determination of θ_{23} and Δm_{23}^{2}
- a search for sterile components in muon neutrino disappearance by observation of neutral-current events
- world-leading contributions to neutrino-nucleus cross-section measurements

The T2K Experiment

- Neutrino beam created at J-PARC crosses a Near Detector (ND280) and the Super-Kamiokande (SK) far detector
- Extrapolate and compare the information from the Near Detector (ND280) before oscillation to the far detector (SK) to study appearance and disappearance probabilities
- ND280: composite complex detector SK: water cherenkov detector
- ND280 sees a line source of neutrinos SK sees a (almost) point source
- Extrapolation from near to far detector does not follow a simple $1 / L^{2}$ behavior
- Far to Near Flux ratio depends on the Neutrino Energy
\Rightarrow Precise understanding of Neutrino Source mandatory

Abgrall,CERN-THESIS-2011-165
June 22, 2015

The T2K Beam Line

- 2.5° off-axis neutrino beam
- Low energy narrow band beam
- Energy peak around oscillation maximum ($\sim 0.65 \mathrm{GeV}$)
- Neutrino Source created by interactions of 30 GeV protons on a 90 cm long fixed graphite target
- Neutrino beam predictions rely on modeling the proton interactions and hadron production in the target

(T2K) K.Abe et al., Phys.Rev.D87 (2013)012001
- Precise hadron production measurements allow to reduce uncertainties on neutrino flux prediction

Neutrino Source Composition

Neutrino Source Production

Different production schemes:

- direct contribution: secondary hadrons exit the target and decay into ν
- target contribution: secondary and tertiary hadrons exiting the target and decaying into ν
- non-target contribution: re-interaction in the target surrounding material

ν_{e} flux composition at SK

Abgrall,CERN-THESIS-2011-165

Relevant Hadron Production Measurements

- $\mathrm{p}+\mathrm{C}$ cross-sections at the interaction:
- different particle species can be extracted and used to constrain the neutrino flux prediction
- allow to constrain up to 60% of the $\nu_{\mu}\left(\nu_{e}\right)$ flux at beam pick energy
- Hadron production at the surface of the T2K target:
- different particle species can be extracted and used to constrain the neutrino flux prediction
- measurements of all charged hadrons exiting the target allow to constrain up to 90% of the $\nu_{\mu}\left(\nu_{e}\right)$ flux
- the longitudinal distribution of the particles exiting the target surface is important for the neutrino flux predictions

The NA61/SHINE experiment at the CERN SPS is able to deliver such high quality measurements.
Work of this thesis:
extract hadron production measurements in NA61/SHINE at the surface of a T2K replica target and implement these measurements in the T2K neutrino beam simulation to constrain the T2K neutrino flux predictions

The NA61/SHINE fixed target experiment at SPS CERN

32 institutions, more than 130 participants

University of Belgrade, Belgrade, Serbia
ETH, Zurich, Switzerland
Fachhochschule Frankfurt, Frankfurt, Germany Faculty of Physics, University of Sofia, Sofia, Bulgaria Karlsruhe Institute of technology, Karlsruhe, Germany Institute for Nuclear Research, Moscow, Russia Institute for Particle and Nuclear Studies, KEK, Tsukuba, Japan Jagiellonian University, Cracow, Poland

Joint Institute for Nuclear Research, Dubna, Russia

University of Bern, Bern, Switzerland
LPNHE, University of Paris VI and VII, Paris, France
University of Silesia, Katowiee, Poland
Rudjer Boskovic Institute, Zagreb, Croatia
National Center for Nuclear Research. Warsaw Poland
St. Petersburg State University St. Petersbarg? Russia
University of Geneva. Geneva, Switzerland
Jan Kodhanowsk University in Kielce: Poland
University of Athens, Athens, Greece
University of Bergen, Bergen. Norway
University of Frankfurt, Frankufft, Ge valny
University of Wroctaw Wrocław, Pofand
Faculty of Physics, University of Warsaw, Warsew, ρ oland
Warsaw University of Technology Warsaw, Poland
Laboratory of Astroparticle Physics, Uthic, ity Nova Goriga, Noval Gorica, Slovenia Wigner Research Centre for Physjes of the Hungariany cademy of Sciences, Budanester

Los Alanos National Láboratory
Department of Physics and Astronomy, Unyersity of Pittsburgh
Départment of Physics, University of Texas at Austin
Department of Physics, College of William \& Wlary
University of Hawaii at Manoat

The NA61/SHINE experiment

NA61/SHINE: SPS Heavy Ion and Neutrino Experiment
Physics programme covering:

- heavy ion physics
- hadron-production measurements for cosmic ray experiments
- hadron-production measurements for neutrino experiments
Large acceptance spectrometer:
- 5 TPCs
- 2 dipole magnets
- $\sigma(p) / p^{2} \sim 10^{-4}(\mathrm{GeV} / \mathrm{c})^{-1}$
- $\sigma(d E / d x) /(d E / d x) \sim 0.04$
- 3 ToF
- $\sigma($ FTOF $) \sim 120 p s$
- $\sigma($ TOF $L / R) \sim 60 p s$

Let's look at:

- Targets and Beamline
- TPC's
- FTOF
- Combined TOF-dE/dx analysis

Targets and Datasets

$$
\text { Thin Carbon Target }\left(2 \mathrm{~cm} \equiv 4 \% \lambda_{I}\right)
$$

- length: 2 cm ; x-section: $2.5 \times 2.5 \mathrm{~cm}^{2}$
- $\rho=1.84 \mathrm{~g} / \mathrm{cm}^{3}$
- length: 90 cm ; diameter: 2.6 cm
- $\rho=1.83 \mathrm{~g} / \mathrm{cm}^{3}$ (1.804 for the T2K target)
- $0.04 \lambda_{I}$

Data taken for the Neutrino Physics Program:

Beam	$(\mathrm{GeV} / \mathrm{c})$	graphite target	year	$\mathrm{N} \times 10^{6}$
p	31	2 cm	2007	0.7
p	31	2cm	2009	5.4
p	31	90 cm "T2K replica"	2007	0.2
p	$\mathbf{3 1}$	$\mathbf{9 0 c m}$ "T2K replica"	$\mathbf{2 0 0 9}$	$\mathbf{4}$
p	31	90 cm "T2K replica"	2010	10

The NA61/SHINE Beam Detectors and Trigger System

Schematic position of the counters:

Triggers:

- $31 \mathrm{GeV} / \mathrm{c}$ secondary proton beam from the SPS
- beam composition given by CEDAR and Cherenkov detectors: $\sim 83 \% \pi$, $\sim 15 \%$ protons, $\sim 2 \% \mathrm{~K}$
- different combination of counters for different triggers
- 3 Beam Position Detectors (BPD) 2D proportional chambers allowing to reconstruct beam tracks
- thin target: include $\mathrm{S} 4 \Rightarrow$ interaction trigger
- T2K replica target:

T 2 trigger \Rightarrow large beam profile covering entire target surface
T3 trigger \Rightarrow narrow beam profile

Beam Profile on Target upstream face

- Beam Profile on the target upstream face reconstructed through extrapolation of the fitted beam track from the BPDs
- Resolution on the position of impact of the proton on the target upstream face $\sim 300 \mu \mathrm{~m}$

Reconstructed Tracks in the TPC's

- 2 categories of tracks with different acceptance:
- Right Side Tracks (RST): $p_{x} \cdot q>0$
- Wrong Side Tracks (WST): $p_{x} \cdot q<0$
- Very forward going particles cannot be reconstructed \Rightarrow hole in the acceptance
- Large angle tracks ($>340 \mathrm{mrad}$) not considered; hit in TOF requested for the analysis

Energy Loss in the TPCs

Number of pad rows in TPC's:

- VTPCs: $3 \times 24=72$
- GAP TPC: 7
- MTPCs : $18 \times 5=90$

Reconstructed points:

- more than one pad (row) can be hit \Rightarrow reconstruct points
- apply cuts on the number of points in TPC's to get high resolution on $\mathrm{dE} / \mathrm{dx}$

The Forward Time-of-Flight Wall

- built at the University of Geneva (A.Bravar et al.)
- 80 scintillator bars $\left(120 \times 10 \times 2.5 \mathrm{~cm}^{3}\right)$
- Read out on both sides by PMT's
- Overlap between the bars insure good coverage
- m^{2} of the particles can be computed from the recorded time of flight

$$
m^{2}=p^{2}\left(\frac{c^{2} \times t o f^{2}}{L^{2}}-1\right)
$$

the momentum p and track length L are determined by the track reconstruction

The Forward Time-of-Flight Resolution

FTOF Resolution

- Use simultaneous hits in 2 slabs
\hookrightarrow consider events with hits in the overlap regions on scintillators
\hookrightarrow plot the difference between two measurements in two independent slabs

Time Resolution

The T2K Replica Target Analysis

- Extract particle production at the surface of the target
- Introduce (p, θ, z) binning

Analysis binning overlaid on the (p, θ) distributions of the pion parent particles exiting the target surface and producing ν_{μ} at SK.

Contribution of each Z bin to the neutrino ν_{μ} flux at SK

(p, θ, z) Analysis Binning for the T2K Replica Target Analysis

Nominal Beam

1.5 m \qquad $\mathrm{W} \rightarrow$

Input the nominal simulation variables into the neutrino flux simulation

Binning to 2

Input modified simulation variables to simulate two longitudinal bins in Z

- position of the peak energy not influenced by number of z bins
- absolute flux at beam peak energy is affected by number of z bins

- important to reconstruct the exit position of the particles on the target surface

Backward Extrapolation to the Target Surface

Extrapolate the tracks from the TPCs back to the target surface.
PCA within its uncertainty has to touch the target surface

Reconstructed position of particles exiting the target surface

!! Very important to precisely know the target position with respect to the TPCs !!

Determination of the Target Position

- determine (x, y) position with beam particles:

RST pos $(x, y)=(0.16,0.21) \mathrm{cm}$ WST neg

- determine z position with TPCs tracks : $z=-657.62 \mathrm{~cm}$
- consider tracks with $100<\theta<180$

Beam Track
$\begin{aligned} & \text { relate longitudinal uncertainty to transverse } \\ & \text { uncertainties: } \\ & \delta x=\delta z \cdot \tan (0.18)\end{aligned}$
RST neg

- uncertainties on target position :

$$
(\delta x, \delta y, \delta z)=(0.04,0.04,0.36) \mathrm{cm}
$$

Particle Identification

- ToF - $d E / d x$ analysis: combine information from $\mathrm{dE} / \mathrm{dx}$ and ToF \Rightarrow identify $\pi^{ \pm}, K^{ \pm}$and protons in each (p, θ, z) bin
- here: $(1.9<p<2.3,60<\theta<80, z 2)$

Combined TOF-dE/dx Analysis for the T2K Replica Target

- for each (p, θ, z), bin construct a 2 D distribution in $m^{2}-d E / d x$ for positively and negatively charged particles
- fit each distribution with four 2D Gaussians $\left(\pi^{ \pm}, K^{ \pm}\right.$, (anti) - protons, $\left.e^{ \pm}\right)$using a binned maximum likelihood method; the fits are initialized with the m^{2} and $\mathrm{dE} / \mathrm{dx}$ parametrizations

- the returned amplitude of the gaussians gives the number of particles in each (p, θ, z) bin
- correct the spectra using bin-by-bin MC corrections
- normalize the spectra to the number of protons on target (allow comparisons between different analysis or between data and simulations)
- plot the results in different (θ, z) intervals as a function of momentum

$$
\pi^{+} \text {and } \pi^{-} \text {spectra are extracted following this procedure. }
$$

Breakdown of the Corrections

- ϕ cut:

Vertex Magnet I

- π loss:
pions decaying before reaching the forward TOF
- reconstruction efficiency:
>0.98 reconstruction efficiency
- forward TOF efficiency:
~ 0.98 efficiency, mainly due to double hits in a same slab (more important for the forward region)
- feed-down:
particles decaying into pion before entering the spectrometer

π^{+}Spectra on Target Surface

Systematic Uncertainties

Six Components of systematic uncertainties:

- PID: 1 Gaussian versus 2 Gaussians to describe $\mathrm{dE} / \mathrm{dx}$
- Feed-down: 30\% on model dependent corrections
- Reconstruction efficiency: evaluated to 2%
- FTOF efficiency: evaluated to 2%
- π loss: effect on last point measured in TPCs
- Backward extrapolation:
precision on reconstructed target position
- PID
- Feed-down
-rec. eff.
— tof. eff.
$-\pi$ loss
—back extrap
- Total

Systematic Uncertainties

PID: 1Gaussian versus 2 Gaussians to describe $d E / d x$

- 1 Gaussian versus 2 Gaussians to describe $\mathrm{dE} / \mathrm{dx}$ distributions
- $f(x)=0.7 \cdot G(x, m, w)+0.3 \cdot G(x, m, 2 w)$
- small effect (less than 5%) for π as they are well separated from other species
- visible only for larger momentum where TOF is not used

Feed-down: 30\% on model dependent corrections

- particle exiting the target, decaying before the TPC's and being reconstructed as a pion exiting the target
- corrections are up to $\sim 15 \%$ for low momenta and upstream part of the target
- assign 30% of the correction as the systematic uncertainty
- fit with an exponential in order to remove statistical fluctuations due to limited MC sample

Systematic Uncertainties

Reconstruction efficiency: evaluated to 2%

- systematics related to reconstruction efficiency : 2\% (as for 2007 published data and 2009 thin target analysis)
- estimated by studying reconstruction capabilities for Monte-Carlo samples (same reconstruction algorithm is used in data and Monte-Carlo)
- confirmed by eye scans of data in the event browser, performed with the 2007 data set

FTOF efficiency: evaluated to 2%

- consider only hits in the FTOF if the up and down PMTs time measurements are consistent
- correct for this "inefficiency"
- corrections are position " x " dependent (more double hits in the central region with higher track multiplicities)
- corrections are based on the limited data set statistics \Rightarrow estimated to 2%

Systematic Uncertainties

π loss: effect on last point measured in TPCs

- for the T2K replica target analysis at least 35 measured points are required in MTPCs
- vary the number of requested measured points in MTPCs
- check the differnces and assign them as systematics
- fit with an exponential function in order to remove fluctuations

Z3

Backward extrapolation:
precision on reconstructed target position

- $(x, y, z)=(0.16,0.21,-657.62) \mathrm{cm}$ $(\delta x, \delta y, \delta z)=(0.04,0.04,0.36) \mathrm{cm}$
Transversal uncertainties

Longitudinal uncertainties

Comparing Thin Target and Replica Target Results

T2K uses thin target measurements to re-weight the neutrino flux predictions.
Before implementing T2K replica target results in the T2K neutrion flux predictions:
compare the pion spectra predictions re-weighted with thin target measurements and the T2K replica target results.

- Each simulated interaction is stored at the simulation level to be tuned later with measurements (priority to NA61/SHINE)
- Tuning of hadron multiplicities:

$$
W\left(p_{\text {in }}, A\right)=\frac{\left[\frac{d n}{d p d \theta}\left(p_{\text {in }}, A\right)\right]_{\text {data }}}{\left[\frac{d n}{d p d \theta}\left(p_{i n}, A\right)\right]_{M C}}
$$

- Tuning of production cross-section:

$$
W=\frac{P\left(x ; \sigma_{\text {prod }}^{\prime}\right)}{P\left(x ; \sigma_{\text {prod }}\right)}=\frac{\sigma_{\text {prod }}^{\prime}}{\sigma_{\text {prod }}} e^{-x\left(\sigma_{\text {prod }}^{\prime}-\sigma_{\text {prod }}\right) \rho}
$$

$\frac{\sigma_{\text {prod }}^{\prime}}{\sigma_{\text {prod }}}=1$ if particle decay or exit the target before interacting

- Compare pion spectra at the surface of the target
- FLUKA generator is used to model all interactions inside the 90 cm long carbon target
- \Rightarrow all weights are computed with respect to FLUKA

Thin Target Measurements

- Double differential cross section $\frac{d \sigma}{d \rho d \theta}$ in (p, θ) bins extracted for 7 particle species: $\pi^{ \pm}, K^{ \pm}, K^{0}, \Lambda$, protons
- Hadron multiplicity:

$$
\frac{d n_{\alpha}}{d p d \theta}=\frac{1}{\sigma_{\text {prod }}} \frac{d \sigma_{\alpha}}{d p d \theta} \quad \text { where } \quad \sigma_{\text {prod }}=\sigma_{\text {total }}-\sigma_{\text {elastic }}-\sigma_{\text {quasi }-e l .}
$$

Thin Target Measurements

- Production cross-section:
$\sigma_{\text {prod }}=\sigma_{\text {total }}-\sigma_{\text {elastic }}-\sigma_{\text {quasi-el }}$.
- Definition of $\sigma_{\text {quasi-el }}$. is ambiguous: photon emission or knock out of proton included in $\sigma_{\text {quasi-el. . ? }}$
- $\sigma_{\text {quasi-el. }}$ can be estimated based on models (Glauber, Bellettini):
for $\mathrm{p}+\mathrm{C}$ @ $31 \mathrm{GeV} / \mathrm{c}: \sigma_{\text {quasi-el }} \approx 30 \mathrm{mbarn}$
- current thin target measurements give few information on the different cross-sections
- longitudinal distribution of particles exiting the T2K replica target surface is determined by the different cross-sections
- $\sigma_{\text {" prod" }}^{F L U K A}=241 \mathrm{mb}$ for $\mathrm{p}+\mathrm{C@} 31 \mathrm{GeV} / \mathrm{c}$ vary it by $2 / 3 \times \sigma_{\text {quasi-el. }} \approx 18 \mathrm{mbarn} @ 31 \mathrm{GeV} / \mathrm{c}$

Comparing Thin Target and Replica Target Analysis

T2K neutrino flux predictions with T2K replica target measurements

Implementation of T2K replica target measurement in the T2K neutrino beam simulation to produce neutrino flux predictions constrained by the T2K replica target measurement.

- re-weight pions at the surface of the target

$$
W\left(p_{i n}, A\right)=\frac{\left[\frac{d n}{d p}(\theta, z)\right]_{\text {data }}}{\left[\frac{d n}{d p}(\theta, z)\right]_{M C}}
$$

- apply thin target procedure for any other particles than pions exiting the target surface and re-interactions in the beam material
- NA61 and T2K have different beam profiles
- T2K replica target results are given with respect to NA61/SHINE beam profile

Propagation of uncertainties

Propagating the T2K replica target uncertainties means propagating the uncertainties on the weights ω_{j} Each (p, θ, z) bin contribute differently to each E_{ν} bin \Rightarrow linear combination:

$$
E_{\nu_{i}}^{\omega}=\sum_{j=1}^{N} a_{i j} \cdot \omega_{j} \quad \text { where } \quad \omega_{j}=\frac{n_{j}^{N A 61}}{n_{j}^{F L U K A}}
$$

Two methods:
(1) propagation via an "overall 1σ shift" $\Delta \omega$ of the T2K replica target results

$$
\Delta E_{\nu}^{\omega}=E_{\nu}^{\omega \pm \Delta \omega}-E_{\nu}^{\omega}
$$

(2) propagation via "covariance matrices": for each error source

$$
C_{E}=F_{\omega} \cdot C_{\omega} \cdot F_{\omega}^{T}
$$

with

$$
F_{\omega}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{p 1} & \cdots & a_{p n}
\end{array}\right) \quad \text { and } \quad C_{\omega}=\left(\begin{array}{ccc}
\sigma_{\omega_{1}}^{2} & \cdots & \sigma_{\omega_{1}, \omega_{n}} \\
\sigma_{\omega_{2}, \omega_{1}} & \cdots & \sigma_{\omega_{2}, \omega_{n}} \\
\vdots & \ddots & \vdots \\
\sigma_{\omega_{n}, \omega_{1}} & \cdots & \sigma_{\omega_{n}}^{2}
\end{array}\right)
$$

"overall 1σ shift" \equiv "covariance matrices" with $\sigma_{\omega_{j}, \omega_{j}}=1$
For this special case, both method should give the same results \Rightarrow nice way to cross check algorithm and code

T2K flux uncertainties

- propagate the uncertainties of T2K replica target measurements only to the fraction of the neutrino flux at SK that can be re-weighted
- very small contribution from statistical error of the T2K replica target measurements; they are considered as uncorrelated
- consistent comparison with the official T2K predictions using the thin target measurement is complexe
- larger contribution comes from the interaction length; not present with the T2K replica target re-weighting

Thin target

ν_{μ} at SK

T2K replica target

T2K neutrino flux prediction with T2K replica target measurements

- compare T2K neutrino flux predictions with both, thin target and T2K replica target re-weightings
- consider systematic uncertainties
- for the thin target re-weighting:
apply multiplicity weights and vary $\sigma_{\text {prod }}$ by 18 mbarn

ν_{μ} flux predictions at SK with the thin target and replica target re-weightings

ratio of thin target over T2K replica target re-weightings for the ν_{μ} flux predictions at SK

Requests of future long base line neutrino experiments Possible improvements in NA61/SHINE measurements

Future Requests

- future long base line neutrino programmes will use a combination of near and far detectors (as T2K)

$$
N_{F D}^{e x p .}\left(\nu_{e}\right)=N_{N D}^{\text {data }}\left(\nu_{\mu}\right) \times \frac{\Phi_{F D}\left(\nu_{\mu}\right)}{\Phi_{N D}\left(\nu_{\mu}\right)} \times P\left(\nu_{\mu} \rightarrow \nu_{e}\right) \times \frac{\epsilon_{F D}\left(\nu_{e}\right)}{\epsilon_{N D}\left(\nu_{\mu}\right)} \times \frac{\sigma_{F D}\left(\nu_{e}\right)}{\sigma_{N D}\left(\nu_{\mu}\right)}
$$

- far-to-near flux ratio has to be constrained to typically $<2 \%$ to reach the physics goals
- Hyper-Kamiokande, LBNO and DUNE (LBNE) mention the importance of NA61/SHINE hadron production measurements to reduce the systematic uncertainties related to the neutrino beam predictions
- typically, a 5% uncertainty on the flux prediction is required.

Possible improvement in NA61/SHINE to reach the desired precision on hadron production measurements:

- For T2K replica target measurements, backward extrapolation to the target surface is the larger uncertainty on current analysis

1) mount the target closer to or within VTPC1
2) use a vertex detector surrounding the target

- acceptance gap in the very forward region

1) take data with different magnetic field settings to bend forward going particles
2) cover forward region with new TPCs

- production cross section and quasi-elastic cross section entangled

1) new TPCs in forward region with PID capabilities could allow to better disentangle $\sigma_{\text {elastic }}, \sigma_{\text {inelastic }}, \sigma_{q e}$
2) model independent measurement of production cross section

Summary

- Long baseline neutrino experiments need precise neutrino flux predictions to reach their physics goals.
- The NA61/SHINE experiment has proved its ability to deliver high quality data used for Neutrino Physics programs and further improvements are possible.
- Replica Target measurements are of importance as they allow to constrain the major part of the neutrino flux.
- Comparisons of thin target and replica target measurements allow to constrain the issue of production cross sections.
- NA61/SHINE plans to continue taking hadron production measurements for future neutrino program at Fermilab in the U.S. and discussion has started for the Hyper-Kamiokande experiment in Japan.
- The work accomplished in this thesis covers:
- extraction of π^{+}and π^{-}spectra at the surface of the T2K replica target
- estimations of systematic uncertainties of these spectra
- comparisons of thin target and T2K replica target results, based on a framework developed by the T2K beam group
- predictions of the T2K neutrino beam at the near and far detectors using the T2K replica target measurements
- estimations of the T2K neutrino beam uncertainties when using the T2K replica target measurements to constrain the neutrino fluxes
- estimations of the effect of different proton beam profiles on the pion spectra off the surface of the T2K replica target
- The NA61/SHINE collaboration plans to publish the results of this thesis in an article
- The T2K collaboration is currently working on implementing the work of this thesis in the T2K neutrino beam prediction framework

T2K replica target measurements in NA61/SHINE and T2K neutrino flux predictions

Alexis Häsler

Thank you for your attention
Thank you to the members of the jury and my colleagues for the interesting discussions and guidance

BACKUP SLIDES

Hadron production experiments for neutrino physics

Few examples of hadron production experiments for neutrino experiments:

NA61 and T2K Beam Profiles

NA61 and T2K Beam Profiles

radial distributions for NA61 (black) and T2K (red)

Beam Profile Re-weighting

- NA61 and T2K have different beam profiles
- T2K replica target results are given with respect to NA61/SHINE beam profile
- weights should be applied to T2K beam profile
\Rightarrow show that it is possible to go from one beam profile to the second one by re-weighting the pion spectra at the surface of the target with respect to the different beam profiles.

Start with NA61 beam: number of pions at the surface of the target

$$
\begin{equation*}
\pi_{i}^{N}=\sum_{j} c_{i j} b_{j}^{N} \tag{1}
\end{equation*}
$$

with $i \equiv(p, \theta, z)$ analysis $\operatorname{bin} ; c_{i j}$ contribution for the beam bin j with number of entries b_{j} if the contributions $c_{i j}$ are identical for the NA61 and T2K beam settings then

$$
\begin{equation*}
\pi_{i}^{T}=\sum_{j} c_{i j} b_{j}^{T}=\sum_{j} c_{i j} d_{j}^{N} b_{j}^{N} \tag{2}
\end{equation*}
$$

where d_{J} is the ratio for each beam bin j between the NA61 and T2K beam profile.
\Rightarrow compare the reweighted spectra with a T2K simulation for each (p, θ, z) bins; see if they are consistent

Beam profiles

NA61/SHINE

T2K

Alexis Häsler (DPNC University of Geneva)

NA61/SHINE

T2K

ratio of T2K/NA61 taken for each beam bin

Contribution of the beam bins to the (p, θ, z) bins

Ratio of reweighted NA61 spectra over T2K spectra

- 4 million protons on target for T2K and NA61 simulations
- Start with NA61 spectra, use the above matrix and multiply it by the column vector containing the T2K beam profile:

$$
\left(\begin{array}{cccc}
c_{1,1} & c_{1,2} & \cdots & c_{1, n} \tag{3}\\
c_{2,1} & c_{2,2} & \cdots & c_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m, 1} & c_{m, 2} & \cdots & c_{m, n}
\end{array}\right) \cdot\left(\begin{array}{c}
b_{1}^{T} \\
b_{2}^{T} \\
\vdots b_{m}^{T}
\end{array}\right)=\left(\begin{array}{c}
\pi_{1}^{N_{r w}} \\
\pi_{2}^{N_{r w}} \\
\vdots \\
\pi_{m}^{N_{r w}}
\end{array}\right)
$$

- compute ratios of $\frac{\pi_{i}^{N_{r w}}}{\pi_{i}^{T}}$ and related uncertainties

Ratio of reweighted NA61 spectra over T2K spectra

$d E / d x$ and m^{2} resolutions

Coefficients of Pions for each Neutrino Energy Bin

Pions coefficients in (p, θ, z) for each v_{μ} energy bin

Thin Target Measurements

- Double differential cross section $\frac{d \sigma}{d p d \theta}$ in (p, θ) bins extracting for 7 particle species: $\pi^{ \pm}, K^{ \pm}, K^{0}, \Lambda$, protons
- Derivation of spectra:

$$
\frac{d \sigma_{\alpha}}{d p d \theta}=\frac{\sigma_{\text {trig }}}{1-\epsilon}\left(\frac{1}{N^{\text {in }}} \frac{\Delta n_{\alpha}^{\text {in }}}{\Delta p \Delta \theta}-\frac{\epsilon}{N^{\text {out }}} \frac{\Delta n_{\alpha}^{\text {out }}}{\Delta p \Delta \theta}\right)
$$

- Hadron multiplicity:

$$
\frac{d n_{\alpha}}{d p d \theta}=\frac{1}{\sigma_{\text {prod }}} \frac{d \sigma_{\alpha}}{d p d \theta} \quad \text { where } \quad \sigma_{\text {prod }}=\sigma_{\text {total }}-\sigma_{\text {elastic }}-\sigma_{\text {quasi-el. }}
$$

$\nu_{e} \nu \mu$: thin target kaon production

Off Axis beam technique

Off-axis neutrino beam

Breakdown of Neutrino Flux Uncertainties

Figure 104: The total uncertainties evaluated on the SK flux prediction. The $13 a v 1$ uncertainty is the current version. The 11 bv 3.2 is the previous version.

Neutrino Nucleon Interactions

Neutrino-Nucleon interactions

Determine precisely the neutrino beam energy spectrum

Precise measurements of each of these intercations in ND280 through TPCs and FGDs

Neutrino Nucleon Interactions

Neutrino-Nucleon interactions

Beam flavour content is important for ν_{e} appearance, reduce the ν_{e} background in the high ν_{μ} flux

electron
CC quasi-elastic

CCqe if some particles are missed
Precise pi-zero measurements in the POD

T2K Analysis Strategy

Melody Ravonel Salzgeber

T2K Measurements

T2K Measurements

First measurement of flavor appearance with $28 v_{e}$ candidates
Independent measurement of θ_{13}

World-leading measurement of θ_{23} Significant measurement

$$
\text { of } \Delta \mathrm{m}^{2} 32
$$

$$
\begin{aligned}
& \theta_{12}=33.4 \pm 0.85^{\circ} \\
& \theta_{13}=8.88 \pm 0.39^{\circ} \\
& \theta_{23}=45.8 \pm 3.2^{\circ}
\end{aligned}
$$

Abe, K., et al. Physical Review D 91.7 (2015): 072010.

First constraint of δ_{CP}
$\Delta m_{21}^{2}=(7.53 \pm 0.18) \cdot 10^{-5} \mathrm{eV}^{2}$
$\left|\Delta m_{32}^{2}\right|=(2.44 \pm 0.06) \cdot 10^{-3} \mathrm{eV}^{2}$
$\delta_{C P}=[-\pi, 0.14 \pi]$ and $[0.87 \pi, \pi] 90 \%$ interval
parameters measured by T2K

Mass hierarchy, CP phase (and Majorana phases) still not known only possible with long base line experiments

T2K Future Sensitivity

(a) $100 \% \nu$-running, true NH .

(c) $100 \% \nu$-running, with ultimate reactor con- (d) $50 \% \nu$-, $50 \% \bar{\nu}$-running, with ultimate reacstraint, true NH.
tor constraint, true NH.
Figure 8: $\delta_{C P}$ vs. $\sin ^{2} 2 \theta_{13} 90 \%$ C.L. allowed regions for 7.8×10^{21} POT. Contours are plotted assuming true $\sin ^{2} 2 \theta_{13}=0.1, \delta_{C P}=0^{\circ}, \sin ^{2} \theta_{23}=0.5$, and $\Delta m_{32}^{2}=2.4 \times 10^{-3} \mathrm{eV}^{2}$. The blue curves are fit assuming the correct MH, while the red are fit assuming the incorrect MH. The solid contours are with statistical error only, while the dashed contours include current systematic errors fully correlated between ν and $\bar{\nu}$.

T2K Future Sensitivity

(a) $100 \% \nu$-running, statistical error only.

(c) $50 \% \nu, 50 \% \bar{\nu}$-running, statistical error only.

(b) $100 \% \nu$-running,
with current systematic error.

(d) $50 \% \nu$-, $50 \% \bar{\nu}$-running, with current systematic error.

Figure 13: The expected $\Delta \chi^{2}$ significance to resolve $\sin \delta_{C P} \neq 0$ as a function of $\delta_{C P}$ for various values of $\sin ^{2} \theta_{23}$ (given in the legend) in case of the inverted mass hierarchy. The MH and $\sin ^{2} \theta_{23}$ octant are considered unknown (unless it can be constrained by the T2K data) and a constraint based on the ultimate reactor error is used.

T2K Future Sensitivity

Figure 12: The expected $\Delta \chi^{2}$ significance to resolve $\sin \delta_{C P} \neq 0$ as a function of $\delta_{C P}$ for various values of $\sin ^{2} \theta_{23}$ (given in the legend) in case of the normal mass hierarchy. The MH and $\sin ^{2} \theta_{23}$ octant are considered unknown (unless it can be constrained by the T2K data) and a constraint based on the ultimate reactor error is used.

T2K Future Sensitivity

T2K future sensitivity

(a) $100 \% \nu$-running.

(b) $50 \% \nu-, 50 \% \bar{\nu}$ running.

Figure 19: The expected $\Delta \chi^{2}$ significance for $\sin \delta_{C P} \neq 0$ plotted as a function of POT. Plots assume true $\sin ^{2} 2 \theta_{13}=0.1, \delta_{C P}=+90^{\circ}$, inverted MH , and various true values of $\sin ^{2} \theta_{23}$ (as given in the plot legends). The solid lines assume statistical error only, while the dashed lines include current systematic errors fully correlated between ν and $\bar{\nu}$. Note that the sensitivity heavily depends on the assumed conditions, and that the conditions applied for these figures $\left(\delta_{C P}=+90^{\circ}\right.$, inverted MH$)$ correspond to the case where the sensitivity for $\sin \delta_{C P} \neq 0$ is maximal.

T2K Future Sensitivity

	Appearance	Disappearance
BANFF(flux\&cross section)	5.0%	4.2%
cross section not-constrained by ND	7.4%	6.2%
SK detector and FSI	3.9%	11.0%
total	9.7%	13.3%

Table 4: The systematic error on the expected number of events in the 2012 oscillation analysis.

3.5 Effect of the systematic error size reduction

TN-151 also reports an extensive study of the effect of systematic error sizes. Even though actual effect depends on details of errors (see TN-151 for details), here, we generally summarize the results of the study. As shown in Tab.4, the systematic error on $N_{S K}$ in the 2012 oscillation analysis is 9.7% for the ν_{e} apearance sample and 13% for the ν_{μ} disappearance sample. For the measurement of $\delta_{C P}$, it is desired to reduce this to

- $5 \sim 8 \%$ for ν_{e} sample
- $\sim 10 \%$ for $\overline{\nu_{e}}$ sample
to maximally achieve the T2K sensitivity. Results are rather independent from the size of error on ν_{μ} and $\overline{\nu_{\mu}}$ samples if we can achieve error size on $\overline{\nu_{\mu}}$ similar to the current ν_{μ} 's error. For the measurement of θ_{23} and Δm_{32}^{2}, the systematic error sizes are already visible compared to the statistical error and there would be benefit of systematic error reduction even if the error size is reduced as little as 5%.

NA61 Heavy Ion Physics Programme

Rapidly changing ratio K / pi : Evidence for the onset of the transition to a system of deconfined quarks and gluons Search for critical point of strongly interacting matter through scans of system size A and Energy E

NA61 Cosmic Ray Physics Programme

