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RANGE OF FORCES

1026m
“Hubble scale”

1020m1010m100m10-10m10-15m10-19m

“weak scale”
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THE STANDARD MODEL
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THE STANDARD MODEL
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THE STANDARD MODEL
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THE STANDARD MODEL
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THE STANDARD MODEL
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The Nobel Prize in Physics 2013 was awarded jointly to 

François Englert and Peter W. Higgs 

"for the theoretical discovery of a mechanism that 

contributes to our understanding of the origin of mass 

of subatomic particles, and which recently was 

confirmed through the discovery of the predicted 

fundamental particle, by the ATLAS and CMS 

experiments at CERN's Large Hadron Collider”
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THE STANDARD MODEL
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THE STANDARD MODEL

Spin 0

Spin ½

Spin 1

Fermions Bosons
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THE STANDARD MODEL
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THE STANDARD MODEL STUDIED IN DETAIL
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…ONE PIECE IN THE PUZZLE
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Laws of MotionTheory of Gravity
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Laws of MotionTheory of Gravity
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Regular matter

5%

Dark matter

23%
Dark energy

72%
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Collider searches

Indirect detection

Drawings from 
https://www6.slac.stanford.edu/news/2016-02-08-three-ways-bust-ghostly-dark-matter



https://arxiv.org/pdf/1810.09420.pdf
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INSTRUMENTS!
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• Atoms are about 10⁻¹⁰ meters in size

• Protons are around 10⁻¹⁵ meters

• Elementary particles (like quarks and electrons) 

are even smaller — possibly point-like, with 

sizes below 10⁻¹⁸ meters.

How do we “SEE” the smallest particles? 

We don’t “see” them directly — instead, we infer their size and structure 
through high-energy particle collisions and scattering experiments.
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Small distance <=> High energy
λ = 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑝
Wavelength λ associated with a particle of momentum p:

 

λ > λ

p < p
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Wavelength λ associated with a particle of momentum p:
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Small distance <=> High energy
λ = 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑝
Wavelength λ associated with a particle of momentum p:

 



44

To detect smaller things, you need shorter wavelengths, 
which means higher momentum and energy!

Small distance <=> High energy
λ = 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑝
Wavelength λ associated with a particle of momentum p:

 

Rule of thumb: You can't see things smaller than the 
wavelength of the probe you're using.
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Small distance <=> High energy
λ = 

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑝
Wavelength λ associated with a particle of momentum p:

 

To detect smaller things, you need shorter wavelengths, 
which means higher momentum and energy!

Rule of thumb: You can't see things smaller than the 
wavelength of the probe you're using.
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BEAM 
INJECTION CHAIN

LARGE HADRON 
COLLIDER

PARTICLE BEAMS

PARTICLE 
COLLISIONS
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Booster
157 m circ. – 4 rings

In: 50 MeV – Out: 1.4 GeV
N: up to 3.4x1013 protons per pulse

Defines brightness, 
i.e. number of protons per bunch in 

transverse dimension

SPS
6.9 km circ.

In: 26 GeV – Out: 450 GeV
First underground machine

LHC
26.7 km circ.

In: 450 GeV – Out: ~7 TeV
Magnets with superconducting cables

12’000 A → 8.33 Tesla
Temperature: 1.9 K 

PS
628 m circ. 

In: 1.4 GeV – Out: 26 GeV
N: up to 3.3x1013 protons

Defines beam time structure

Linac 4
33 m length

In: 90 keV – Out: 50 MeV
Protons from H2

1.

2.

3.4.

5.

51
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Example: The ATLAS detector

✓ Weights 7 ktonnes (         )
✓ 2-4 T superconducting magnets
✓ Position of particles recorded               

with an accuracy of O(10 μm)
✓ 100 M channels

✓ 1 Giga collisions/second
✓ 1000 events/second stored
✓ 500 PB data on disk & tape
✓ 0.5 M CPU cores used 24/7

✓ 20 billion events collected (2015-2018)

in numbers



General purpose detectors at the LHC
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What do we reconstruct?

•  Tracks and clusters

•  Combining those: 
• “objects”, i.e. “particles”

54
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Missing Transverse Momentum – MET

55

In the transverse plane:

So for what we can’t directly measure (e.g. neutrinos)
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Missing Transverse Momentum – MET

56

In the transverse plane:

So for what we can’t directly measure (e.g. neutrinos)

56
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ATLAS cavern Toroidal magnets Calorimeter Pixel tracker

Silicon strip tracker endcap Silicon strip tracker assembly Silicon strip tracker installation

Innermost pixel tracker installation

2006

2014

2004

(Aspects relevant for all LHC detectors)
▪ Fast and radiation hard sensors 
▪ Stability and accuracy of constructed structures
▪ Extremely fast readout systems for low latency 

processing
▪ Computing infrastructure to process enormous amounts 

of dataTrigger CPU farm



58

Google	
searches

98	PB

LHC	Science	
data

~200	PB
SKA	Phase	1	–

2023
~300	PB/year	
science	data

HL-LHC	– 2026
~600	PB	Raw	data

HL-LHC	– 2026
~1	EB	Physics	data

SKA	Phase	2	– mid-2020’s
~1	EB	science	data

LHC	– 2016
50	PB	raw	data

Facebook	
uploads
180	PB

Google
Internet	archive
~15	EB

Yearly	data	volumes

Few years old already 
E.g. by now google is 

at least 3-5x larger!
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https://clissa.github.io/BigData2021/BigData2021.html
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The ATLAS Collaboration

180
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11 reconstructed vertices

Track pT > 0.5 GeV

Z->μμ event; 
2011 data.
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11 reconstructed vertices

Track pT > 2 GeV

Z->μμ event; 
2011 data.
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Z->μμ event; 
2011 data.

Track pT > 10 GeV

11 reconstructed vertices
65
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A Z→ll candidate produced with 65 reconstructed proton-proton collisions. 

100 MeV tracks

1 GeV tracks
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E.g. 200 collisions in a bunch crossing:

68
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The CMS Collaboration

180

51

229

1100

2100
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The LHCb Collaboration

180

19

87 

1500
Members  
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The ALICE Collaboration

180

40

172 

1990
Members  



A bit of LHC history
using CMS as an example

Approval of project

R&D

First physics data

Higgs Discovery

Nobel Prize

More data
to probe rare phenomena

& Unravel 
Nature’s secrets

72
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Up  to this point: 
only 10-15% of the 
data planned for the 
lifetime of the LHC!

3000 – 4000 /fb
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The Landscape of Particles
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The Standard Model studied in detail
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The Higgs Boson

Production cross-sectionMass

Intense efforts to asses its properties with high precision 
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Searches
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Higgs searches: Processes not yet observed 
• There are still SM processes that have not been observed 

• Eg. HH production 

• We don’t know if it occurs in rates as the SM predicts

Recent HH->bbγγ results

Sensitivity to new physics!
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New heavy bosons 
W’, Z’ 

Extra 
dimensions 

ADD 

RS 

UED 

Other  
exotic models 

Lepto-quarks 

Excited 
quarks 

4th generation 

Contact 
interactions 

NMSSM 
MSSM 

pMSSM 

CMSSM 

SUSY 

MFV 
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Dark Matter 
searches

Mediator searches

Direct searches
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1980’s

2000’s

2010-2011

2012

2015 – now LHC 13 – 14 TeV
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SUSY searches: A plethora of results
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Searches for exotic signatures



Non-conventional Signatures
e.g. Signatures of long-lived particles 

90

The SM contains a large number of metastable particles

Distance travelled x

a.
u

.

exp(-x / cτ)
exp(-x / 5 cτ)

tracker

calorimeter

muon system

outside



Non-conventional Signatures
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Displaced 
multitrack vertices

Disappearing or 
kinked tracks

Non-pointing photons

Emerging jets

Quasi-stable 
charged particles

Trackless
Low-EMF jets

Multi-track vertices 
in the muon spectrometer

Displaced leptons, 
lepton-jets 

or lepton pairs

Sketch: H. Russell

• Many interesting possibilities of exotic particles
• Unique challenges in reconstruction
• Possible with good understanding of detector
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Improve instrumentation / diversify experimental methods

Get more data

Look at higher energies

MeV GeV TeV

1

10-3

10-6

Known physics Strongly interacting 
heavy particles
Energy Frontier

Feebly interacting 
light particles

Intensity Frontier

LHC 
Physics

Mass of new particle (m)
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Very Forward experiments 
at the LHC
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BEAM 
INJECTION CHAIN

LARGE HADRON 
COLLIDER

PARTICLE BEAMS

PARTICLE 
COLLISIONS

ATLAS
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BEAM 
INJECTION CHAIN

LARGE HADRON 
COLLIDER

PARTICLE BEAMS

PARTICLE 
COLLISIONS

ATLAS

FASER
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BEAM 
INJECTION CHAIN

LARGE HADRON 
COLLIDER

PARTICLE BEAMS

PARTICLE 
COLLISIONS

ATLAS

FASER
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SPS tunnel

Primary goal: Searches for new weakly interacting light particles, 
coupling to SM via mixing with SM “portal” operator

ForwArd Search ExpeRiment at the LHC
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SPS tunnel

Primary goal: Searches for new weakly interacting light particles, 
coupling to SM via mixing with SM “portal” operator

ForwArd Search ExpeRiment at the LHC
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BEAM 
INJECTION CHAIN

LARGE HADRON 
COLLIDER

PARTICLE BEAMS

ATLAS

SND@LHC
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BEAM 
INJECTION CHAIN

LARGE HADRON 
COLLIDER

PARTICLE BEAMS

ATLAS

SND@LHC



BEAM 
INJECTION CHAIN

Experiments in the 
“North Area”
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BEAM 
INJECTION CHAIN

NA64

NA64

New area dedicated to NA64 
prepared by CERN during LS2 

12



BEAM 
INJECTION CHAIN

NA62

NA62

15
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EFPL contributions to detector construction / ops / sw :
• GigaTracker (silicon pixel 4D tracker) operations and DQ
• Involved in DAQ upgrade and software trigger
• Significant participation to GigaTracker reconstruction
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Highlights from recent results



114“Pika-ν” event
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“Pika-ν” event
• A very clean high-energy νe candidate 
• Energy of electron ~1.5 TeV
• Vertex with 11 tracks
• electron-like track from vertex
• Back-to-back topology

μm
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Searches for DARK Photons

Region probed last 
back in the 90s!

NA62

FASER

NA64

Phys. Lett. B 848 (2024) 138378

Phys. Rev. Lett. 133 (2024) 111802

Phys.Rev.D 101 (2020) 7, 071101

https://inspirehep.net/literature/2687000
https://arxiv.org/abs/2312.12055
https://inspirehep.net/literature/1773005


What’s beyond LHC Run3 ?
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Up  to this point: 
only 10-15% of the 
data planned for the 
lifetime of the LHC!

3000 – 4000 /fb
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12 000 tracks in 
the tracker acceptance!

Unprecedented challenges : 
- amounts of radiation (~ 2x1016 neq/cm2)
- data rates (> 5 GHz p–p collisions) 
- data volume (~ 350 PB of RAW data / year)

Development of :
- radiation hard detectors
- fast electronics 
- new detection methods, e.g. use of timing
- new software & computing approaches

Required HL-LHC detector upgrades

119



BEAM 
INJECTION CHAIN

SHiP

SHiP

15

New project approved last 
year, to be constructed 
and start physiscs data 
taking in Run 4



121arXiv:2203.05090

A teaser for the proposed Forward Physics Facility
The rich physics program in the far-forward region strongly 
motivates creating a dedicated Forward Physics Facility to 

house far-forward experiments for the HL-LHC era

LoI for SNOWMASS-2021
arXiv:2203.05090

FPF – Kickoff workshop
FPF – 5th  workshop
FPF – 6th workshop

FPF – 7th workshop in February 2024

Document to be submitted 
to european strategy

https://zenodo.org/record/4009641
https://arxiv.org/abs/2203.05090
https://indico.cern.ch/event/955956/contributions/4022176/
https://indico.cern.ch/event/1196506/
https://indico.cern.ch/event/1275380/
https://indico.cern.ch/event/1358966/


The physics programme of FPF
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Mass of ν 
detector

νe νμ ντ

# interacting in 

FASERν
150 / fb 1 tn 

Tungsten
~1000 ~20000 ~10

# interacting in 

FASERν2
3000 / fb 10 tn 

Tungsten
~105 ~106 ~104

Unprecedented numbers of detectable neutrinos, at 
energy ranges where there is currently no available data!
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What’s beyond HL-LHC ?
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• Aims at pushing both energy and 
intensity frontiers of particle colliders

• Conceptual design report (2020)
• Technical and financial feasibility study 

due for next EU strategy update (2027)

The FCC project

Stage Collisions CME L (ab-1) N events

FCC-ee e+e- 90 GeV (Z-pole) 150 5x1012 Z

160 GeV (WW) 10 108 WW

240 GeV (HZ) 5 106 HZ

365 GeV (tt) 1.5 106 tt

FCC-hh pp 100 TeV 30 2x1010 H
3x107 HH

FCC-eh ep 3.5 TeV

Tera-Z run

An electron-positron Higgs factory is 
the highest-priority next collider. For 
the longer term, the European particle 
physics community has the ambition 
to operate a proton-proton collider at 
the highest achievable energy.

2020 EuropeaN Strategy Update

https://europeanstrategy.cern/european-strategy-for-particle-physics

Runs with heavy ions not included
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FCC-ee running at the Z-pole has the potential to exclude the 
region of masses and couplings down to the see-saw limit

Reach for heavy Neutral Leptons 
in future experiments

FASER2

NA62

MATHUSLA

Constrains from past 
experiments

FCCee Lower bound from 
the requirement to 
explain light neutrino 
oscillation data

FCChh

LHC

Different initial 
conditions in 

early universe

LLP
s at F

C
C

 – 220
3.0

550
2
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• The Standard Model is a brilliant framework that explains much of the 
known universe — but it’s incomplete.

• One of its biggest mysteries: What is dark matter?

• To explore the smallest building blocks of nature, we need to reach 
higher and higher energies, which we do through powerful particle 
collisions.

• These collisions may create dark matter candidates, and CERN 
experiments are actively searching for them.

• The next breakthrough in physics could be just around the corner — we 
must be ready to recognize it!

• Along the way, we drive cutting-edge technological innovation with 
impacts far beyond particle physics.

In Brief: 
Searching for DARK Matter at CERN
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• Simple mechanism for 
DM evolution: “freeze out”
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Surviving DM density:

χ

χ

The landscape of new particles @ colliders
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