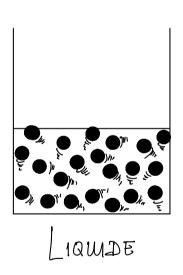
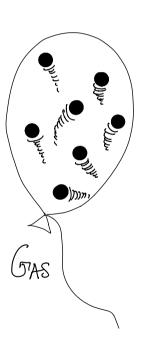
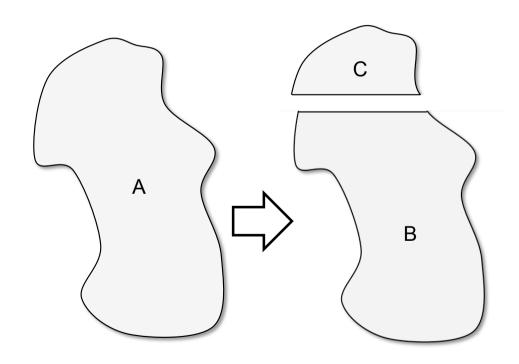

HYDROSTATIQUE


PGC-14


ÉTATS DE LA MATIÈRE

- **solide**: conserve sa forme et son volume.
- **liquide** : coule et prend la forme du récipient dans lequel il est placé, mais conserve un volume constant (si incompressible).
- gaz : coule, se disperse prenant la forme et occupant tout le volume du récipient.
- plasma : mélange d'atomes, ions et électrons.

LES PARTICULES DANS LA MATIÈRE


QUESTION

Une pièce de verre est cassée en deux morceaux. Quelle relation décrit la relation entre la densité des trois pièces:

(a)
$$\rho_A > \rho_B > \rho_C$$

(b)
$$\rho_A = \rho_B = \rho_C$$

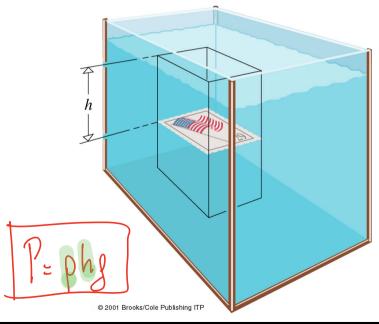
(c)
$$\rho_A < \rho_B < \rho_C$$

HYDROSTATIQUE

RESSION HYDROSTATIQUE

$$P = \frac{F_1}{A}$$

$$P = \frac{F_1}{A} \qquad [P] = \frac{N}{M^2} = P_A$$

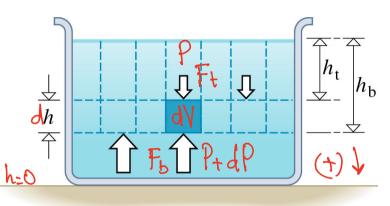

PRESSION HYDROSTATIQUE ET PESANTEUR

$$F_{\perp} = F_{w} = mg \left\{ = f_{w} = pVg \right\}$$

$$P = \frac{m}{V} = p m = pV$$

$$V = hA$$

$$= p f_{w} = p hAg$$


EXEMPLE

Quelle pression due à l'eau seule subit un nageur à 20m sous l'eau ?

Pean Pgh

$$\simeq 2 \times 10^5 \text{ Pa}$$
 $2 \times \text{Patm}$

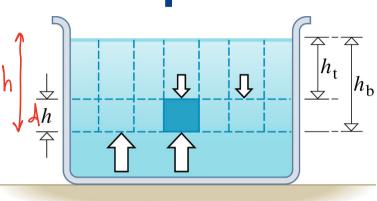
VARIATION DE LA PRESSION AVEC LA PROFONDEUR

© 2001 Brooks/Cole Publishing ITP

$$\frac{dP}{dh} = + PS$$

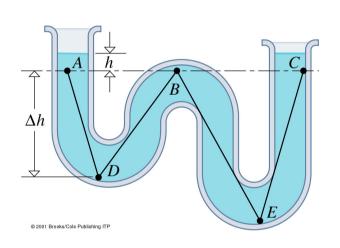
A: aise
$$dh$$

$$dm$$

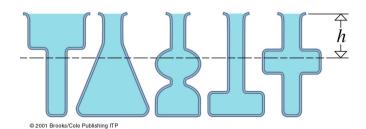

$$F_{t} = PA$$

$$F_{b} = (P+dP)A$$

$$F_{w} = (dw) g = pA dh g$$

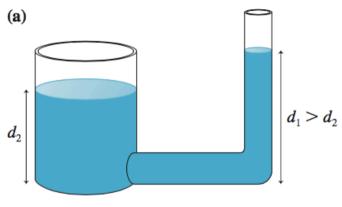

$$\frac{dP}{dP} = -pQ$$

CAS: p CONSTANT



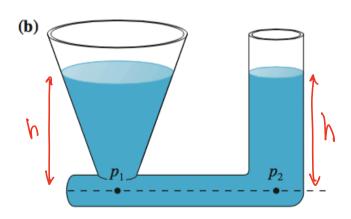
© 2001 Brooks/Cole Publishing ITP

CAS: ρ **CONSTANT**



$$P_A = P_{a+m} + pgh$$

 $P_D = P_A + pg\Delta h$
 $P_D = -pg\Delta h + P_D = P_A$

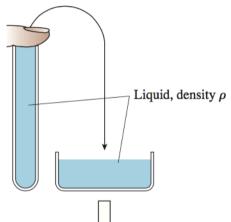


QUESTIONS

Is this possible?

Is $p_1 > p_2$?

CAS: ρ **NON-CONSTANT**


$$\frac{P}{P_0} = \frac{P}{P_0}$$
 niweau mes
$$\frac{dP}{dh} = -P_0 \cdot \left(\frac{P_0}{P_0}\right) \cdot \left(\frac{P_0}{P$$

EXEMPLE

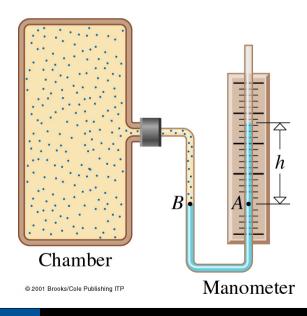
A quelle altitude la pression de l'air équivaut-elle à la moitié de sa valeur au niveau de la mer?

PRESSION ATMOSPHÉRIQUE – LE BAROMÈTRE (a) Seal and invert tube.

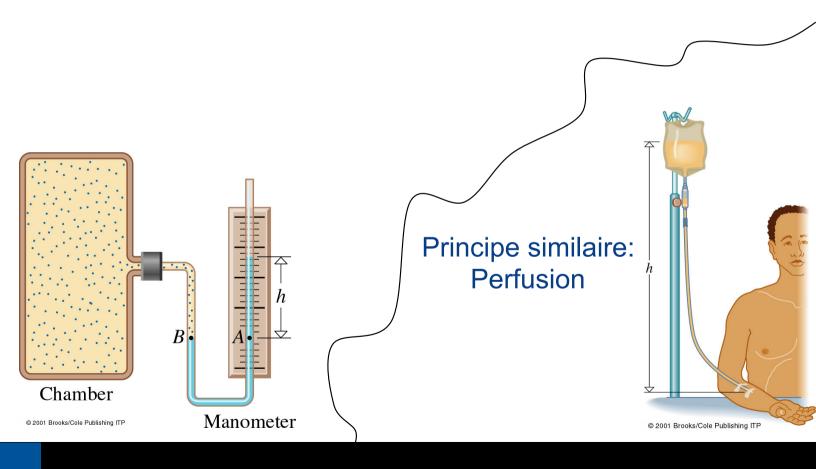
...et les unités de pression.

$$\frac{1a + m}{p_1} = \frac{pgh}{1} = \frac{1013 \text{ bar}}{2}$$

$$\frac{1a + m}{p_1} = \frac{pgh}{2} = \frac{1013 \text{ bar}}{2}$$

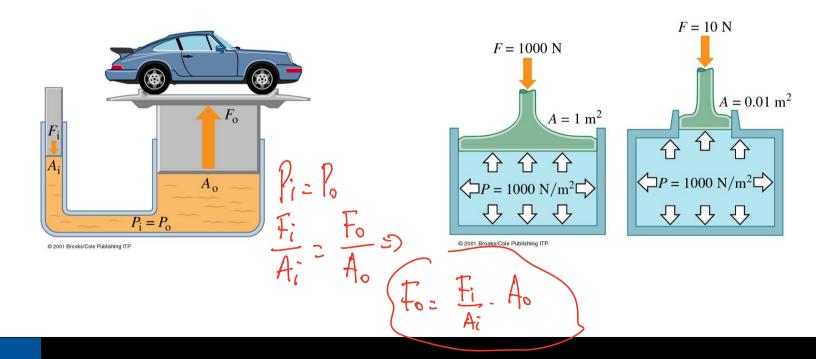

$$\frac{1a + m}{p_1} = \frac{pgh}{2}$$

$$\frac{1a + m}{p_1} = \frac{pgh}{2}$$

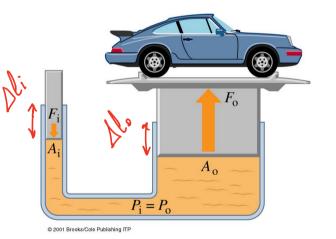

$$\frac{1a + m}{p_1} = \frac{pgh}{2}$$

 $\Delta P = P - Patm$

LE MANOMÈTRE

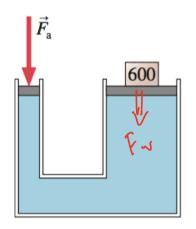


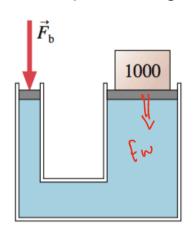
LE MANOMÈTRE

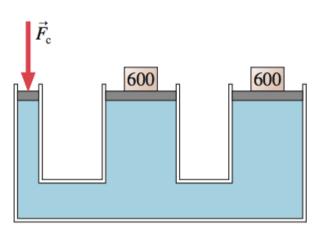


PRINCIPE DE PASCAL

Une pression externe appliquée à un fluide confiné à l'intérieur d'un récipient fermé est transmise intégralement à travers tout le fluide.

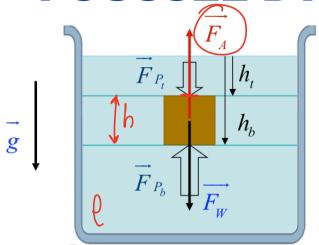

PRINCIPE DE PASCAL




$$W_i = F_i M_i$$
 $W_o = F_o M_o$
 $M_i = A_i = M_o A_o$

QUESTION

La force F tient les pistons en équilibre. Quelle est la relation entre les trois forces? Les masses sont indiquées en kg.

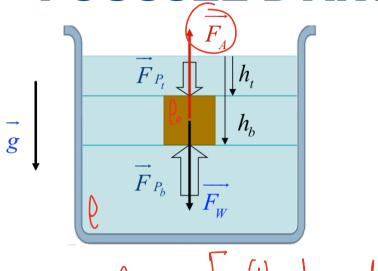


- В.

- (a) $F_a > F_b$ (a) $F_b > F_c$ (a) $F_a > F_c$ (b) $F_a = F_b$ (b) $F_b = F_c$ (c) $F_a < F_b$ (c) $F_b < F_c$ (c) $F_a < F_c$

POUSSÉE D'ARCHIMÈDE

PARCHINEDE


$$\begin{cases}
P_t = \varrho gh_t & F_t = P_t \cdot A \\
P_b = \varrho gh_b
\end{cases}$$

$$F_b = P_b \cdot A$$

$$=) F_{NET} = F_t - F_b = (P_t - P_b)A = P_b \cdot A = P$$

OV = Mliqui de

POUSSÉE D'ARCHIMÈDE - FORCE

$$\rho \to \rho$$
: $F(t)$ descend while $\rho \to \rho \to \rho$: $F(-)$ monte

$$F = F_{W} - F_{NET} = F_{W} - F_{A}$$

$$= m_{Q} - m_{eau} g$$

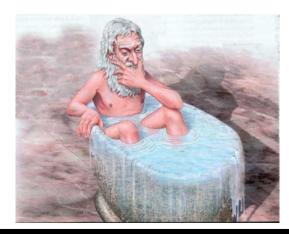
$$= \rho_{o} V_{g} - \rho_{o} V_{g}$$

$$= (\rho_{o} - \rho_{o}) V_{g}$$

$$= m_{Q} - m_{eau} g$$

$$= \rho_{o} V_{g} - \rho_{o} V_{g}$$

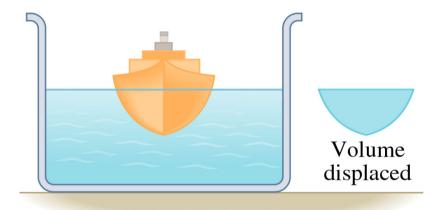
$$= (\rho_{o} - \rho_{o}) V_{g}$$


$$= \rho_{o} \rho_{o} V_{g}$$

PRINCIPE D'ARCHIMÈDE

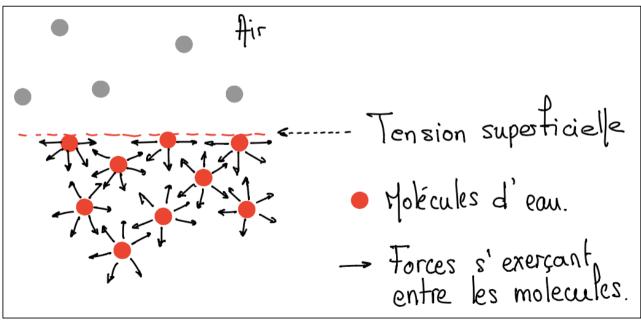
Tout corps plongé dans un fluide subit une poussée de bas en haut égale (et opposée) au poids du volume de fluide déplacé

EXEMPLE


On parle souvent de la partie visible de l'iceberg sous-entendant que la plus grande partie de l'iceberg est cachée sous l'eau. Quelle est la fraction visible?

 $\rho_o = 917 \text{kg/m}^3$ la masse volumique de la glace.

 ρ_{l} = 1025kg/m³ la masse volumique de l'eau de mer.


FLOTTABILITÉ

© 2001 Brooks/Cole Publishing ITP

TENSION SUPERFICIELLE

