News

Today in Nature: Results of the GRB neutrino search

Journal reference: Nature, DOI:10. 1038/nature11068

Although cosmic rays were discovered 100 years ago, their origin remains one of the most enduring mysteries in physics. Now, the IceCube Neutrino Observatory, a massive detector in Antarctica, is honing in on how the highest energy cosmic rays are produced.
"Although we have not discovered where cosmic rays come from, we have taken a major step towards ruling out one of the leading predictions," said IceCube principal investigator and University of Wisconsin - Madison physics professor Francis Halzen.

IceCube is using neutrinos, which are believed to accompany cosmic ray production, to explore these theories. In a paper published today in the journal Nature, the IceCube collaboration describes a search for neutrinos emitted from 300 gamma ray bursts observed, most recently in coincidence with the SWIFT and Fermi satellites, between May 2008 and April 2010. Surprisingly, they found none - a result that contradicts 15 years of predictions and challenges one of the two leading theories for the origin of the highest energy cosmic rays.
"The result of this neutrino search is significant because for the first time we have an instrument with sufficient sensitivity to open a new window on cosmic ray production and the interior processes of GRBs," said IceCube spokesperson and University of Maryland physics professor Greg Sullivan. "The unexpected absence of neutrinos from GRBs has forced a re-evaluation of the theory for production of cosmic rays and neutrinos in a GRB fireball and possibly the theory that high energy cosmic rays are generated in fireballs."


Natural World RapidWeaver theme by ThemeFlood